The present invention relates to an improved microtiter control plate and to methods and apparatus used control a temperature of a microtiter plate. More specifically, the present invention provides microtiter plates including precise vertical alignment for facilitating use with robotic arms.
The microtiter plate has become a standard tool in analytical research and clinical diagnostic testing laboratories. A very common usage is in the enzyme-linked immunosorbent assay ELISA, the basis of most modern medical diagnostic testing in humans and animals. Other uses include growth and analysis of bacterial or fungi cultures, DNA purification, soil analysis, fermentation studies, and other small-scale bio-chemical processes. Microtiter plates enable the testing of many small volume samples at one time, shortening the analysis process time and greatly reducing the amount of sample required. The later is particularly critical as the cost of the sample materials is often quite high.
Typically, microtiter plates are used in automated testing equipment, where robotic arms place microtiter plates onto a flat stage. Another robot then dispenses small quantities of one or both of chemicals and cultures which will undergo testing, into each small well. It is common for each well to have slightly different mixtures. The small size of each well makes it conducive to have precise alignment of the microtiter plate to the robotic arms.
In many of the microtiter plate uses, it is desirable to control the temperature of the sample as the contents are either temperature sensitive, or in the case of bacterial or fungi cultures, grow at rates that change exponentially with temperature. Various methods for controlling microtiter plate temperature have been tried, such as immersing the microtiter plate in a circulating fluid, blowing a heated or cooled air over the microtiter plate surface, and placing it on a heated or cooled plate.
The first two methods have serious drawbacks. Immersing a microtiter plate in a circulating fluid is problematic for two reasons: first, the microtiter plates are made from low density materials and tend to float, and second, the coolant can get into the wells, contaminating the sample. Blowing air over the microtiter plate surface has similar problems with potential contamination and, due to the low thermal mass of air, precise temperature control over the microtiter plate surface is nearly impossible.
It has been known to insert a microtiter plate into a heated or cooled cold plate to solve these problems, but a new problem arises when the microtiter plate temperature must be maintained below the ambient dew point: condensation of moisture. Minimizing condensation requires insulating all but the top surface of the cold plate with a plastic or foam insulation, which in turn creates still a new problem: alignment of the microtiter plate. It is very difficult to precisely machine or cut plastic or foam insulation. As a result, it is very difficult to maintain an insulated cold plate's precise thickness and a parallelism between a plastic base and metallic top surface. This imprecision leads to positional variation across the cold plate surface relative to the cold plate's mounting base which in turn creates problems for alignment of robotic arms that commonly load the microtiter plates onto the cold plate.
Accordingly, the present invention provides improved methods and apparatus for temperature control of a microtiter plate, and in some specific embodiments, an improved microtiter cold plate is described.
According to the present invention, a microtiter cold plate is provided with one or more of: a flat metallic top surface that accepts microtiter plates from a human or robotic arm; internal fluid channels through which a constant temperature coolant flows; an insulating cover over all but the top side that minimizes condensation on the cold plate's sides and bottom; and small positioning legs that extend from the metallic cold plate through the insulated bottom to allow for precise vertical alignment. Precise vertical alignment is particularly useful when the microtiter plate is used in conjunction with robotic arms for positioning the microtiter plate.
As presented herein, various embodiments of the present invention will be described, followed by some specific examples of various components that can be utilized to implement the embodiments. The following drawings facilitate the description of some embodiments:
Overview
The present invention provides an improved cold plate for maintaining a temperature of a microtiter plate. According to the present invention, a microtiter plate may be placed on a Cold Plate for temperature regulation by automation, such as a robot. The automation may place a microtiter plate with great precision and the cold plate may receive the microtiter plate with precision due to the improved design of the present invention.
Definitions
“Cold Plate” or “Microtiter Cold Plate’ as used herein shall mean a temperature plate of precise dimensions to receive a Microtiter Plate via mechanical automation and maintain a received Microtiter Plate a predetermined temperature.
“Microtiter Plate” as used herein, a microtiter plate, sometimes referred to as a “microplate”, is a flat plate with multiple “wells” used as small test tubes. Microtiter plates may, by way of non-limiting example, measure 128 mm×85 mm and are usually made from a plastic such as polypropylene, polycarbonate, or polystyrene. A microplate typically has 96 or 384 sample wells, with some may have 9600 wells, or more. The wells are typically arranged in a 2:3 rectangular matrix. Each microtiter plate well is capable of containing a very small volume of liquid, typically. Volumes may range, for example, from about between tens of nanoliters to about a few milliliters.
Referring now to
Additional automation, such as, for example, another robot may then dispense small quantities of one or more of: chemicals; cultures; and active agents undergoing test into a plurality of the small wells 101. It is common for each well 101 to have slightly different mixtures. The relatively small size of each well requires precise alignment of the microtiter plate in relation to the robotic arm in order for the robotic arm to accurately place the microtiter plate.
Referring now to
Referring now to
Referring now to
According to the present invention, a single piece of, or a plurality of pieces of a thermally conductive material, such as a metal, is machined into the body of the microtiter cold plate 1. Some preferred materials for the microtiter cold plate 1 include aluminum and cooper. Interior water channels 7 provide for temperature control of a top plate 9 which is held in place via the alignment legs 8. The water channels 7 are sealed with cover plate 2 using either screws 3 to compress a gasketing material or via brazing. A lower metal body 1 is covered with insulation 4 followed by a rigid plastic cover 5, both glued in place. The alignment/support legs 8 integral to the microtiter cold plate 1 protrude through the plastic cover 5.
The alignment legs 8 provide vertical alignment and ensure the top surface 9 of the microtiter cold plate is parallel to mounting plate 10. Alignment marks 11 may also be included to allow x-y alignment of the robotic arm to the microtiter cold plate. Mechanical stops 12 ensure that the microtiter plate stays centered on the microtiter cold plate. In some preferred embodiments, the alignment support legs 8 protrude only slightly through the plastic cover thereby minimizing an exposed surface area where condensation or heat loss from the water channels 7 to an ambient environment could occur.
Further enhancements may include adding set screws to the bottom of each leg 8 for precise leveling, coating all exposed metal surfaces with a hydrophobic film to prevent condensation, and placing thin pieces of thermally insulating tape on the bottom of each support leg 8 to minimize thermal contact with the too support base 10.
Referring now to
A number of embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, various methods or equipment may be used to implement the process steps described herein or to create a device according to the inventive concepts provided above and further described in the claims. In addition, various data communication mechanisms and thermal transfer mechanisms may be utilized for various aspects of the present invention. Accordingly, other embodiments are within the scope of the following claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 61/619,597, entitled Microtiter Plate Temperature Control, and filed Apr. 3, 2012, as a Non-Provisional Utility Patent Application, the contents of which are relied upon and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3534430 | Kesling et al. | Oct 1970 | A |
5171372 | Recine, Sr. | Dec 1992 | A |
5342581 | Sanadi | Aug 1994 | A |
5504007 | Haynes | Apr 1996 | A |
5508197 | Hansen et al. | Apr 1996 | A |
6051439 | Antonenko et al. | Apr 2000 | A |
6171555 | Cargill et al. | Jan 2001 | B1 |
20020094533 | Hess et al. | Jul 2002 | A1 |
20020137199 | Jobin et al. | Sep 2002 | A1 |
20040110212 | McCormick et al. | Jun 2004 | A1 |
20090098593 | Ehrhardt et al. | Apr 2009 | A1 |
20090173472 | Schryver et al. | Jul 2009 | A1 |
20100203595 | Ward et al. | Aug 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20140134081 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61619597 | Apr 2012 | US |