1. Field of the Invention
The present invention relates to a miniature switching element that is fabricated by using MEMS technology.
2. Description of the Related Art
In the technological field of wireless communication devices such as cellular phones, a demand for miniaturization of high-frequency circuits and RF circuits has arisen in accordance with the increase in the parts that are mounted in order to implement a high performance. In order to meet such a demand, advances have been made in the miniaturization by using MEMS (micro-electromechanical systems) technology of a variety of parts constituting a circuit.
As one such part, a MEMS switch is known. The MEMS switch is a switching element in which each part is made miniature by means of MEMS technology and comprises at least a pair of contacts for executing switching through mechanical opening and closing and a drive mechanism for achieving the mechanical opening closing operation of the contact pair. MEMS switches tend to exhibit higher insulation in an open state and lower insertion loss in a closed state than switching elements made of PIN diodes and MESFETs and so forth in the switching of a GHz-order high frequency signal in particular. This is attributable to the fact that an open state is achieved by means of mechanical opening between the contact pair and to the small parasitic capacitance on account of being a mechanical switch. MEMS switches appear in Japanese Patent Application Laid Open Nos. H9-17300 and 2001-143595, for example.
When a prescribed electric potential is supplied to the drive electrode 606 of a microswitching element X6 with this constitution, an electrostatic force of attraction is produced between the drive electrodes 606 and 607. As a result, the movable portion 603 is elastically deformed to a position where the movable contact portion 604 contacts both fixed contact electrodes 605. Thus, the closed state of the microswitching element X6 is achieved. In the closed state, the pair of fixed contact electrodes 605 is electrically connected by the movable contact portion 604 and current is allowed to pass between the fixed contact electrode pair 605.
Meanwhile, when the electrostatic force of attraction acting between the drive electrodes 606 and 607 in the microswitching element X6 in the closed state ceases to exist, the movable portion 603 returns to the natural state and the movable contact portion 604 is spaced apart from the fixed contact electrodes 605. Thus, the open state of the microswitching element X6 as shown in
Thereafter, as shown in
Low insertion loss in the closed state may be cited as one characteristic that is generally required of a switching element. Further, after attempting a reduction of the insertion loss of the switching element, a low electrical resistance for the pair of fixed contact electrodes is desirable.
However, in the case of the above microswitching element X6, it is difficult to establish thick fixed contact electrodes 605 and, in reality, the fixed contact electrodes 605 are thick and on the order of 2 μm. This is because of the need to secure evenness for the illustrated upper face (growth end face) of the sacrificial layer 610 that was formed temporarily in the fabrication steps of the microswitching element X6.
As mentioned earlier with reference to
The present invention was conceived in view of this situation and an object thereof is to provide a microswitching element that is adapted to reduce the insertion loss and which can be suitably fabricated.
The microswitching element provided by the present invention comprises a base substrate; a fixing portion attached to the base substrate; a movable portion that includes a fixed end fixed to the fixing portion, and that extends along the base substrate to be surrounded by the fixing portion via a slit having a pair of closed ends, the movable portion including a first surface facing the base substrate and a second surface opposite to the first surface; a movable contact portion provided on the second surface of the movable portion; and a pair of fixed contact electrodes each of which includes a contact surface facing the movable contact portion. The fixed contact electrodes are attached to the fixing portion.
This microswitching element fulfils a switching function by the mechanical opening and closing of a movable contact portion and a pair of fixed contact electrodes. In the case of this microswitching element, the pair of fixed contact electrodes are each fixed via a fixing portion to a base substrate and have a part facing the movable contact portion that is provided on the side opposite the base substrate of the movable portion.
According to the present invention, the pair of fixed contact electrodes are not disposed between the base substrate and the movable portion. Therefore, when this element is fabricated, there is no need to undertake the above series of steps pertaining to a conventional microswitching element X6 of forming a pair of fixed contact electrodes on the base substrate, forming a sacrificial layer to cover the fixed contact electrodes, and forming a movable portion on the sacrificial layer. The pair of fixed contact electrodes 605 of this element can be formed by depositing or growing a material by means of plating, for example, on the opposite side from the base substrate via the movable portion. As a result, it is possible to afford the pair of fixed contact electrodes of this element a thickness that is sufficient to implement the desired low resistance. This kind of microswitching element is suitable on account of the reduction in the insertion loss.
More specifically, this microswitching element can be fabricated by subjecting a material substrate with a layered structure consisting of a first layer, a second layer, and an intermediate layer that is interposed between the two layers to the processing of the following first electrode formation step, first etching step, sacrificial layer formation step, second electrode formation step, sacrificial layer removal step and second etching step. In the first electrode formation step, a movable contact portion is formed on a first part that is processed to produce the movable portion of the first layer of the material substrate. In the first etching step, the first layer is subjected to anisotropic etching as far as the intermediate layer via a mask pattern that masks the first part and a second part that is linked to the first part and processed to produce the fixing portion of the first layer. In the sacrificial layer formation step, a sacrificial layer that has a prescribed opening for exposing a join region of the second part is formed. In the second electrode formation step, a fixed contact electrode that comprises a part facing the movable contact portion via the sacrificial layer and which is joined to the second part in the join region is formed by means of electroplating or electroless plating, for example. The sacrificial layer is removed in the sacrificial layer removal step. In the second etching step, the intermediate layer that is interposed between the second layer constituting the base substrate and the first part is removed by etching. The sacrificial layer removal step and second etching step can be performed by wet etching using a prescribed etchant and can be performed continuously in a substantially single step.
According to this method, a microswitching element comprising a pair of fixed contact electrodes can be fabricated without undertaking the above-described series of steps pertaining to the conventional microswitching element X6 of forming a pair of fixed contact electrodes on the base substrate through patterning, forming a sacrificial layer to cover the fixed contact electrodes and forming an extension portion or arm portion on the sacrificial layer. As a result, a thickness that is sufficient to implement the desired low resistance can be established for the pair of fixed contact electrodes of the microswitching element obtained by means of this method.
Further, according to this method, the microswitching element of the present invention can be suitably fabricated by avoiding detachment of the movable contact portion. When a precious metal with a large ionization tendency (gold, for example) is preferably adopted as the constituent material of the movable contact portion and a prescribed silicon material is preferably adopted as the constituent material of the movable portion, the silicon has a larger ionization tendency than the precious metal. As a result, in the above sacrificial layer removal step and second etching step, in the case of the movable contact portion and the movable portion at which the movable contact portion is joined, the local cell reaction in the etchant (electrolyte solution) advances and part of the movable portion melts. However, in the sacrificial layer removal step and second etching step in the formation of this microswitching element, the movable portion is linked to the fixing portion instead of being isolated. Therefore, the movable portion and whole of the fixing portion act as one pole in the local cell reaction (the movable contact portion acts as the other pole) and it is possible to adequately suppress the amount of solution per unit area of the movable portion. Supposing that the movable portion is isolated instead of being linked to the fixing portion, the solution amount per unit area of the movable portion easily becomes excessive. When the solution amount is excessive, the point of the movable portion at which the movable contact portion is joined becomes highly porous (corroded) and all or part of the movable contact portion becomes detached from the movable portion. However, in the fabrication process of this microswitching element, the solution amount can be suppressed and therefore this detachment phenomenon can be avoided.
As detailed above, the microswitching element of the present invention is adapted to a reduction of insertion loss and can be suitably fabricated.
This microswitching element preferably further comprises a first drive electrode that is provided over the movable portion and fixing portion on the side opposite the base substrate and a second drive electrode that comprises a part facing the first drive electrode and is joined to the fixing portion. This microswitching element can comprise such an electrostatic drive mechanism.
This microswitching element preferably further comprises a first drive electrode that is provided on the side opposite the base substrate and over the movable portion and the fixing portion; a piezoelectric film that is provided on the first drive electrode; and a second drive electrode that is provided on the piezoelectric film. This microswitching element can comprise a piezoelectric drive mechanism of this kind.
The slit preferably comprises a part that extends along the part on the fixing portion of the first drive electrode. When there is a desire to minimize the possibility of leakage to the fixing portion and base substrate of the high-frequency signal that passes through the movable contact portion on account of the reduction of the insertion loss of the switching element, this constitution is suitable in order to suppress leakage of this high frequency signal.
This microswitching element preferably further comprises a slit that comprises a part that extends along the point of the fixing portion at which the fixed contact electrode is joined and which comprises a pair of closed ends. When there is a desire to minimize the possibility of leakage to the fixing portion and base substrate of the high-frequency signal that passes through the fixed contact electrode on account of the reduction of the insertion loss of the switching element, this constitution is suitable in order to suppress this high frequency signal. Further, when a precious metal with a large ionization tendency (gold, for example) is preferably adopted as the constituent material of the fixed contact electrode and a prescribed silicon material is preferably adopted as the constituent material of the fixing portion, silicon has a larger ionization tendency than the precious metal. As a result, in the above sacrificial layer removal step and second etching step, in the case of the fixed contact electrode and the fixing portion to which the fixed contact electrode is joined, part of the fixing portion melts as the local cell reaction in the etchant (electrolyte solution) advances. However, in the sacrificial layer removal step and second etching step in the formation of a microswitching element that adopts this constitution, the point of the fixing portion at which the fixed contact electrode is joined is linked to another point of the fixing portion instead of being isolated. Therefore, the movable portion and the whole of the fixing portion act as one pole in the local cell reaction (the fixed contact electrode acts as the other pole) and it is possible to sufficiently suppress the solution amount per unit area at the point of the fixing portion where the fixed contact electrode is joined. Supposing that the point of the fixing portion at which the fixed contact electrode is joined is isolated instead of being linked to another point of the fixing portion, the solution amount per unit area of the join location easily becomes excessive. When the solution amount is excessive, the point of the fixing portion at which the fixed contact electrode is joined becomes highly porous (corroded) and all or part of the fixed contact electrode becomes detached from the movable portion. However, in the fabrication process of this microswitching element that adopts this constitution, the solution amount can be suppressed and therefore this detachment phenomenon can be avoided.
The part located between the pair of closed ends of the slit of the fixing portion is detached from the base substrate. Such a constitution is preferable in order to suppress leakage to the base substrate of the high frequency signal. The separation distance between the closed ends of the pair of slits is preferably at or below 50 μm. This constitution is suitable in order to suppress leakage of a high frequency signal to the fixing portion and base substrate during element driving while suppressing the solution amount of the constituent material of the movable portion and fixing portion in the process of forming this microswitching element.
The movable contact portion and fixing contact electrode may preferably contain a metal selected from among the group consisting of gold, platinum, palladium, and ruthenium. The movable contact portion and fixed contact electrode preferably consist of a precious metal that does not readily oxidize.
The movable portion and fixing portion preferably consist of a silicon material with a low resistivity or 1000 Ω· cm or more or an N-type silicon material. This constitution is suitable in order to suppress the solution amount of the constituent material of the movable portion and fixing portion in the process of forming this microswitching element.
The movable portion preferably comprises a recess on the opposite side from the base substrate and the movable contact portion preferably comprises a protrusion that protrudes into the recess. Such a constitution is suitable in order to prevent detachment of the movable contact portion from the movable portion.
The microswitching element X1 comprises a base substrate S1, a fixing portion 10, a movable portion 20, a movable contact portion 31, a pair of fixed contact electrodes 32 (omitted from
As shown in
As shown in
The movable contact portion 31 is provided on the head portion 22 of the movable portion 20 as shown in
As shown in
When a prescribed electric potential is supplied to the drive electrode 33 of a microswitching element X1 with this constitution, an electrostatic force of attraction is produced between the drive electrodes 33 and 34. As a result, the movable portion 20 is elastically deformed to a position where the movable contact portion 31 touches the pair of fixed contact electrodes 32 and the contact portion 32a. Thus, the closed state of the microswitching element X1 is achieved. In the closed state, the pair of fixed contact electrodes 32 is electrically connected by the movable contact portion 31 and current is allowed to pass between the fixed contact electrodes 32. Thus, the on-state of the high frequency signal, for example, can be achieved.
In the case of the microswitching element X1 in a closed state, when the electrostatic force of attraction acting between the drive electrodes 33 and 34 ceases to exist as a result of termination of the supply of the electric potential to the drive electrode 33; the movable portion 20 returns to the natural state and the movable contact portion 31 is spaced apart from the two fixed contact electrodes 32. Thus, the open state of the microswitching element X1 as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, a current-carrying base film (not illustrated) is formed on the surface of the side of the substrate S′ where the sacrificial layer 104 is provided, and then a mask 105 is formed as shown in
Thereafter, as shown in
Next, as shown in
Thereafter, as shown in
Thereafter, if necessary, part of the base film (Cr film, for example) that is attached to the undersides of the fixed contact electrode 32 and drive electrode 34 is removed through wet etching, and then the whole of the element is dried by means of supercritical drying. With supercritical drying, the sticking phenomenon according to which the movable portion 20 adheres to the base substrate S1 can be avoided.
The microswitching element X1 shown in
In the case of the microswitching element X1, the lower surface of the contact portion 32a of the fixed contact electrodes 32 (that is, the surface that is in contact with the movable contact portion 31) is very flat and, therefore, an air gap between the movable contact portion 31 and contact portion 32a can be provided with high dimensional accuracy. This is because the lower surface of the contact portion 32a is the surface on which the plating growth to form the fixed contact electrodes 32 begins. The air gap with high accuracy of dimension is suitable for reducing the insertion loss of the element in a closed state and is suitable for increasing the isolation characteristics of the element in an open state.
Generally, in cases where the dimensional accuracy of the air gap between the movable contact portion and the fixed contact electrodes in the microswitching element is low, inconsistencies in the air gap occur from one element to the next. The longer than the design dimensions the provided air gap is, the harder it is for the movable contact portion to make contact with the fixed contact electrodes in the closing operation of the switching element and therefore insertion loss of the element tends to increase in the closed state. On the other hand, the shorter the provided air gap is than the design dimensions, the smaller the insulation between the movable contact portion and the fixed contact electrodes in the open state of the switching element, and therefore, there is a tendency for the isolation characteristics of the element to deteriorate. Plating can control the thickness of the film less precisely than sputtering and CVD and, therefore, the growth end face of a thick plating film has relatively large undulations and is not very flat and the formation positional accuracy of the growth end face is relatively low. As a result, in cases where the growth end face of the plating film is used as a contact target face of the movable contact portion while the fixed contact electrodes in the microswitching element are constituted by means of a thick plating film, the dimensional accuracy of the air gap between the movable contact portion and the fixed contact electrodes is low and, therefore, inconsistencies in the air gap occur from one element to the next. On the other hand, in the case of the microswitching element X1, because the lower surface of the contact portion 32a of the fixed contact electrodes 32 is the initial plating growth end face, the lower surface is very flat and, therefore, the air gap between the movable contact portion 31 and the contact portion 32a can be provided with high dimensional accuracy.
In the wet etching step described above with reference to
In the case of the microswitching element X1, as shown in
In the fabrication process of the microswitching element X1, in the wet etching step described above with reference to
The slit 42A comprises a part that extends between the movable portion 20 and fixing portion 10 and a part that extends along the part of the drive electrode 33 which is on the fixing portion 10 and comprises a pair of closed ends 42a.
The slit 42B comprises a part that extends along the portion at which one fixed contact electrode 32 is joined to the fixing portion 10 and also comprises a pair of closed ends 42b. The slit 42C comprises a part that extends along the point at which the other fixed contact electrode 32 is joined to the fixing portion 10 and comprises a pair of closed ends 42c.
When a prescribed electric potential is supplied to the drive electrode 33 of a microswitching element X2 with this constitution, an electrostatic force of attraction is produced between the drive electrodes 33 and 34. As a result, the movable portion 20 is elastically deformed to a position where the movable contact portion 31 contacts the pair of fixed contact electrodes 32 and the contact portion 32a. Thus, the closed state of the microswitching element X2 is achieved. In the closed state, the pair of fixed contact electrodes 32 is electrically connected by the movable contact portion 31 and current is allowed to pass between the fixed contact electrodes 32. Thus, the on-state of the high frequency signal, for example, can be achieved. In the case of the microswitching element X2 in which slit 42A, which comprises a part that extends along a part of the drive electrode 33 which is on the fixing portion 10 and slits 42B and 42C, which comprise a part that extends along the point of the fixing portion 10 at which the fixed contact electrodes 32 are joined, are provided, leakage of a high frequency signal to the fixing portion 10 and base substrate S1 is suppressed.
In the case of the microswitching element X2 in the closed state, when the electrostatic force of attraction acting between the drive electrodes 33 and 34 ceases to exist as a result of termination of the supply of the electric potential to the drive electrode 33, the movable portion 20 returns to the natural state and the movable contact portion 31 is spaced apart from the fixed contact electrodes 32. Thus, the open state of the microswitching element X2 as shown in
This kind of microswitching element X2 can be fabricated in the same way as the microswitching element X1 except for the formation of the slits 42A, 42B, and 42C instead of the slit 41. Therefore, in the case of the micro switching element X2, similarly to the microswitching element X1, the pair of fixed contact electrodes 32 can be afforded a thickness that is sufficient in order to implement the desired low resistance. Further, in the case of the microswitching element X2, similarly to the microswitching element X1, the lower surface of the contact portion 32a of the fixed contact electrodes 32 (that is, the surface to contact the movable contact portion 31) is very flat and, therefore, an air gap between the movable contact portion 31 and contact portion 32a can be provided with high dimensional accuracy. In addition, similarly to the microswitching element X1, the microswitching element X2 can be suitably fabricated by avoiding detachment of the movable contact portion 31, fixed contact electrodes 32, and drive electrodes 33 and 34. This kind of microswitching element X2 is suitable on account of reducing insertion loss in the closed state.
Slit 43A comprises a part that extends between the movable portion 20 and the fixing portion 10 and a part that extends along the part of the drive electrode 33 which is on the fixing portion 10 and comprises a pair of closed ends 43a.
Slit 43B comprises a part that extends along the point at which one fixed contact electrode 32 is joined of the fixing portion 10 and a pair of closed ends 43b.
Slit 43C extends along the point where the other fixed contact electrode 32 is joined of the fixing portion 10 and comprises a pair of closed ends 43c.
When a prescribed electric potential is supplied to the drive electrode 33 of a microswitching element X3 with this constitution, an electrostatic force of attraction is produced between the drive electrodes 33 and 34. As a result, the movable portion 20 is elastically deformed to a position where the movable contact portion 31 contacts the pair of fixed contact electrodes 32 and the contact portion 32a. Thus, the closed state of the microswitching element X3 is achieved. In the closed state, the pair of fixed contact electrodes 32 is electrically connected by the movable contact portion 31 and current is allowed to pass between the fixed contact electrodes 32. Thus, the on-state of the high frequency signal, for example, can be achieved. In the case of the microswitching element X3 in which slit 43A, which comprises a part that extends along a part of the drive electrode 33 which is on the fixing portion 10 and the distance between the closed ends 43a of which is short, slit 43B, which comprises a part that extends along the point of the fixing portion 10 at which the fixed contact electrodes 32 are joined and of which the distance between the closed ends 43b thereof is short, and slit 43C, which comprises a part that extends along the point of the fixing portion 10 at which the fixed contact electrodes 32 are joined and of which the distance between the closed ends 43c thereof is short, are provided, leakage of a high frequency signal to the fixing portion 10 and base substrate S1 is suppressed. In addition, a constitution in which part 10a, which is located between the closed ends 43a of the fixing portion 10, part 10b that is located between the closed ends 43b, and part 10c that is located between the closed ends 43c are spaced apart from the base substrate S1 is also conducive to the suppression of the leakage of a high frequency signal.
In the case of the microswitching element X3 in the closed state, when the electrostatic force of attraction acting between the drive electrodes 33 and 34 ceases to exist as a result of termination of the supply of the electric potential to the drive electrode 33, the movable portion 20 returns to the natural state and the movable contact portion 31 is spaced apart from the fixed contact electrodes 32. Thus, the open state of the microswitching element X3 as shown in
This kind of microswitching element X3 can be fabricated in the same way as the microswitching element X1 except for the formation of the slits 43A, 43B, and 43C instead of the slit 41. Therefore, in the case of the microswitching element X3, similarly to the microswitching element X1, the pair of fixed contact electrodes 32 can be afforded a thickness that is sufficient in order to implement the desired low resistance. Further, in the case of the microswitching element X3, similarly to the microswitching element X1, the lower surface of the contact portion 32a of the fixed contact electrodes 32 (that is, the surface to contact the movable contact portion 31) is very flat and, therefore, an air gap between the movable contact portion 31 and contact portion 32a can be provided with high dimensional accuracy. In addition, similarly to the microswitching element X1, the microswitching element X3 can be suitably fabricated by avoiding detachment of the movable contact portion 31, fixed contact electrodes 32, and drive electrodes 33 and 34. This kind of microswitching element X3 is suitable on account of reducing insertion loss in the closed state.
The microswitching element X4 comprises a base substrate S2, a fixing portion 50, four movable portions 60, four movable contact portion 71, a common fixed contact electrode 72 (not shown in
The fixing portion 50 is joined to the base substrate S2 via a boundary layer 50′ as shown in
The movable portion 60 has a fixed end that is fixed to the fixing portion 50, extends along the base substrate S2, and is surrounded by the fixing portion 50 via the slits 81. Further, the movable portion 60 comprises an arm portion 61 and a head portion 62, as shown in
As shown in
As shown in
Each slit 81 comprises a part that extends between the movable portion 60 and the fixing portion 50 and a part that extends along the part of the drive electrode 74 which is on the fixing portion 50, and also comprises a pair of closed ends 81a.
Each slit 82 comprises a part that extends along the portion of the fixing portion 50 to which the fixed contact electrode 72 is joined and also comprises a pair of closed ends 82a.
Each slit 83 comprises a part that extends along the portion of the fixing portion 50 to which the fixed contact electrode 73 is joined and also comprises a pair of closed ends 83a.
When a prescribed electric potential is supplied to any of the drive electrodes 74 of a microswitching element X4 with this constitution, an electrostatic force of attraction is produced between that drive electrode 74 and the drive electrode 75 facing that drive electrode 74. As a result, the corresponding movable portion 60 is elastically deformed to a position where the movable contact portion 71 contacts the fixed contact electrodes 72 and 73 and the contact portions 72a and 73a. Thus, the closed state of one channel of the microswitching element X4 is achieved. In the closed state of one channel, the fixed contact electrodes 72 and 73 are electrically connected by the movable contact portion 71 and therefore current is allowed to pass between the fixed contact electrodes 72 and 73. Thus, the on-state of the high frequency signal, for example, can be achieved for this channel. In the case of the microswitching element X4 in which slit 81, which comprises a part that extends along a part of the drive electrode 74 which is on the fixing portion 50 and the distance between the closed ends 81a of which is short, slit 82, which comprises a part that extends along the point of the fixing portion 50 at which the fixed contact electrodes 72 are joined and of which the distance between the closed ends 82a thereof is short, and slit 83, which comprises a part that extends along the point of the fixing portion 50 at which the fixed contact electrodes 72 are joined and of which the distance between the closed ends 83a thereof is short, are provided, leakage of a high frequency signal to the fixing portion 50 and base substrate S2 is suppressed. In addition, a constitution in which part 50a, which is located between the closed ends 81a of the fixing portion 50, a part 50b, which is located between the closed ends 82a, and a part 50c, which is located between the closed ends 83a are spaced apart from the base substrate S2 is also conducive to the suppression of the leakage of a high frequency signal.
When the electrostatic force of attraction acting between the drive electrodes 74 and 75 ceases to exist as a result of termination of the supply of the electric potential to the drive electrode 74 of the channel in the closed state, the corresponding movable portion 60 returns to the natural state and the movable contact portion 71 is spaced apart from between the fixed contact electrodes 72 and 73. Thus, the open state of one channel of the microswitching element X4 is achieved. In the open state of one channel, the fixed contact electrodes 72 and 73 are electrically isolated and the passage of current between the fixed contact electrodes 72 and 73 is prevented. Thus, the off-state of a high frequency signal, for example, can be achieved in this channel.
In the case of the microswitching element X4, the opening and closing of four channels can be controlled as detailed above by selectively controlling electrical potential applied to each of the four drive electrodes 74. That is, the microswitching element X4 is a so-called SP4T (single pole 4 through)—type switch.
The microswitching element X4 described above can be fabricated by undertaking the same process as that for the microswitching element X1. Therefore, the fixed contact electrodes 72 and 73 of the microswitching element X4 can be afforded a thickness that is sufficient in order to implement the desired low resistance. Further, in the case of the microswitching element X4, the lower surface of the contact portions 72a and 73a of the fixed contact electrodes 72 and 73 (that is, the surface to contact the movable contact portion 71) is very flat and, therefore, an air gap between the movable contact portion 71 and the contact portions 72a and 73a can be provided with high dimensional accuracy. In addition, the micro switching element X4 can be suitably fabricated by avoiding detachment of the movable contact portion 71, fixed contact electrodes 72 and 73, and drive electrodes 74 and 75. This kind of microswitching element X4 is suitable on account of reducing insertion loss in the closed state.
The microswitching element X5 comprises a base substrate S1, a fixing portion 10, a movable portion 20, a movable contact portion 31, a pair of fixed contact electrodes 32 (omitted from
The piezoelectric drive portion 90 comprises drive electrodes 91 and 92 and a piezoelectric film 93 between the drive electrodes 91 and 92. The drive electrodes 91 and 92 each have a layered structure consisting of a Ti base layer and an Au principal layer, for example. The drive electrode 92 is connected to ground via prescribed wiring (not shown). The piezoelectric film 93 is made of a piezoelectric material that exhibits the quality that strain is produced by applying an electric field (inverse piezoelectric effect). PZT (a solid solution of PbZrO3 and PbTiO3), ZnO doped with Mn, ZnO, or AlN can be adopted as such a piezoelectric material. The thickness of the drive electrodes 91 and 92 is 0.55 μm, for example, and the thickness of the piezoelectric film 93 is 1.5 μm, for example.
When a prescribed positive electric potential is supplied to the drive electrode 91 and a prescribed negative electric potential is supplied to the drive electrode 92 of a micro switching element X5 with this constitution, an electric field is produced between the drive electrode 91 and drive electrode 92 and a contraction force is produced in an in-plane direction within the piezoelectric film 93. The further away from the drive electrode 91 that is directly supported by the movable portion 20, that is, the closer to the drive electrode 92, the more readily contracted in an in-plane direction the piezoelectric material in the piezoelectric film 93 becomes. As a result, the in-plane direction contraction amount arising from the contraction force gradually increases moving from the side of the drive electrode 91 in the piezoelectric film 93 toward the side of the drive electrode 92, and the movable portion 20 is elastically deformed to a position where the movable contact portion 31 contacts the pair of fixed contact electrodes 32. Thus, the closed state of the microswitching element X4 is achieved. In the closed state, the fixed contact electrodes 32 are electrically connected by the movable contact portion 31 and current is allowed to pass between the fixed contact electrodes 32. Thus, the on-state of the high frequency signal, for example, can be achieved. In the case of the microswitching element X5 in which a slit 43A, which comprises a part that extends along a part of the drive electrode 91 which is on the fixing portion 10 and the distance between the closed ends 43a of which is short, a slit 43B, which comprises a part that extends along the point of the fixing portion 10 at which the fixed contact electrodes 32 are joined and of which the distance between the closed ends 43b thereof is short, and a slit 43C, which comprises a part that extends along the point of the fixing portion 10 at which the fixed contact electrodes 32 are joined and of which the distance between the closed ends 43c thereof is short, are provided, leakage of a high frequency signal to the fixing portion 10 and base substrate S1 is suppressed. In addition, a constitution in which part 10a, which is located between the closed ends 43a of the fixing portion 10, part 10b that is located between the closed ends 43b, and part 10c that is located between the closed ends 43c are spaced apart from the base substrate S1 is also conducive to the suppression of the leakage of a high frequency signal.
In the case of the microswitching element X5 in the closed state, when the electric field between the drive electrodes 91 and 92 ceases to exist as a result of termination of the supply of the electric potential to the piezoelectric drive portion 90, the piezoelectric film 93 and the movable portion 20 return to the natural state and the movable contact portion 31 is spaced apart from the fixed contact electrodes 32. Thus, the open state of the microswitching element X5 is achieved. In the open state, the pair of fixed contact electrodes 32 is electrically isolated and the passage of current between the fixed contact electrodes 32 is prevented. Thus, the off-state of a high frequency signal, for example, can be achieved.
Thereafter, as shown in
Thereafter, as shown in
Thereafter, as shown in
In the fabrication of the microswitching element X5, the slits 43A and 43B are then produced by etching the first layer 101 as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, after a current-carrying base film (not illustrated) has been formed on the surface of the side of the substrate S′ where the sacrificial layer 107 is provided, a mask 108 is formed as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, as shown in
Thereafter, if necessary, part of the base film (Cr film, for example) that is attached to the undersides of the fixed contact electrode 32 is removed through wet etching, and then the whole of the element is dried by means of supercritical drying. Thereafter, as shown in
The microswitching element X5 can be fabricated as detailed hereinabove. With the above method, the fixed contact electrodes 32 comprising the contact portion 32a facing the movable contact portion 31 can be formed thickly on the sacrificial layer 107 by means of plating. As a result, the pair of fixed contact electrodes 32 can be afforded a sufficient thickness. A microswitching element X5 of this kind is suitable on account of reducing insertion loss in the closed state.
In the case of the microswitching element X5, the lower surface of the contact portion 32a of the fixed contact electrodes 32 (that is, the face that makes contact with the movable contact portion 31) is very flat and, therefore, the air gap between the movable contact portion 31 and the contact portion 32a can be provided with high dimensional accuracy. An air gap with high dimensional accuracy is suitable on account of reducing insertion loss in the closed state and is also suitable by virtue of improving the isolation characteristics in the open state.
In addition, similarly to the microswitching element X1, the microswitching element X5 can be suitably fabricated by avoiding detachment of the movable contact portion 31 and fixed contact electrodes 32. This kind of microswitching element X5 is suitable on account of reducing insertion loss in the closed state.
Number | Date | Country | Kind |
---|---|---|---|
2005-023388 | Jan 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5578976 | Yao | Nov 1996 | A |
6238946 | Ziegler | May 2001 | B1 |
6307452 | Sun | Oct 2001 | B1 |
6734770 | Aigner et al. | May 2004 | B2 |
6750742 | Kang et al. | Jun 2004 | B2 |
7123119 | Pashby et al. | Oct 2006 | B2 |
7151425 | Park et al. | Dec 2006 | B2 |
Number | Date | Country |
---|---|---|
9-17300 | Jan 1997 | JP |
2001-94062 | Apr 2001 | JP |
2001-143595 | May 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060181375 A1 | Aug 2006 | US |