1. Field of Invention
The present invention relates to microelectromechanical systems (MEMS) and more particularly to optical interference microstructures used to manipulate the light intensity profile within a light guide.
2. Description of Related Art
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
Certain embodiments contemplate an illumination apparatus comprising a light guide having a forward and rearward surface. The light guide further comprises a plurality of edges between the forward and rearward surfaces. The light guide comprises material that supports propagation of light along the length of the light guide. At least a portion of at least one of the edges comprises an array of microstructures, the microstructures comprising a plurality of prisms and a plurality of lenses.
In some embodiments, the illumination apparatus further comprises a plurality of gaps between different of the prisms and lenses, the gaps comprising flat surfaces parallel to the at least one of the edges. At least one of the prisms may comprise an asymmetric structure. The asymmetric structure may comprise first and second surfaces on the at least one edge that forms a right angle. The prisms may comprise cylindrical microstructures having first and second planar surfaces oriented at angles of about 90° with respect to each other as seen from a cross-section perpendicular to said at least one edge.
In some embodiments, the plurality of lenses comprise cylindrical lenses. In some embodiments the illumination apparatus comprises a plurality of the prisms included in a first periodic pattern in the array and a second plurality of lenses is included in a second periodic pattern in the array. In some embodiments, microstructures possessing substantially the same cross-section occur periodically in the array and are separated by microstructures having different cross-sections.
In some embodiments, microstructures possessing substantially the same size occur periodically in the array and are separated by microstructures having a different size. In some embodiments, microstructures possessing substantially the same spacing occur periodically in the array and are separated by microstructures having a different spacing. In some embodiments, the plurality of microstructures comprises a subset of microstructure that forms a pattern that is repeated. In some embodiments, the microstructures have a width between about 5 and 500 microns. In some embodiments, the microstructures have a height between about 0.1 and 3 mm.
In certain embodiments the microstructures have a spacing less than or equal to about 500 microns. The light guide may comprise a curve-shaped optical entrance window and said microstructures may be disposed on said curved optical entrance window. Some embodiments further comprise a light source disposed with respect to the light guide to inject light through the microstructure and into said light guide. In some embodiments, the microstructures are configured to receive light from a light source and expand the angular distribution of said light within the light guide relative to a flat optical surface on the light guide for receiving light from the light source not including said microstructures.
In some embodiments the microstructures are be configured to receive light from a light source and expand the angular distribution of said light within the light guide beyond an angle with respect to the normal that is in excess of the critical angle for said light guide. In some embodiments the critical angle for said light guide is at least 37 degrees. In some embodiments, the critical angle for said light guide is at least 42 degrees.
In some embodiments, the microstructures are configured to receive light from a light source and provide an angular distribution of said light within the light guide having a central peak disposed on a pedestal. In some embodiments the microstructures are configured to receive light from a light source and provide an angular distribution of light within the light guide having a decrease in on-axis brightness relative to larger angles. In some embodiments, the microstructures are be configured to receive light from a light source and provide an angular distribution of light within the light guide with substantially uniform fall-off from a central axis.
In certain embodiments the light source is a light emitting diode. In certain embodiments the light guide surface is disposed forward of a plurality of spatial light modulators to illuminate the plurality of said spatial light modulators. In some embodiments the plurality of spatial light modulators comprise an array of interferometric modulators. In some embodiments, the microstructures comprise a first larger set of features with a second smaller set of features located thereon. In some embodiments the first or second sets comprise planar portions. In certain embodiments the first or second sets of features comprise curved portions.
The first set of features may comprise curved portions and the second set may comprise planar portions. Alternatively the first set of features may comprise planar portions and the second set may comprises curved portions. In certain embodiments the first set of features may comprise lenses and the second set may comprise prismatic features or the first set of features may comprise prismatic features and the second set may comprise lenses. The microstructures may provide less than 10% nonuniformity in a viewing angle of +/−45°. In some embodiments, the microstructures provide less than 10% nonuniformity in a viewing angle of +/−60°. In some embodiments, the microstructures redirect light substantially via refraction rather than by reflection or diffraction.
In some embodiments, the illumination apparatus further comprises a display, a processor that is configured to communicate with said display, said processor being configured to process image data, and a memory device that is configured to communicate with said processor. The apparatus may further comprise a driver circuit configured to send at least one signal to the display. The apparatus may further comprise a controller configured to send at least a portion of the image data to the driver circuit. The apparatus may further comprise an image source module configured to send said image data to said processor. In some embodiments, the image source module comprises at least one of a receiver, transceiver, and transmitter. The apparatus may further comprise an input device configured to receive input data and to communicate said input data to said processor. In some embodiments the display comprises an array of interferometric modulators.
Certain embodiments contemplate an illumination apparatus comprising a light guide having a forward and rearward surface, the light guide further comprising a plurality of edges between the forward and rearward surfaces. The light guide comprises material that supports propagation of light along the length of the light guide. At least a portion of at least one of the edges comprises an array of microstructures. The microstructures comprise a first set of features located on each of a second set of features, each of the second set of features smaller than each of the first set of features. In some embodiments, the microstructures of at least one of the first and second sets comprise planar portions.
In some embodiments the microstructures of at least one of the first and second sets may comprise curved portions. In some embodiments, the first set of features comprises lenses and the second set of features comprises prisms. In some embodiments the first set of features comprises prisms and the second set of features comprises lenses.
Certain embodiments contemplate an illumination apparatus comprising means for guiding light having a forward and rearward surface. The light guiding means further comprises a plurality of edges between the forward and rearward surfaces, the light guiding means comprising material that supports propagation of light along the length of the light guiding means. At least a portion of at least one of the edges comprises an array of means for directing light. The light directing means comprises a plurality of first light directing means and a plurality of second light directing means. The first light directing means comprising angled planar surfaces and the second light directing means comprising curved surfaces.
In certain embodiments, the light guiding means comprises a light guide or the light directing means comprises microstructures, or the first light directing means comprises prisms, or the second light directing means comprises lenses.
Certain embodiments contemplate an illumination apparatus comprising means for guiding light having a forward and rearward surface. The light guiding means further comprises a plurality of edges between the forward and rearward surfaces. The light guiding means comprises material that supports propagation of light along the length of the light guiding means. At least a portion of at least one of the edges comprises an array of means for directing light, the light directing means comprising a first set of means for directing light on each of a second set of means for directing light. Each of the second set of light directing means may be smaller than each of the first set of light directing means.
In certain embodiments, the light guiding means comprises a light guide or the light directing means comprises microstructures or the first set of light directing means comprises a first set of microstructures or the second set of light directing means comprises a second set of microstructures.
Certain embodiments contemplate a method of manufacturing an illumination apparatus comprising providing a light guide having a forward and rearward surface, the light guide further comprising a plurality of edges between the forward and rearward surfaces. The light guide comprises material that supports propagation of light along the length of the light guide. The method of manufacturing further comprises forming an array of microstructures on at least a portion of at least one of the edges, the microstructures comprising a plurality of prisms and a plurality of lenses.
Certain embodiments contemplate a method of manufacturing an illumination apparatus comprising: providing a light guide having a forward and rearward surface, the light guide further comprising a plurality of edges between the forward and rearward surfaces, said light guide comprising material that supports propagation of light along the length of the light guide. The method of manufacturing further comprises forming an array of microstructures on at least a portion of at least one of the edges, the microstructures comprising a first set of features located on each of a second set of features, each of the second set of features smaller than each of the first set of features.
The following detailed description is directed to certain specific embodiments. However, the teachings herein can be applied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. The embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
As discussed more fully below, in certain preferred embodiments means for directing light (i.e. microstructures) may be incorporated in the input window of a light guiding means (i.e. a light guide) to control the light intensity distributed within the light guide. In certain embodiments, the directional intensity of the light entering the light guide may be modified to achieve a more efficient distribution across the light guide. In some embodiments, the microstructures may comprise either curved means for directing light (i.e. lenses) or angled means for directing light (i.e., prisms). These microstructures serve to refract incoming light. In certain embodiments, microstructures disposed along at least one edge of the light guide redirect light from the light source to form a desired directional intensity profile within the light guide. These profiles can be chosen so as to more evenly distribute the light received by the display elements. To achieve a particular profile, the microstructures can take on variety of shapes in different embodiments. A few example cross-sections include generally curved, triangular (isosceles, equilateral, asymmetric), and semi-circular. In various embodiments microstructures of various shapes will be arrayed in patterns facilitating the creation of different light intensity profiles within the light guide. In some embodiments light passing through the light guide can then be redirected to pass into a plurality of display elements including one or more interferometric modulators.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
In some embodiments, the layers of the optical stack 16 are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) to form columns deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device. Note that
With no applied voltage, the gap 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
As described further below, in typical applications, a frame of an image may be created by sending a set of data signals (each having a certain voltage level) across the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to a first row electrode, actuating the pixels corresponding to the set of data signals. The set of data signals is then changed to correspond to the desired set of actuated pixels in a second row. A pulse is then applied to the second row electrode, actuating the appropriate pixels in the second row in accordance with the data signals. The first row of pixels are unaffected by the second row pulse, and remain in the state they were set to during the first row pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new image data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce image frames may be used.
In the
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device. However, for purposes of describing the present embodiment the display 30 includes an interferometric modulator display as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS, W-CDMA, or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. The above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
In embodiments such as those shown in
As described above, the interferometric modulators are reflective display elements and in some embodiments may rely on ambient lighting or internal illumination for their operation. In some of these embodiments, an illumination source directs light into a light guide disposed forward of the display elements, from which light may thereafter be redirected into the display elements. The distribution of light within the light guide will determine the angular distribution or uniform brightness of the light display elements. If the light within the light guide has a narrow directional intensity profile, it may produce dark corners within the light guide and consequently poor illumination of the display elements. Thus, it would be advantageous to control the directional intensity profile of the light directed into the light guide.
To demonstrate the effect of the interface on the resulting directional intensity profile in the plane of the light guide,
To advantageously achieve a variety of directional intensity profiles, certain embodiments of the invention, such as those shown in
The microstructures can take on a variety of shapes in various embodiments, but are here shown (not to scale) as an array of partial right circular cylinders with semi-circular cross-section parallel to the y-z plane. These cylinders are more narrow toward the illumination source and have sloping sidewalls, whose slope changes so as to accept light from the illumination source at a variety of different angles. Although shown here as protruding from the edge 66, one skilled in the art will readily recognize that these and other microstructures of the various embodiments may be formed by recesses into the light guide 900 or by a combination of protrusions and recesses. By accepting the light at other than planar angles, broader and more expansive angular intensity profiles may be achieved. A variety of cross-sections are possible and may, for example, be triangular (e.g., isosceles, equilateral, asymmetric), generally circular, or trapezoidal. Although shown here as being cylindrical, one skilled in the art will recognize that the microstructures can take on a number of different structures and shapes to achieve various directional profiles. In certain embodiments, the microstructures have widths varying from 5 microns to 500 microns. In some embodiments, 5 microns corresponds to the typical dimensions of certain microfabrication techniques which may be used (e.g. diamond point turning of a flat surface—inscribing grooves—which is then used as a mold insert in an injection molding cavity to define the input edge of the lightguide). Although the size may be less than 500 microns in some embodiments, the microstructure size may exceed this value. In certain embodiments, the array of microstructures may be of similar size to the LED width (2-4 mm in certain instances), and thus each microstructure in the array may be a fraction of the array size. Similarly, the microstructures may take on a variety of heights, in certain embodiments ranging from 0.1 to the height (e.g. thickness) of the lightguide or LED. In some embodiments, the height of the microstructures is from 0.1 to 1 mm or 3 mm.
It is desirable to maintain angular uniformity when viewing the light guide 900 from above (that is, where the viewer looks down from the z direction). In particular, it is preferable to maintain angular uniformity in spite of different viewing angles φ. Although shown in the figures as the angle between Z and Y, one skilled in the art will readily recognize that φ may be chosen as any angle between Z and the X-Y Plane. For example, φ may indicate the angle between Z and X. Certain of the present embodiments are able to prevent substantial visible discontinuities (i.e. less than 5% or 10% nonuniformity) for φ within a range of +/−45° and others within a range of +/−60°.
To demonstrate the effectiveness of some of these embodiments,
Although
For example,
In yet another example, illustrated by
As discussed above, more control over the profile distribution can be achieved by combining different shaped microstructures into a single array. Not only the choice of shapes, but the manner in which they are arranged on the light guide edge will determine the resulting profile.
For example,
The examples so far disclosed have each produced symmetric intensity profiles as seen in
In addition to the various embodiments disclosed above,
One skilled in the art will readily recognize that the designs disclosed above can be variously modified and may alter the distribution of the directional profile. For example,
While certain embodiments of the disclosure have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the present inventions. A wide variety of alternative configurations are also possible. For example, components (e.g., layers) may be added, removed, or rearranged. Similarly, processing and method steps may be added, removed, or reordered.
Accordingly, although certain preferred embodiments and examples have been described above, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes and embodiments. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.
This application claims the benefit of U.S. Application No. 61/230,978, filed Aug. 3, 2009, the entirety of which is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61230978 | Aug 2009 | US |