The invention is related to a design of microstrip antenna and particularly related to a microstrip antenna having an integral feed structure and multiple radiating elements.
In the field of wireless communication technology, an antenna is a component to receive and transmit electromagnetic wave. A good antenna can increase the efficiency, sensitivity and reliability of a wireless communication system. Hence, a good design of an antenna having high performance is an important part of the wireless communication system.
With the advancement of integrated circuit technology, the wireless products such as the mobile terminals become smaller in size. As they get small-sized and high-graded, newer antennas are desired. Microstrip antennas have been presented as one special research and product development area in the telecommunication field.
The concept of microstrip antennas was proposed in early 1950s, and became commercially viable in 1970s. A microstrip antenna is light, small and easy to be manufactured. Microstrip antennas can be easily attached to an object moving at a high speed. Because of these characteristics, microstrip antennas are widely applied on the fields of satellite communication, global positioning system, and low-power personal communication.
Typically, the microstrip antenna has a better efficiency when a dielectric constant becomes lower, and a substrate becomes thicker. Also, since the microstrip antenna has a high efficiency when using a high frequency, it can be considered as the very good choice for satisfying the miniaturization requirement for portable communication tool such as cell phones.
A microstrip antenna has several advantages. The first advantage is that the radiation of electromagnetic wave emits from a single side of the antenna so as to reduce the impact of electromagnetic wave on human body. Another advantage is that a microstrip antenna has a simple structure which is easy to construct. Another advantage is that the microstrip antenna can be designed on a circuit board together with solid-state modules such as an oscillator, amplifying circuit, variable attenuator, switch, modulator, mixer, or phase shifter. The microstrip antenna can also be manufactured at a low cost with a small size and a light weight, and thus it is suitable to mass production.
The present invention provides a microstrip antenna that includes a non-conductive substrate, a conductive ground plane attaching to a first surface of the substrate, an integral feed structure mounted on the conductive ground plane enclosing at least one transmission line and isolating it from the ground plane, and a plurality of radiating elements mounted on a second surface of the substrate.
The present invention provides a microstrip antenna with an integral feed structure and multiple radiating elements. The integral feed structure is constructed on a conductive ground plane and is separated from the radiating elements.
Referring to
One or more radiating elements 150 are mounted on the other surface of the substrate 100 and share the conductive ground plane 110 with the integral feed structure 116. The non-conductive substrate 100 separates the radiating elements 150 from the integral feed structure 116. There is an ohmic connection 160 such as a small via or connecting line that is placed between the radiating elements 150 and the transmission line 140 to connect them. The connection 160 can be placed through an aperture in the ground plane and the substrate. The location of the aperture or the connection 160 is specifically determined to avoid any significant interference to the function of the ground plane. It is understood that since the microwave current only occupies a very thin layer of the ground plane 110, the ground plane 110 can provide two such thin layers on two sides of it, one for the transmission line 140 and the other for the radiating element 150. The substrate 100 and the radiating elements 150 can be collectively referred to as an antenna structure. The integral feed structure 116 is placed in a predetermined location with respect to the conductive ground plane 110 and the radiating elements 150. The microwave signal is passed between radiating elements of the antenna structure and the transmission line of the feed structure. In one example, the radiating element is about 1.25 inches wide, the conductive ground plane 110 is about 0.4 inch wide, and the transmission line is about 0.18 inch wide.
The preferred embodiment of the present invention is a novel composition of a microstrip antenna, as stand alone or part of a linear antenna array, where each antenna structure is comprised of multiple radiating elements and a supporting substrate with a shared conductive ground plane.
The above illustration provides embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to help clarify the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.
The present application claims the benefits of U.S. Patent Provisional Application No. 60/707,469, entitled “Microstrip Antenna With Integral Feed and Antenna Structures”, which was filed on Aug. 10, 2005.
Number | Name | Date | Kind |
---|---|---|---|
4051477 | Murphy et al. | Sep 1977 | A |
5355143 | Zurcher et al. | Oct 1994 | A |
5475394 | Kohls et al. | Dec 1995 | A |
5880694 | Wang et al. | Mar 1999 | A |
5977710 | Kuramoto et al. | Nov 1999 | A |
6396442 | Kawahata et al. | May 2002 | B1 |
6888503 | Shikata | May 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070035449 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60707469 | Aug 2005 | US |