This application claims priority of German patent application number 10 2010 016 728.2 filed Apr. 30, 2010, the entire disclosure of which is incorporated by reference herein.
The present invention relates to a device and a method for cooling a tissue sample on a microtome. The present invention also relates to a microtome which includes said device for cooling tissue samples so as to provide for cooling of tissue samples to be sectioned.
Before tissue samples can be examined using a microscope, they generally have to be prepared for this purpose. To this end, the tissue samples are embedded in a support medium, such as paraffin. The paraffin blocks containing the embedded tissue samples are held in cassettes, which are storable in suitable cassette magazines. Subsequently, the embedded tissue samples are cut with a microtome into extremely thin sections, which can then be examined by the microscope.
During sectioning, the embedded tissue samples are cooled to keep them in an optimum condition. In order to do this, it is known to provide cooling elements, such as Peltier elements, and to thermally couple said elements to the tissue samples and/or the cassettes containing the tissue samples. In the case of the known cooling devices, the heat of the Peltier element is transferred to the housing of the microtome or of the cooling device. During prolonged operation of the microtome, the material of the cooling device, of the microtome, or of a feed mechanism of the microtome may be heated to such a degree that the tissue samples are no longer sufficiently cooled and/or that the functioning of the feed mechanism is impaired. In addition, the performance of the Peltier element decreases the longer it is continuously used, because the heat generated in the Peltier element is not consistently dissipated.
It is, therefore, an object of the present invention to provide a device and a method for cooling tissue samples on a microtome as well as a microtome which will allow tissue samples to be sectioned in an accurate and simple manner using the microtome.
This object is achieved by the features of the invention and the advantageous embodiments described herein. The device includes a cooling element having a cold region facing the tissue sample and a hot region which faces away from the tissue sample and dissipates the heat generated in the cooling element to the ambient environment.
According to a first aspect of the present invention, a first air channel is provided for dissipating the heat released by the cooling element. A ventilation device is provided for generating an air flow in the first air channel. The air flow absorbs and removes the heat released via the hot region of the cooling element.
The interaction of the cooling element, the first air channel, and the ventilation device allows the heat generated during operation of the cooling element and that absorbed by the cooling element to be consistently dissipated in a particularly simple manner. This effectively helps prevent the tissue samples from heating up to unnecessarily high levels, thereby keeping them in an optimum condition, and also effectively assists in ensuring proper functioning of the feed mechanism for advancing the tissue samples. The device including the cooling element, the ventilation device and the air channel may also be referred to as “RM CoolClamp”.
In an advantageous embodiment, at least one second air channel is provided through which passes a part of the air flow that carries away the heat released from the hot region of the cooling element. Preferably, both the first air channel and the second air channel communicate with a first and a second air inlet, respectively, through which fresh air can be drawn in from the environment surrounding the cooling device.
In a further advantageous embodiment, the device at least partially has a surface made of antistatic material. In particular, preferably the air channel or channels at least partially has/have a surface made of electrically conductive material. The antistatic surface may be provided, for example, by embedding conductive materials in the material at least near the surface thereof.
According to a second aspect of the present invention, the tissue samples are cooled on the microtome. The heat generated in the cooling process, especially the heat from the cooling element, is carried away from the cooling element by the air flow and dissipated into the environment surrounding the device.
According to a third aspect of the present invention, a microtome is provided which includes the device for cooling tissue samples to be sectioned.
BRIEF DESCRIPTION OF THE DRAWING VIEWS
Exemplary embodiments of the present invention are described in more detail below with reference to the drawings, in which:
Elements having the same design or function are identified by the same reference numerals throughout the figures.
Device 20 includes a ventilation device 22. Ventilation device 22 has a cover 24, which is attached by fastening elements 23 to a base plate of ventilation device 22. Ventilation device 22 has a rotor (not shown). The rotor is driven electrically and coupled to a power supply via a connector 26 and a cable 27. In addition, a control line may extend through connector 26 and a cable 27 for purposes of controlling a power of ventilation device 22.
Device 20 further includes a first air channel 32 and a second air channel 34 through which an air flow passes when ventilation device 22 is operating. The two air channels 32, 34 extend parallel to each other, each at a periphery of device 20. Alternatively, only a single air channel 32, or more than two air channels 32, 34, may be provided.
Furthermore, the device includes a clamp unit 28 having a clamping element 30 which allows a cassette containing a tissue sample to be clamped into clamp unit 28. The tissue sample clamped into clamp unit 28 via the cassette, particularly the paraffin block containing the tissue sample, may be cut into extremely thin sections by a cutting blade of the microtome.
Cooling element 44 is controlled via cable 27 and includes a cold region and a hot region, neither of which are shown herein. The cold region is directed toward clamp unit 28 and thus faces the tissue sample during operation of the microtome, so that the tissue sample can be cooled by cooling element 44 during the sectioning operation. The hot region faces away from clamp unit 28 and dissipates the heat generated in cooling element 44 and that absorbed by cooling element 44 into the environment surrounding cooling element 44. The air flows in flow direction 48 over the hot region of cooling elements 44, absorbing and removing the released heat. The warm air flow is directed through common air channel 51 in a fourth flow direction 50 toward ventilation device 22.
Device 20 at least partially has a surface containing an antistatic material. The parts of device 20 which are formed of the antistatic material are in particular those that may come into contact with the sections and sectioning wastes of the microtome. It is possible to provide only the surface or the entire material of corresponding component with antistatic properties. This helps prevent sectioning wastes and sections of tissue samples from adhering to device 20. The antistatic material may be provided, for example, in the form of an antistatic coating. Alternatively, conductive materials may be embedded throughout the material or only at its surface, said conductive materials preventing the surface from being statically charged. For example, it is possible for the respective housing parts to contain an electrically conductive plastic. The electrical conductivity may be achieved, for example, by embedding metallic conductors into the plastic. In particular, it is possible to embed a metal mat, a steel fiber braid, a metal mesh, metal fibers, and/or a metal layer into the plastic. In addition, the conductive regions may be conductively interconnected and/or grounded.
The present invention is not limited to the exemplary embodiments described herein. For example, it is possible to provide a greater or smaller number of air channels 32, 34 and/or ventilation devices 22. Moreover, air channels 32, 34 may be routed differently as long as it is ensured that the air flow through air channels 32, 34 absorbs the heat of cooling element 44.
20 device for cooling tissue samples
22 ventilation device
23 fastening element
24 cover
26 connector
27 cable
28 clamp unit
30 clamping element
32 first air channel
34 second air channel
36 first air inlet
38 second air inlet
40 coupling element
42 rotor blade
44 cooling element
46 first flow direction
47 second flow direction
48 third flow direction
50 fourth flow direction
51 common air channel
52 fifth flow direction
54 sixth flow direction
Number | Date | Country | Kind |
---|---|---|---|
10 2010 016 728.2 | Apr 2010 | DE | national |