The numerous innovative teachings of the present application will be described with particular reference to a number of embodiments, including presently preferred embodiments (by way of example, and not of limitation), as well as other embodiments.
The disclosed inventions will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:
A variety of medical conditions involve disorders of the neurological system within the human body. Such conditions may include paralysis due to spinal cord injury, cerebral palsy, polio, sensory loss, sleep apnea, acute pain, and so forth. One characterizing feature of these disorders may be, for example, the inability of the brain to neurologically communicate with neurological systems dispersed throughout the body. This may be due to physical disconnections within the neurological system of the body, and/or to chemical imbalances that can alter the ability of the neurological system to receive and transmit electrical signals, such as those propagating between neurons.
Advances in the medical field have produced techniques aimed at restoring or rehabilitating neurological deficiencies leading to some of the above-mentioned conditions. However, such techniques are typically aimed at treating the central nervous system and, therefore, are quite invasive. These techniques include, for example, implanting devices, such as electrodes, into the brain and physically connecting those devices via wires to external systems adapted to send and receive signals to and from the implanted devices. While beneficial, the incorporation of foreign matter into the human body usually presents various physiological complications, including surgical wounds and infection, which render these techniques potentially very challenging to implement with a risk of dangerous complications.
For example, the size of the implanted devices and wires extending therefrom may reduce or substantially restrict patient movement. Moreover, inevitable patient movements may cause the implanted device to shift, resulting in patient discomfort and possibly leading to the inoperability of the implanted device. Consequently, corrective invasive surgical procedures may be needed to reposition the device within the body, thereby further increasing the risk of infection and other complications.
In addition, an implanted device typically requires a battery to operate, and if the device is to remain within the body for prolonged periods, the batteries will need to be replaced, requiring additional surgical procedures that can lead to more complications. Furthermore, certain applications require that the implanted devices be miniaturized to the greatest extent possible, so they can be precisely implanted within the human body or so that a cluster of them can be implanted within a small defined area.
Publication US20020198572 by Weiner, for example, describes an apparatus for providing subcutaneous electrical stimulation. This device is certainly beneficial, providing pain relief by stimulating peripheral nerves, thus avoiding surgical interventions that target the brain or central nervous system (CNS). However, the device is bulky and has wire leads connecting the power sources to the implanted electrode.
Techniques such as those described in U.S. Publication 20030212440 by Boveja and related patents avoid the problem of battery replacement in a biostimulator by using a magnetic transmitter coil (RF transmission coil) placed over the region of the body that contains the implanted electrodes. This coil receives power and command signals via inductive coupling to generate stimulation pulses to activate motor units. Since the device contains no battery, the electrical power is derived from the externally generated RF field in the transmitting coil. However, this device is specifically designed for stimulus of the vagus nerve, and is not generally applicable. Further, the disclosed device still possesses a significant implant component with leads connecting the electrodes (alongside the vagus nerve) to the implanted stimulus receiver (in the chest).
Another approach is followed in devices similar to those described in U.S. Publication 20030212440 by Boveja made under the trademark BIONR and currently in clinical trials for the treatment of urinary urge incontinence and headaches. The BION® units are fairly large, ranging about 2 mm×10 mm×2 mm (thickness), and much smaller embodiments are preferred for implantation. Furthermore, BION® units must be hermetically sealed in order to protect the coils from the damaging effects of water and other bodily fluids. Additionally, BION® units require relatively high levels of externally applied RF power (often >1 watt) to provide the greater stimulus currents necessary for their primary purpose to activate stimulate individual muscles or muscle groups.
U.S. Publication 20050137652 by Cauller et al. provides for small, wireless neural stimulators. In this disclosed device, a plurality of single channel electrodes interface with the cellular matter, thus allowing smaller devices to be used without sacrificing efficacy. Because the subcutaneous tissue conducts electrical signals, the small electrodes are able to provide sufficient signal for stimulating neurons, in spite of the devices' small size and distance from the nerve.
U.S. Publication 20060206162 by Wahlstrand et al. also describes a device capable of transcutaneous stimulations with an array of electrodes that are attached to the skin surface on the back of the neck. However, this device contains a battery within the housing and is still quite large.
VeriChip® is the first FDA-cleared human-implantable RFID microchip. About twice the length of a grain of rice the device is glass-encapsulated (to seal the internal components away from the body), and implanted above the triceps area of an individual's right arm. Once scanned at the proper frequency, the VeriChip® responds with a unique sixteen-digit number which can correlate the user to information stored on a database for identity verification, medical records access and other uses. The data is not encrypted, causing serious privacy concerns, and there is some evidence that the devices may cause cancer in mice.
The clinical function of an electrical device such as a microtransponder, cardiac pacemaker lead, neurostimulation lead, or other electrical lead depends upon the device being able to maintain intimate anatomical contact with the target tissue (typically nerve or muscle tissue). All foreign substances implanted in the body are subject to a foreign body response from the surrounding host tissues. The body recognizes the implant as foreign, which triggers an inflammatory response followed by encapsulation of the implant with fibrous connective tissue (or glial tissues—called gliosis—when in the central nervous system). Scarring (fibrosis or gliosis) can also result from trauma to the anatomical structures and tissue surrounding the implant during the implantation of the device. Lastly, fibrous encapsulation of the device can occur after a successful implantation if the device is manipulated (some patients continuously fiddle with a subdermal/subcutaneous implant) or irritated by daily activities of the patient.
When scarring occurs around the implanted device, the electrical characteristics of the electrode-tissue interface degrade and the device may fail to function in a clinically significant way. For example, it may require additional electrical current from the lead to overcome the extra resistance imposed by the intervening scar. One of the observed faults of the VeriChip® design is that since it integrated with the surrounding tissue, it requires surgeons to surgically remove perfectly good flesh.
There are advantages to using even smaller, reliable, wireless implantable devices and/or methods adapted to treat neural or other biological disorders and to address aforementioned shortcomings, which include easy implantation and removal.
An embodiment of a wireless microtransponder includes an array. The array can comprise a removable joined array of embedded and joined microtransponders, facilitating easy removal of the array with minimal surgical invasion. An implantable array can be more easily removed after an acute treatment, or also in the event of malfunction or patient paranoia. This invention can allow for simpler removal of the actual microtransponders. In some embodiments, the design can incorporate an array of strongly joined individual microtransponders, so a surgeon can access and remove the array rather than individual microtransponders.
The disclosed innovations, in various embodiments, provide one or more of at least the following advantages:
The numerous innovative teachings of the present application will be described with particular reference to the presently preferred embodiment (by way of example, and not of limitation).
Various embodiments of the present invention are directed towards the miniaturization of minimally invasive wireless micro-implants termed “microtransponders,” which may be small enough to allow numerous independent microtransponders to be implanted under a square inch of skin for sensing a host of biological signals or stimulating a variety of tissue responses. The microtransponders can operate without implanted batteries or wires by receiving electromagnetic power from pliable coils placed on the surface of the overlying skin. The microtransponder design is based upon wireless technology Radio Frequency Identification Devices (RFIDs).
The present application discloses new approaches to methods and apparatuses for providing minimally invasive wireless microtransponders that can be subcutaneously implanted and configured to sense a host of biological signals and/or stimulate a variety of tissue responses. The microtransponders contain miniaturized micro-coils that are formed by utilizing novel fabrication methods and have simplified circuit designs that minimize the overall size of the microtransponders. The unprecedented miniaturization of minimally invasive biomedical implants made possible with this wireless microtransponder technology would enable novel forms of distributed stimulation or high resolution sensing using micro-implants so small that implantation densities of 100 per square inch of skin are feasible.
The simplicity of the microtransponders allows extreme miniaturization, permitting many microtransponders to be implanted into a given area, usually by relatively noninvasive injection techniques. The microtransponders are biologically compatible, thus avoiding the need to seal the devices (as with the VeriChip® and further contributing to small size. Many biologically compatible materials and coatings are known, such as gold, platinum, SU-8, Teflon®, polyglycerols, or hydrophilic polymers such as polyethylene glycol (PEG). Additionally, many materials can be made biologically compatible by passivating the surface to render it non-reactive. In some embodiments, the microtransponder may include an anti-migration coating, such as a porous polypropylene polymer, to prevent migration away from the implant site. However, experiments to date indicate that the uncoated devices do not migrate. The tiny devices float independently in the tissue, moving only as the tissue moves, thus minimizing tissue rejection and encapsulation and maximizing longevity and effectiveness.
Wireless RFID technology involves the near-field magnetic coupling between two simple coils tuned to resonate at the same frequency (or having a harmonic that matches a harmonic or the fundamental frequency of the other coil). Throughout this document, references to tuning two coils to the “same frequency” includes having the frequencies of coils match at fundamental and/or harmonic frequencies. Radio Frequency (RF) electromagnetic power applied to one of these coils generates a field in the space around that power coil. Electrical power can be induced remotely in any remote coil placed within that power field as long as the remote coil is properly tuned to resonate at the same frequency as the power coil.
A miniaturized spiral shaped micro-coil in the microtransponder optimized for near field induction can be used. The micro-coil includes a non-conducting substrate, a conducting coil, and a photoresist layer patterned over the conducting coil, with the micro-coil electroplated onto the non-conducting substrate. The micro-coil can be used to both receive and transmit wireless signals such as a wireless power or wireless data signal.
Power can be delivered externally using near field coupling to deliver electrostimulation via a PDA-like programmable controller that allows the user to control the electrical parameters as needed for a given physiological condition. Near field coupling means the external driver needs to be close to the microtransponder (e.g. about 1 cm away), but increased distance (up to a point) can be achieved by adding coils or increasing the size. Protection from interference with other external RF sources is achieved in part by the short distance between the power source and microtransponder, but use of a select frequency and an encrypted link between the external and internal systems further reduces the possibility of implant activation by foreign RF sources.
An auto-triggering wireless microtransponder can be used to provide asynchronous electro-stimulation. The microtransponder of this embodiment includes a resonator element, a rectifier element, a stimulus voltage element, a stimulus discharger element, and a conducting electrode. The microtransponder is configured to discharge an electrical stimulus with a repetition rate that is controlled by the intensity of the externally applied RF power field.
A wireless microtransponder with an external trigger signal de-modulator element can be used to provide synchronized electro-stimulation. The microtransponder of this embodiment includes a resonator element, a rectifier element, an external trigger demodulator element, a stimulus timer element, a stimulus driver element, and a conducting electrode. The external trigger demodulator element is configured to receive a trigger signal from an external radio frequency (RF) power field. The stimulus driver element is configured to discharge an electrical stimulus when the external trigger demodulator element receives the trigger signal.
Accordingly, the circuit 10 includes the micro-coil 22 coiled about a central axis 12. The micro-coil 22 is coupled in parallel to a capacitor 11 and to an RF identity modulator 17 via a switch 15. The RF identity modulator 17 is coupled to an RF identity and trigger demodulator 13, which in turn is coupled to a rectifier 14. The rectifier 14 is coupled to a spike sensor trigger 16 and to a stimulus driver 20. The rectifier 14 and the spike sensor 16 are both coupled in parallel to a capacitor 18. In addition, the spike sensor 16 is coupled to a neural spike electrode 19, thereby electrically connecting the spike sensor 16 to neural transmission tissue (neurons). Similarly, the neural stimulus electrode 21 also connects the stimulus driver 20 to neural conduction tissue (axons). The spike sensor 16 is made up of one or more junction field effect transistors (JFET). As will be appreciated by those of ordinary skilled in the art, the JFET may include metal oxide semiconductors field effect transistors (MOSFETS).
The sensors, drivers, and other electronic components described in the present application can be fabricated using standard small scale or very large scale integration (VLSI) methods. Further, the spike sensor 16 is coupled to the RF identity modulator 17, which is adapted to modulate an incoming/carrier RF signal in response to neural spike signals detected by the spike sensor 16. In one embodiment, the neural electrodes (i.e., neural spike electrode 19 and neural stimulus electrode 21) to which the spike sensor 16 and the stimulus driver 20 are connected, respectively, can be bundled and configured to interface with neural conduction (axon) portion of a peripheral nerve.
One configuration of the above components, as depicted by
In an exemplary embodiment, a gate of the spike sensor 16 JFET may be coupled via the neural spike electrode 19 to the neural transmission tissue (neurons). The gate of the spike sensor 16 JFET may be chosen to have a threshold voltage that is within a voltage range of those signals produced by the neural axons. In this manner, during spike phases of the neural axons, the gate of the spike sensor 16 becomes open, thereby closing the circuit 10. Once the circuit 10 closes, the external RF electromagnetic field generates an LC response in the coupled inductor 22 and capacitor 18, which then resonate with the external RF electromagnetic field, with its resonance matching the modulating frequency of the RF electromagnetic field. The LC characteristic of the circuit 10, as well as the threshold voltage of the gate of spike sensor 16 JFET, can be chosen to determine a unique modulation within the coupled micro-coil (i.e. inductor) 22 and capacitor 18, thereby providing a identifying signal for the microtransponder. Accordingly, the spike sensor 16 JFET provides the RF identity modulator 17 with a unique trigger signal for generating desired RF signals. The identity signal may indicate the nature of the neural activity in the vicinity of the microtransponder, as well as the location of the neural activity within the body as derived from the specific identified microtransponder position.
It should be appreciated that the RF capabilities, as discussed above with respect to the circuit 10, can render the microtransponder a passive device which reacts to incoming carrier RF signals. That is, the circuit 10 does not actively emit any signals, but rather reflects and/or scatters the electromagnetic signals of the carrier RF wave to provide signals having specific modulation. In so doing, the circuit 10 draws power from a carrier radio frequency (RF) wave to power the electrical components forming the circuit 10.
While the above-mentioned components illustrated in
It should be understood that, in certain embodiments, the minimum size for the microtransponders may be limited by the size of the micro-coil responsible for power induction, and secondarily by the size of the capacitors necessary for tuning power storage and timing. In fact, micro-coils less than 1 millimeter in diameter and just a few micrometers thick can provide sufficient wireless power to operate the complex micro-electronics that can be manufactured on integrated circuit chips that may be much smaller than these coils. Combining the sophisticated functionality of micro-electronic chips with the wireless performance of these micro-coils creates the smallest possible, minimally invasive implants, in the form of tiny flecks as small as 0.1 mm thick and 1 mm wide. The size and power advantages make it possible to add relatively complex digital electronics to the smallest transponder.
Platinum-iridium alloy is the preferred electroplating material to form the conductor lines 302. Gold or platinum are other acceptable conductors that can be utilized to form the conductor lines 302.
In certain embodiments, once the spiral micro-coil has been electroplated onto the substrate, a polymer-based layer is spun on top of the micro-coils to provide a layer of protection against corrosion and decay once implanted. Long-term studies of animals with SU-8 implants have verified the biocompatibility of SU-8 plastic by demonstrating that these SU-8 implants remain functional without signs of tissue reaction or material degradation for the duration of the studies. Therefore, typically, the polymer-based layer is comprised of an SU-8 or equivalent type of plastic having a thickness of approximately 30 μm.
F
res=1/(2π√LC)
The resonator element 404 is coupled to the rectifier element 406, which is in turn coupled to the stimulus voltage element 408 and the stimulus discharger element 410. The rectifier element 406 and the stimulus voltage element 408 are both coupled in parallel to a capacitor 411. In addition, the stimulus discharger element 410 is coupled to electrodes 412, thereby electrically connecting the stimulus discharger element 410 to neural conduction tissue (axons). It should be appreciated that in certain embodiments, a voltage booster component (not shown) can be inserted immediately after the rectifier element 406 to boost the supply voltage available for stimulation and operation of integrated electronics beyond the limits generated by the miniaturized LC resonant ‘tank’ circuit 404. This voltage booster can enable electro-stimulation and other microtransponder operations using the smallest possible LC components which may generate too little voltage (<0.5V). Examples of high efficiency voltage boosters include charge pumps and switching boosters using low-threshold Schottky diodes. However, it should be understood that any type of conventional high efficiency voltage booster may be utilized in this capacity as long as it can generate the voltage required by the particular application of the microtransponder.
In this circuit configuration, the auto-triggering microtransponder can employ a bi-stable silicon switch 416 to oscillate between the charging phase that builds up a charge on the stimulus capacitor 411, and the discharge phase that can be triggered when the charge reaches the desired stimulation voltage by closing the switch 416 state to discharge the capacitor 411 through the stimulus electrodes 412. A single resistor 413 is used to regulate the stimulus frequency by limiting the charging rate. The breakdown voltage of a single zener diode 405 is configured to set the desired stimulus voltage by dumping current and triggering the switch 416 closure, discharging the capacitor 411 into the electrodes 412 (gold or Platinum-iridium alloy) when it reaches the stimulation voltage. Although gold was initially regarded as the preferred electrode material, it was discovered that in long-term implantation gold salt deposits could form and create a micro-battery, interfering with the stimulus signal. Gold remains a viable electrode material for some applications, but Platinum-iridium alloy is regarded as the preferred embodiment for long-term, permanent applications. Platinum is another acceptable electrode material.
The stimulus peak amplitude and duration are largely determined by the effective tissue (e.g., skin 414, muscle, fat etc.) resistance, independent of the applied RF power intensity. However, increasing the RF power may increase the stimulation frequency by reducing the time it takes to charge up to the stimulus voltage.
The auto-triggering microtransponder operates without timing signals from the RF power source (RF power coil) 402 and “auto-triggers” repetitive stimulation independently. As a result, the stimulation generated by a plurality of such auto-triggering microtransponders would be asynchronous in phase and somewhat variable in frequency from one stimulator to another depending upon the effective transponder voltage induced by each resonator circuit 404. While unique to this technology, there is no reason to predict that distributed asynchronous stimulation would be less effective than synchronous stimulation. In fact, such asynchronous stimulation may be more likely to evoke the sort of disordered “pins and needles” or “tingling” sensations of parasthesias that are associated with stimulation methods that most effectively block pain signals.
While RF intensity controls stimulus frequency, the stimulus voltage is typically controlled by the transponder zener diode element. The effect of stimulus voltage upon the stimulus current peak amplitude and pulse duration is further determined by the resistive properties of the tissue surrounding the microtransponder.
The modified circuit includes a resonator element 604, a rectifier element 606, an external trigger demodulator element 608, a stimulus timer element 610, a stimulus driver element 611, and one or more electrodes 612. The resonator element 604 includes a coil (LT) component 601 that is coupled to a capacitor (CT) component 607. The resonator element 604 is configured to oscillate at a precise frequency that depends upon the values of these two components (i.e., the coil component 601 and capacitor component 607) as described in Equation 1.
The resonator element 604 is coupled to the rectifier element 606, which is in turn coupled to the external trigger demodulator element 608, the stimulus timer element 610, and the stimulus driver element 611. The rectifier element 606 and the stimulus timer element 608 are both coupled in parallel to the capacitor 607. In addition, the stimulus driver element 611 is coupled to electrodes 612 (gold or Platinum-iridium alloy), thereby electrically connecting the stimulus driver element 611 to neural conduction tissue (axons).
It should be appreciated that in certain embodiments, a voltage booster component (not shown) can be inserted immediately after the rectifier element 606 to boost the supply voltage available for stimulation and operation of integrated electronics beyond the limits generated by the miniaturized LC resonant ‘tank’ circuit (i.e. the coil component 601 and capacitor component 607). This voltage booster can enable electro-stimulation and other microtransponder operations using the smallest possible LC components which may generate too little voltage (<0.5V). Examples of high efficiency voltage boosters include charge pumps and switching boosters using low-threshold Schottky diodes. However, it should be understood that any type of conventional high efficiency voltage booster may be utilized in this capacity as long as it can generate the voltage required by the particular application that the microtransponder is applied to.
As shown in
Using the external synchronization-trigger circuit configuration (shown in
Whereas the stimulus frequency is controlled by external RF power field modulation settings, the stimulus current peak amplitude is controlled by the RF power intensity setting, as shown in the third graph 803. That is, the stimulus current peak amplitude is directly related to the RF power intensity setting. For example, an RF power intensity setting of 1 mW produces a stimulus current peak amplitude of 0.2 mA, a RF power intensity setting of 2 mW produces a stimulus current peak amplitude of 0.35 mA, and a RF power intensity setting of 4 mW produces a stimulus current peak amplitude of 0.5 mA. It should be understood, however, that these are just examples of how RF power intensity setting affects stimulus current peak amplitude. In practice, the effects of the RF power intensity setting on stimulus current peak amplitude may be magnified or diminished depending on the particular application (e.g., depth of implantation, proximity to interfering body structures such as bone, etc.) and device settings.
After the deployment of the microtransponders, electrostimulation can be applied by positioning a RF power coil 902 proximate to the location where the microtransponders are implanted. The parameters for effective electrostimulation may depend upon several factors, including: the size of the nerve or nerve fiber being stimulated, the effective electrode/nerve interface contact, the conductivity of the tissue matrix, and the geometric configuration of the stimulating fields. While clinical and empirical studies have determined a general range of suitable electrical stimulation parameters for conventional electrode techniques, the parameters for micro-scale stimulation of widely distributed fields of sensory nerve fibers are likely to differ significantly with respect to both stimulus current intensities and the subjective sensory experience evoked by that stimulation.
Parameters for effective repetitive impulse stimulation using conventional electrode techniques are typically reported with amplitudes ranging to about 10 V (or up to about 1 mA) lasting up to about 1 millisecond repeated up to about 100 pulses/s for periods lasting several seconds to a few minutes at a time. In an exemplary embodiment, effective repetitive impulse stimulation can be achieved with an amplitude of less than 100 μA and stimulation pulses lasting less than 100 μs.
The deep inner transfer coil 905 is implanted to couple with the deeply implanted field of micro-transponders 908 located near deep targets of micro-stimulation, such as deep peripheral nerves, muscles or organs such as the bladder or stomach as needed to treat a variety of clinical applications and biological conditions. The inner transfer coil 905 is tuned to extend the resonance of the external coil 909 to the immediate vicinity of the implanted micro-transponders 908 for maximal coupling efficiency. In addition to extending the effective range of the microtransponder 908 implants, the inner transfer coil 905 also provides another wireless link that can preserve the integrity of any further protective barrier around the target site. For instance, the inner transfer coil 905 can activate micro-transponders 908 embedded within a peripheral nerve without damaging the epineurium that protects the sensitive intraneural tissues. To ensure optimal tuning of the transfer coils (e.g., the outer transfer coil 907 and inner transfer coil 905), a variable capacitor or other tuning elements in a resonance tuning circuit 911 are added to the outer transfer coil 907 where it can be implanted with minimal risk of tissue damage. In certain embodiments, this resonance tuning circuit 911 is required, while in others it is unnecessary.
In one embodiment, the gold spiral coil takes on a first configuration where the gold conductor is approximately 10 μm wide and there is approximately 10 μm spacing between the windings. In another embodiment, the gold spiral coil takes on a second configuration where the gold conductor is approximately 20 μm wide and there is approximately 20 μm spacing between the windings. As will be apparent to one of ordinary skill in the art, however, the scope of the present invention is not limited to just these example gold spiral coil configurations, but rather encompasses any combination of conductor widths and winding spacing that are appropriate for the particular application that the coil is applied to.
In step 1104, the first layer of photoresist and the seed layer are removed. In one embodiment, the photoresist layer is removed using a conventional liquid resist stripper to chemically alter the photoresist so that it no longer adheres to the substrate. In another embodiment, the photoresist is removed using a plasma ashing process.
In step 1106, an isolation layer of SU-8 photo resist is spun and patterned to entirely cover each spiral inductor. Typically, the SU-8 layer has a thickness of approximately 30 μm. In step 1108, a top seed layer is deposited on top of the SU-8 isolation layer using a conventional physical vapor deposition (PVD) process such as sputtering. In step 1110, a top layer of positive photo resist coating is patterned onto the top see layer and the SU-8 isolation layer, and in step 1112, a layer of platinum is applied using a conventional electroplating process. In step 1114, a chip capacitor and a RFID chip are attached to the platinum conducting layer using epoxy and making electrical connections by wire bonding. In certain embodiments, the capacitor has a capacitance rating value of up to 10,000 picofarad (pF).
It is possible to implant such small microtransponders by simply injecting them into the subdermal tissue. Using local anesthesia at the injection site, the patient may be positioned laterally or prone depending on the incision entry point. The subdermal tissues immediately lateral to the incision are undermined sharply to accept a loop of electrode created after placement and tunneling to prevent electrode migration. A Tuohy needle is gently curved to conform to the transverse posterior cervical curvature (bevel concave) and without further dissection is passed transversely in the subdermal space across the base of the affected peripheral nerves. Rapid needle insertion usually obviates the need for even a short acting general anesthetic once the surgeon becomes facile with the technique. Following placement of the electrode into the Tuohy needle, the needle is withdrawn and the electrode placement and configuration is evaluated using intraoperative testing.
After lead placement, stimulation is applied using a temporary RF transmitter to various select electrode combinations enabling the patient to report on the table the stimulation location, intensity and overall sensation. Based on prior experience with wired transponders, most patients should report an immediate stimulation in the selected peripheral nerve distribution with voltage settings from 1 to 4 volts with midrange pulse widths and frequencies. A report of burning pain or muscle pulling should alert the surgeon the electrode is probably placed either too close to the fascia or intramuscularly.
An exemplary microtransponder array preferably is an array of joined microtransponders. The joined array is made from or coated with biocompatible material that is sufficiently strong to hold the microtransponders and remain intact during surgical explantation. An advantage of the joined array is that removal of the array is simpler than unjoined microtransponders, which would be more difficult to locate and individually extract from the integrated mass of adhered tissues. The concept is flexible, as the array may comprise a joined array of any type of implanted medical devices. The monolithic array structure cam hold the implanted devices together during explantation.
The joined array can be made from several types of biocompatible materials. Exemplary synthetic materials suitable for the removable array include silicone elastomers, or silicone hydrogels, and plastics such as SU-8, or parylene-C. Removable arrays may also be constructed using long-lasting biodegradable polymers including natural materials such as protein-based polymers like gelatin, silk or collagen, and sugar-based poly-saccharides like cellulose or agarose. Other suitable biodegradable polymers have been developed specifically for implant construction including poly-glyolic acids (PGA) and poly-lactic acids (PLA). Such construction materials offer a range of strengths, durability and tissue adhesion properties suitable for a variety of specific implant applications. Furthermore, the surface of any array material may be enhanced to promote specific biological properties such as cell/protein adhesion and tissue reactions by coating the implant with a variety of materials widely employed for this purpose including formulations of PEG (polyethylene glycol) such as PEG-PLA, and commercial products such as Greatbatch Biomimetic Coating (U.S. Pat. No. 6,759,388 B1), and Medtronics' Trillium Biosurface.
Biocompatibility of the array is very important. The joined array can include a coating in the form of a monolayer or thin layer of biocompatible material. Advantages that coatings offer include the ability to link proteins to the coating. The joined proteins can limit what cell types can adhere to the array. The coating can prevent protein adsorption, and it does not significantly increase size of the device.
3-D porous materials are meant to encourage cell ingrowth and organization. The 3-D porous material can act as a buffer between the tissue and microtransponders to prevent reaction micromotion. The potential benefits for implant/tissue integration must be balanced against the addition risks associated with increasing the overall size of the implant with the addition of such 3-D materials.
The visibility of the implant may be enhanced by adding brightly colored dyes to the construction materials thereby facilitating visual location of the array within surrounding tissue in case it must be removed. This can include a marker dye incorporated onto, or into, the device globally. A preferred embodiment would employ a fluorescent dye that becomes visible when exposed to appropriate light sources because it offers the advantage of maximum luminescence to such a level that implants may be visible through the skin.
The joined array can also be formed from a biological degradable material. As the joined array material dissolved, the microtransponders would be freed to move freely and minimize tissue reactions. The most common examples of biodegradable materials include natural polymers based on proteins (e.g. gelatin, collagen, silk) and poly-saccharides (sugar-based polymers like cellulose and starch), in various formulations (i.e. proteo-saccharides like agarose) that provide a wide range of strength and degradation times. Other known acceptable biodegradable materials include polyglycolic acid (PGA) and polylactic acid (PLA).
Of course, the innovations of the present application are not limited to the embodiments disclosed, but can include various materials, configurations, positions, or other modifications beyond these embodiments shown, which are exemplary only.
According to various embodiments, there is provided: a microtransponder array, comprising: an array comprised of adjacent and physically joined wireless microtransponders; wherein each microtransponder is wirelessly interfaced.
According to various embodiments, there is provided: an implantable device, comprising: an array of physically joined embedded wirelessly interfaced microtransponders; wherein electrode surfaces on the array are exposed by windows in the individual microtransponders.
According to various embodiments, there is provided: a method of forming an implantable wireless electronic device, comprising the steps of: creating a removable array of embedded adjacent electronic components on a single substrate; and powering the array using a wireless interface.
According to various embodiments, there is provided: a method for implanting wireless electronics into living tissue, comprising: implanting an array of physically joined and wirelessly powered electronic devices into tissue; and if removal of the electronic devices is necessary, then exposing the array of joined electronic device, and thereafter removing the array of electronic devices from the living tissue.
According to various embodiments, there is provided: an electronic device for implantation, comprising: an array of physically joined embedded wireless components; wherein the array is ion permeable and resists ingrowth of nonconductive fibrous matter.
According to various embodiments, there is provided: a method of removing an implanted plurality of electronic devices, comprising the steps of: implanting the array with a surrounding matrix; keeping tissue growth a minimum distance away from at least a portion of the joined electronic devices; locating the array using an incorporated mark; and surgically exposing the array to grasp and pull free.
According to various embodiments, there is provided: a biocompatible electronic module implantable into living tissue, comprising: a plurality of electronic devices wirelessly powered and coupled together to form a physically joined array of a size permitting implanting from a needle; and at least one electrical conduction path through said array that connects at least one terminal of said device to surrounding tissue.
As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a tremendous range of applications, and accordingly the scope of patented subject matter is not limited by any of the specific exemplary teachings given.
For example, in one embodiment, rather than an elongated or linear strip, the joined microtransponders can be joined both longitudinally and latitudinally to form a geometric shape. The shapes can include squares, hexagons, rectangles, ovals, and circles.
The array can also be formed on a single substrate, with a chain or group of arrays constructed contemporaneously to form a single integrated structure. It may also be possible to construct joined arrays using a monofilament line as a string of microtransponders.
The specific implementations given herein are not intended to limit the practice of the present innovations.
The following applications may contain additional information and alternative modifications: Attorney Docket No. MTSP-29P, Ser. No. 61/088,099 filed Aug. 12, 2008 and entitled “In Vivo Tests of Switched-Capacitor Neural Stimulation for Use in Minimally-Invasive Wireless Implants; Attorney Docket No. MTSP-30P, Ser. No. 61/088,774 filed Aug. 15, 2008 and entitled “Micro-Coils to Remotely Power Minimally Invasive Microtransponders in Deep Subcutaneous Applications”; Attorney Docket No. MTSP-31P, Ser. No. 61/079,905 filed Jul. 8, 2008 and entitled “Microtransponders with Identified Reply for Subcutaneous Applications”; Attorney Docket No. MTSP-33P, Ser. No. 61/089,179 filed and entitled “Addressable Micro-Transponders for Subcutaneous Applications”; Attorney Docket No. MTSP-36P Ser. No. 61/079,004 filed Jul. 8, 2008 and entitled “Microtransponder Array with Biocompatible Scaffold”; Attorney Docket No. MTSP-38P Ser. No. 61/083,290 filed Jul. 24, 2008 and entitled “Minimally Invasive Microtransponders for Subcutaneous Applications” Attorney Docket No. MTSP-39P Ser. No. 61/086,116 filed Aug. 4, 2008 and entitled “Tintinnitus Treatment Methods and Apparatus”; Attorney Docket No. MTSP-40P, Ser. No. 61/086,309 filed Aug. 5, 2008 and entitled “Wireless Neurostimulators for Refractory Chronic Pain”; Attorney Docket No. MTSP-41P, Ser. No. 61/086,314 filed Aug. 5, 2008 and entitled “Use of Wireless Microstimulators for Orofacial Pain”; Attorney Docket No. MTSP-42P, Ser. No. 61/090,408 filed Aug. 20, 2008 and entitled “Update: In Vivo Tests of Switched-Capacitor Neural Stimulation for Use in Minimally-Invasive Wireless Implants”; Attorney Docket No. MTSP-43P, Ser. No. 61/091,908 filed Aug. 26, 2008 and entitled “Update: Minimally Invasive Microtransponders for Subcutaneous Applications”; Attorney Docket No. MTSP-44P, Ser. No. 61/094,086 filed Sep. 4, 2008 and entitled “Microtransponder MicroStim System and Method”; Attorney Docket No. MTSP-30, Ser. No. ______, filed ______ and entitled “Transfer Coil Architecture”; Attorney Docket No. MTSP-31, Ser. No. ______, filed ______ and entitled “Implantable Driver with Charge Balancing”; Attorney Docket No. MTSP-32, Ser. No. ______, filed ______ and entitled “A Biodelivery System for Microtransponder Array”; Attorney Docket No. MTSP-46, Ser. No. ______, filed ______ and entitled “Implanted Driver with Resistive Charge Balancing”; Attorney Docket No. MTSP-28, Ser. No. ______, filed ______ and entitled “Implantable Transponder Systems and Methods”; and Attorney Docket No. MTSP-48, Ser. No. ______ filed ______ and entitled “Implantable Transponder Pulse Stimulation Systems and Methods” and all of which are incorporated by reference herein.
None of the description in the present application should be read as implying that any particular element, step, or function is an essential element which must be included in the claim scope: THE SCOPE OF PATENTED SUBJECT MATTER IS DEFINED ONLY BY THE ALLOWED CLAIMS. Moreover, none of these claims are intended to invoke paragraph six of 35 USC section 112 unless the exact words “means for” are followed by a participle.
The claims as filed are intended to be as comprehensive as possible, and NO subject matter is intentionally relinquished, dedicated, or abandoned.
This application claims priority from provisional patent application 61/079,004 filed Jul. 8, 2008 and 60/990,278, filed on Nov. 26, 2007, which is hereby incorporated by reference. It is a continuation in part of non-provisional application Ser. No. 10/741,136 filed Dec. 19, 2003, and application 61/088,774 filed Aug. 14, 2008, which are also hereby incorporated by reference. This application may be related to the present application, or may merely have some drawings and/or disclosure in common.
Number | Date | Country | |
---|---|---|---|
60990278 | Nov 2007 | US | |
61079004 | Jul 2008 | US | |
61088774 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10741136 | Dec 2003 | US |
Child | 12324000 | US |