This technology generally relates to valves used for fluid control and, more specifically, micro pneumatic valves used in large numbers in compact configurations.
Fluid control is a critical technology for many industries including motion control, robotics, prosthetics, human-machine interfaces, and haptics. These industries need to control more pneumatic channels in less space, with lower power, greater precision, and embedded digital control. Existing valve technologies such as solenoids, motors, and quasi-static piezoelectric actuators are near the current limits of miniaturization.
In one example, a microvalve assembly is disclosed that includes a body including first and second ports and a body plate and an actuator assembly including one or more exterior plates coupled to a stack. One of the one or more exterior plates contacts the body plate to form a seat and thereby restrict fluid flow from the first port to the second port, when the stack is not energized. The actuator assembly is configured to, when the stack is energized, periodically generate a gap between the one of the one or more exterior plates and the body plate via near-field-acoustic-levitation (NFAL) to allow fluid flow through the first and second ports.
In another example, a system is disclosed that includes a microvalve assembly including a body including first and second ports and a body plate and an actuator assembly including one or more exterior plates coupled to a stack. One of the one or more exterior plates contacts the body plate to form a seat and thereby restrict fluid flow from the first port to the second port, when the stack is not energized. The system further includes an energizing system configured to apply an alternating voltage to the stack to periodically generate a gap between the one of the one or more exterior plates and the body plate via NFAL to allow fluid flow through the first and second ports.
In yet another example, a method for manufacturing a microvalve assembly is disclosed that includes providing a body comprising first and second ports and a body plate. A stack is coupled to one or more exterior plates to form an actuator assembly disposed within the body and between the first and second ports. At least one spring is coupled to the body and the actuator assembly such that the spring is configured to apply a force to the actuator assembly to cause one of the one or more exterior plates to contact the body plate to form a seat and thereby restrict fluid flow from the first port to the second port. The stack is then electrically connected to an energizing system configured to energize the stack to periodically generate a gap between the one of the one or more exterior plates and the body plate via NFAL to allow fluid flow through the first and second ports.
This technology provides a number of advantages including overcoming size and power limitations of existing pneumatic valve technologies by using near-field-acoustic-levitation (NFAL), actuated by piezoelectric motion, to open and close micro valves.
Referring to
In some examples, the stack 106 includes a material that is piezoelectric, which can be a relatively hard piezoelectric material with a co-fired multi-layer construction. A relatively hard piezoelectric material has a lower dielectric loss to reduce heating at higher frequencies, and a lower D31 constant, and a multi-layer construction reduces the voltage amplitude required to achieve the same oscillation amplitudes. However, other types of piezoelectric material and/or construction, and other materials, such as electrostrictive, magnetostrictive, and/or electromagnetic materials, can also be used for the stack 106 in other examples.
In one state of the microvalve assembly 100 (e.g., as illustrated in
In some examples, a spring 108 is coupled to the body 101 proximate the input port 102. In these examples, the spring 108 is configured to apply a force to the actuator assembly 110 to facilitate the pressing of the exterior plate 105 against the body plate 104 to form the seal at the seat 111, as illustrated in
The energizing system 109 can be any power source or other means configured to apply a voltage to the stack 106, with positive or negative polarity, in order to increase or decrease the length and/or diameter of the stack 106 by generating in-plane D31 strain. In some examples, the energizing system 109 can be a full-bridge drive circuit as described, by way of example, in U.S. Pat. Nos. 8,217,553 and/or 8,304,960, each of which is hereby incorporated by reference herein in its entirety, although other types of energizing systems can also be used.
The change in length and/or diameter of the stack 106 causes the actuator assembly 110 to bend upward or downward. An example of such bending, (e.g., piezoelectric bending) is described in U.S. Pat. No. 3,622,815, which is hereby incorporated by reference herein in its entirety. The bending principal applies to many types of configurations of the microvalve assembly 100, including both circular and rectangular configurations.
In some examples, (e.g., as illustrated in
Accordingly, in operation, the actuator assembly 110 is configured to, when energized by the energizing system 109, oscillate, or periodically generate, a gap between an exterior surface of the actuator assembly 110 (e.g., the exterior surface of the exterior plate 105) and the opposing interior surface of the body plate 104 via near-field-acoustic-levitation (NFAL) to allow fluid flow through the input and output ports 102 and 103. Referring to
Referring to
Referring to
To achieve a relatively large or significant gap 114, and a relatively useful rate of fluid flow 122, a D31 constant of less than −250×10−12 m/v and voltage greater than 100 volts can be used. The rate of the fluid flow 122 is controlled by modulating the polarity of the voltage amplitude between states. Exemplary fluid flow 122 modulation methods include static voltage amplitude, rapid ON/OFF voltage, or constant frequency with varying amplitude, although other methods for modulating fluid flow can also be used in other examples.
Referring more specifically to
The NFAL principle uses surfaces that are in close proximity in which the gap between the surfaces is rapidly oscillating. The oscillation frequency and amplitude are sufficiently high that the non-linear compressibility of gases, including air, results in an increased gap and positive pressure generated in the gap between the surfaces. The NFAL principal is described, by way of example, in Elie, N., Blouin, A., and Brunetière, N., “Dynamic Invariance in Near-Field Acoustic Levitation.” ASME. Letters Dyn. Sys. Control, May 31, 2021 and/or M. Shi, K. Feng, J. Hu, J. Zhu, H. Cui, “Near-field acoustic levitation and applications to bearings: a critical review,” International Journal of Extreme Manufacturing, Volume 1, Number 3, Sep. 12, 2019, each of which is hereby incorporated by reference herein in its entirety.
Referring specifically to
Accordingly, the flow rate 123 through the microvalve assembly 100 is modulated from zero to a maximum flow rate in this example by modulating the effective gap from zero to a maximum gap by changing the properties of the voltage supplied by the energizing system 109, such as the frequency, amplitude, or duty cycle. However, other flow modulation methods can also be used in other examples. Additionally, the voltage applied by the energizing system 109 may have any number of waveforms such as sinusoidal, trapezoidal, or square wave, for example.
In some examples, the voltage frequency is substantially the same as a bending resonant frequency or bending resonance of the actuator assembly 110 and the resonant gain increases the oscillation amplitudes 119A and 119B while reducing the voltage amplitude to less than ten volts. To maximize resonant gain, the bridge 107 contacts the actuator assembly 110 at the interfaces 124 of the bending resonance of the actuator assembly 110. However, non-resonant frequencies with other voltage amplitudes and alternative bridge placements and interfaces with the actuator assembly 110 can also be used in other examples.
Referring to
Accordingly, the first and second exterior plates 205A-B are coupled or bonded to opposing sides of the stack 206. While two plates (i.e., the first and second exterior plates 205A-B) are illustrated in this example, more plates or only one plate disposed toward the output port 203 with respect to the stack 206 can also be used in other examples. The stack 206 can be made of the same material(s) as, or one or more different material(s) than, the stack 106.
In one state of the microvalve assembly 200 (e.g., as illustrated in
In some examples, a first spring 208A and a second spring 208B are coupled to the body 201 on opposite sides of the input port 202. In these examples, the first and second springs 208A-B are configured to apply a force to the actuator assembly 210 to facilitate the pressing of the second exterior plate 205B against the body plate 204 to form the seal at the seat 211, as illustrated in
In operation, an energizing system 209 is configured to apply an alternating voltage to the stack 206, which responds to the alternating voltage by changing its length. The change in the length of the stack 206 depends on many factors including the piezoelectric layer thickness, the number of piezoelectric layers, the voltage amplitude, the piezoelectric material D33 constant, and the dialectic loss constant, for example. The stack 206 and first and second exterior plates 205A-B form the actuator assembly 210, which has an axial resonant frequency or axial resonance. To maximize resonant gain, one or more of the first and second bridges 207A-B can contact the actuator assembly 210 (e.g., the stack 206 of the actuator assembly 210) at interfaces 224A-B, respectively, of the axial resonant frequency.
Referring more specifically to
In one particular example, the voltage applied by the energizing system 209 has a frequency in the tens of kilohertz to create the gap 217. However, other frequency ranges can also be used. Additionally, in some examples, the applied voltage frequency is substantially the same as the axial resonant frequency of the actuator assembly 210 and the resonant gain increases the oscillation amplitude 219 while reducing the amplitude of the applied voltage to less than ten volts. However, non-resonant frequencies with other voltage amplitudes can also be used in other examples. In some examples, the energizing system 209 can be a full-bridge drive circuit, and/or the same or different than the energizing system 109.
Accordingly, the rate of fluid flow 221 through the microvalve assembly (i.e., through input port 202 and output port 203) in this example is modulated from zero to a maximum rate by modulating the gap 217 from zero to a maximum by changing the properties of the voltage applied by the energizing system 209, such as the frequency, amplitude, or duty cycle. However, other methods for modulating the fluid flow can also be used in other examples. Additionally, the voltage applied by the energizing system 109 may have any number of waveforms such as sinusoidal, trapezoidal, or square wave, for example.
With this technology, NFAL is leveraged in miniaturized valves actuated by piezoelectric motion, for example. Accordingly, the microvalves of this technology are relatively small and consume minimal power, thereby overcoming size and power limitations of existing valves, including pneumatic valve technologies.
Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
This application claims the benefit of Provisional Patent Application No. 63/242,579, filed Sep. 10, 2021, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4581624 | O'Connor | Apr 1986 | A |
4628576 | Giachino | Dec 1986 | A |
5029805 | Albarda | Jul 1991 | A |
5092360 | Watanabe | Mar 1992 | A |
5244537 | Ohnstein | Sep 1993 | A |
6131879 | Kluge | Oct 2000 | A |
7025324 | Slocum | Apr 2006 | B1 |
7217395 | Sander | May 2007 | B2 |
20010038083 | Sakurai | Nov 2001 | A1 |
20020130284 | Knebel | Sep 2002 | A1 |
20080296523 | Gianchandani | Dec 2008 | A1 |
20130095400 | Lundblad | Apr 2013 | A1 |
20150219237 | Maichl | Aug 2015 | A1 |
20150251179 | Asai | Sep 2015 | A1 |
20170218949 | Yokoi | Aug 2017 | A1 |
20180223829 | Tanaka | Aug 2018 | A1 |
20190101940 | Mou | Apr 2019 | A1 |
20190247880 | Mou | Aug 2019 | A1 |
20190353157 | Mou | Nov 2019 | A1 |
20200030801 | Iimura | Jan 2020 | A1 |
20200326010 | Duqi | Oct 2020 | A1 |
20200392954 | Mou | Dec 2020 | A1 |
20210041280 | Wald | Feb 2021 | A1 |
20210147221 | Mou | May 2021 | A1 |
20210296567 | Mou | Sep 2021 | A1 |
20210340969 | Bartels | Nov 2021 | A1 |
20210351338 | Giusti | Nov 2021 | A1 |
20220099084 | Mou | Mar 2022 | A1 |
20220109097 | Shabanian | Apr 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20230081249 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
63242579 | Sep 2021 | US |