This application claims the benefit of European Patent Application No. 06290541.9, filed Mar. 31, 2006, which is incorporated by reference herein it its entirety.
The present invention relates to various materials, packages, constructs, and systems for heating or cooking a microwavable food item. In particular, the invention relates to various materials, packages, constructs, and systems for heating or cooking a rounded food item in a microwave oven.
Microwave ovens provide a convenient means for heating a variety of food items, including numerous dough-based and potato-based convenience food items. However, microwave ovens tend to cook such items unevenly and are unable to achieve the desired balance of thorough heating and a browned, crisp outer surface. Some microwave energy interactive materials and packages have been developed in an effort to achieve surface browning and crisping of food items in a microwave oven. However, there is a continuing need for improved microwave energy interactive materials and packages that provide the desired degree of heating and browning and/or crisping of various food items. There further is a continuing need for improved materials and packages that provide the desired degree of heating and browning and/or crisping of food items that have a rounded shape that are otherwise unable to achieve sufficient surface contact with some presently available microwave energy interactive sheet materials.
The present invention is directed generally to various blanks, trays, tray assemblies, materials, constructs, packages, and systems that provide improved heating, browning, and/or crisping of a food item in a microwave oven.
In one aspect, the present invention is directed to a blank for forming a microwave energy interactive construct. The blank includes a laminate comprising a microwave energy interactive element at least partially secured to a panel in an at least partially overlapping relationship, and at least one flanged receiving element including a plurality of flange segments. The flange segments extend at least generally inwardly and are respectively adjacent to one another. Additionally, the flange segments are at least partially defined by a plurality of disruptions that are respectively disposed between adjacent flange segments of the plurality of flange segments, extend at least partially through the microwave energy interactive element, and extend at least partially through the panel. The plurality of disruptions may comprise a plurality of slits arranged radially or in any other suitable configuration. The flange segments may be coplanar with the laminate or may extend obliquely with respect to a generally planar portion of the laminate. The generally planar portion of the laminate may extend at least partially around the flanged receiving element.
In one particular example, the generally planar portion of the laminate includes opposite first and second sides, the microwave energy interactive element forms the first side of the generally planar portion of the laminate, and the flange segments are capable of projecting away from, and are adjacent to, the second side of the generally planar portion of the laminate. The flange segments of the flanged receiving element may extend at least partially around and define a receptacle. When in combination with a food item, the food item may be disposed in the receptacle, portions of the microwave energy interactive element may be respective parts of the flanged segments of the flanged receiving element, and at least some of the portions of the microwave energy interactive element that are respective parts of the flanged segments of the flanged receiving element may be in opposing face-to-face contact with the food item.
In another aspect, the present invention is directed to a blank for forming a microwave energy interactive tray. The blank includes a base panel, a microwave energy interactive element at least partially overlying the base panel, at least one flanged receiving element including a plurality of flange segments, the flange segments being defined by a plurality of radially arranged slits extending through the microwave energy interactive element and base panel, and at least one side panel joined to the base panel. If desired, the radially arranged slits may extend from a physical aperture through the microwave energy interactive element and base panel. The radially arranged slits may be arranged in a starburst pattern, spiral pattern, or any other pattern. Each flange segment may be defined by a pair of adjacent slits terminating at respective end points and a fold line extending therebetween.
In another aspect, the blank includes a first major panel and a second major panel joined along a major fold line. The first major panel and the second major each independently include a microwave energy interactive element and at least one flanged receiving element including a plurality of flange segments. The flange segments are defined by a plurality of radially arranged slits. The flanged receiving element in the first panel and the flanged receiving element in the second panel are arranged in a substantially aligned, opposed relation along a line of symmetry defined by the major fold line. The radially arranged slits may extend from a physical aperture, through the microwave energy interactive element and the panel. If desired, a fold line may extend between the respective endpoints of each pair of adjacent slits defining a flange segment.
According to another aspect of the present invention, a tray assembly comprises at least one pair of substantially aligned flanged receiving elements in an opposed, facing relation in a first tray and a second tray, where each of the flanged receiving elements in the first tray and the second tray includes a plurality of flange segments defined by radially arranged slits extending through the tray. A microwave energy interactive element independently overlies a substantial portion of each of the flange segments. At least one of the first tray and the second tray may comprise at least one elevating element extending therefrom. The radially arranged slits may extend in a starburst configuration from a physical aperture, or may have any other configuration.
According to another aspect of the invention, a microwave energy interactive heating system comprises a carton and a tray dimensioned to be received within the carton. The carton includes a top panel, a bottom panel, and a plurality of walls extending between the top panel and bottom panel, where the top panel, bottom panel, and walls define an interior space. A first microwave energy interactive element overlies at least a portion of the top panel facing the interior space. The tray includes a second microwave energy interactive element at least partially overlying a dimensionally stable base, at least one support element for elevating the base from the bottom panel of the carton, and at least one flanged receiving element including a plurality of hingeable flange segments, where the hingeable flange segments are defined by a plurality of radially arranged slits that extend through the microwave energy interactive heating element and dimensionally stable base. The first microwave energy interactive element may comprise a susceptor, a microwave energy interactive insulating material, or any other suitable material. In one example, the microwave energy interactive insulating material comprises a microwave energy interactive material supported on a first polymeric film layer, a moisture-containing layer superposed with the microwave energy interactive material, and a second polymeric film layer joined to the moisture-containing layer in a predetermined pattern, thereby forming one or more closed cells between the moisture-containing layer and the second polymeric film layer. The closed cells expand in response to being exposed to microwave energy, and the expanded cells cause the microwave energy interactive material to bulge toward the microwave energy interactive tray.
According to another aspect of the present invention, a method of heating, browning, and crisping a food item in a microwave oven is provided. The method includes providing a microwave energy interactive heating tray, the tray including a dimensionally stable base having at least one elevating support element extending from a first surface thereof, a microwave energy interactive element at least partially overlying a second surface opposed to the first surface, and at least one flanged receiving element including a plurality of hinged flange segments, the flange segments being defined by a plurality of radially arranged slits extending through the microwave energy interactive element and dimensionally stable base, urging the food item against the flanged receiving element, thereby causing the flange segments to deflect in a direction toward the support element, lodging the food item between the deflected flange segments, such that at least a portion of the food item is in intimate contact with the microwave energy interactive element, and exposing the food item lodged within the receiving element to microwave energy.
Other aspects, features, and advantages of the present invention will become apparent from the following description and accompanying figures.
The description refers to the accompanying drawings in which like reference characters refer to like parts throughout the several views, and in which:
The present invention is directed generally to various blanks for forming a microwave energy interactive tray, package, system, or other construct (collectively “constructs”), various constructs formed therefrom, various methods of making such constructs, and various methods of heating and browning and/or crisping a food item having a rounded surface.
The various constructs may include one or more features that accommodate the contours of a rounded food item contained within the package. For example, the various constructs may include one or more receiving elements that are divided into a plurality of smaller segments, each segment being capable of flexing to accommodate the contours of the food item. The various constructs also may include one or more features that enhance microwave heating, browning, and/or crisping of the food item. Such features may overlie at least a portion of the flexible segments, such that the contours of the food item are in proximate or intimate contact with the microwave enhancing feature.
In one aspect, the present invention is directed to a microwave energy interactive heating construct, for example, a tray, including a base or platform for supporting a food item thereon and one or more support elements for elevating the base or platform from the floor of a microwave oven. In another aspect, the tray includes one or more contoured, flanged receiving elements, each for supporting a rounded food item. In still another aspect, the tray includes one or more apertures in communication with the contoured receiving elements for allowing any oils, grease, or other liquids to drain from the food items therein. In a further aspect, the base or platform is at least partially covered by a microwave energy interactive element that enhances the browning and/or crisping of the food item.
If desired, the tray may be positioned within a carton. The carton may include a bottom panel and a lid, the tray being supported on the bottom panel. In one aspect, the inner surface of the lid also is contoured to accommodate the shape of the rounded food item. The inner surface also may be at least partially covered by a microwave energy interactive element that enhances the browning and/or crisping of the food item. In another aspect, a flexible, expandable microwave energy interactive insulating material overlies at least a portion of the inner surface of the lid. Upon exposure to microwave energy, the material expands towards, and accommodates the contours of, the food item to enhance the browning and/or crisping thereof.
Various aspects of the invention may be illustrated by referring to the figures. For purposes of simplicity, like numerals may be used to describe like features. It will be understood that where a plurality of similar features are depicted, not all of such features necessarily are labeled on each figure. Although several different exemplary aspects, implementations, and embodiments of the various inventions are provided, numerous interrelationships between, combinations thereof, and modifications of the various inventions, aspects, implementations, and embodiments of the inventions are contemplated hereby.
In the exemplary blank 100 shown in
The microwave energy interactive material may be an electroconductive or semiconductive material, for example, a metal or a metal alloy provided as a metal foil; a vacuum deposited metal or metal alloy; or a metallic ink, an organic ink, an inorganic ink, a metallic paste, an organic paste, an inorganic paste, or any combination thereof. Examples of metals and metal alloys that may be suitable for use with the present invention include, but are not limited to, aluminum, chromium, copper, inconel alloys (nickel-chromium-molybdenum alloy with niobium), iron, magnesium, nickel, stainless steel, tin, titanium, tungsten, and any combination or alloy thereof.
Alternatively, the microwave energy interactive material may comprise a metal oxide. Examples of metal oxides that may be suitable for use with the present invention include, but are not limited to, oxides of aluminum, iron, and tin, used in conjunction with an electrically conductive material where needed. Another example of a metal oxide that may be suitable for use with the present invention is indium tin oxide (ITO). ITO can be used as a microwave energy interactive material to provide a heating effect, a shielding effect, a browning and/or crisping effect, or a combination thereof. For example, to form a susceptor, ITO may be sputtered onto a clear polymeric film. The sputtering process typically occurs at a lower temperature than the evaporative deposition process used for metal deposition. ITO has a more uniform crystal structure and, therefore, is clear at most coating thicknesses. Additionally, ITO can be used for either heating or field management effects. ITO also may have fewer defects than metals, thereby making thick coatings of ITO more suitable for field management than thick coatings of metals, such as aluminum.
Alternatively, the microwave energy interactive material may comprise a suitable electroconductive, semiconductive, or non-conductive artificial dielectric or ferroelectric. Artificial dielectrics comprise conductive, subdivided material in a polymeric or other suitable matrix or binder, and may include flakes of an electroconductive metal, for example, aluminum.
The substrate for the microwave energy interactive material may comprise a polymeric material, paper, paperboard, or any combination thereof. As used herein the term “polymer” or “polymeric material” includes, but is not limited to, homopolymers, copolymers, such as for example, block, graft, random, and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” includes all possible geometrical configurations of the molecule. These configurations include, but are not limited to isotactic, syndiotactic, and random symmetries. Examples of polymers that may be suitable for use with the present invention include, but are not limited to, polyolefins, e.g. polyethylene, polypropylene, polybutylene, and copolymers thereof; polytetrafluoroethylene; polyesters, e.g. polyethylene terephthalate, e.g., coextruded polyethylene terephthalate; vinyl polymers, e.g., polyvinyl chloride, polyvinyl alcohol, polyvinylidene chloride, polyvinyl acetate, polyvinyl chloride acetate, polyvinyl butyral; acrylic resins, e.g. polyacrylate, polymethylacrylate, and polymethylmethacrylate; polyamides, e.g., nylon 6,6; polystyrenes; polyurethanes; polycarbonates; cellulosic resins, e.g., cellulosic nitrate, cellulosic acetate, cellulosic acetate butyrate, ethyl cellulose; copolymers of any of the above materials; or any blend or combination thereof.
In one particular example, the substrate typically comprises an electrical insulator, for example, a polymeric film. The thickness of the film typically may be from about 35 gauge to about 10 mil. In one aspect, the thickness of the film is from about 40 to about 80 gauge. In another aspect, the thickness of the film is from about 45 to about 50 gauge. In still another aspect, the thickness of the film is about 48 gauge.
Examples of polymeric films that may be suitable include, but are not limited to, polyolefins, polyesters, polyamides, polyimides, polysulfones, polyether ketones, cellophanes, or any combination thereof. In one particular example, the polymeric film comprises polyethylene terephthalate. Examples of polyethylene terephthalate films that may be suitable for use as the substrate include, but are not limited to, MELINEX®, commercially available from DuPont Teijan Films (Hopewell, Va.), and SKYROL, commercially available from SKC, Inc. (Covington, Ga.). Polyethylene terephthalate films are used in commercially available susceptors, for example, the QWIKWAVE® Focus susceptor and the MICRORITE® susceptor, both available from Graphic Packaging International (Marietta, Ga.). While polymeric substrates are described in detail herein, it will be understood that other non-conducting substrate materials such as paper and paper laminates, metal oxides, silicates, cellulosics, or any combination thereof, also may be used.
If desired, the polymeric film may be selected to provide a water barrier, oxygen barrier, or a combination thereof. Such barrier film layers may be formed from a polymer film having barrier properties or from any other barrier layer or coating as desired. Suitable polymer films may include, but are not limited to, ethylene vinyl alcohol, barrier nylon, polyvinylidene chloride, barrier fluoropolymer, nylon 6, nylon 6,6, coextruded nylon 6/EVOH/nylon 6, silicon oxide coated film, or any combination thereof.
One example of a barrier film that may be suitable for use with the present invention is CAPRAN® EMBLEM 1200M nylon 6, commercially available from Honeywell International (Pottsville, Pa.). Another example of a barrier film that may be suitable is CAPRAN® OXYSHIELD OBS monoaxially oriented coextruded nylon 6/ethylene vinyl alcohol (EVOH)/nylon 6, also commercially available from Honeywell International. Yet another example of a barrier film that may be suitable for use with the present invention is DARTEK® N-201 nylon 6,6, commercially available from Enhance Packaging Technologies (Webster, N.Y.).
Still other barrier films include silicon oxide coated films, such as those available from Sheldahl Films (Northfield, Minn.). Thus, in one example, a susceptor may have a structure including a film, for example, polyethylene terephthalate, with a layer of silicon oxide coated onto the film, and ITO or other material deposited over the silicon oxide. If needed or desired, additional layers or coatings may be provided to shield the individual layers from damage during processing.
The barrier film may have an oxygen transmission rate (OTR) as measured using ASTM D3985 of less than about 20 cc/m2/day. In one aspect, the barrier film has an OTR of less than about 10 cc/m2/day. In another aspect, the barrier film has an OTR of less than about 1 cc/m2/day. In still another aspect, the barrier film has an OTR of less than about 0.5 cc/m2/day. In yet another aspect, the barrier film has an OTR of less than about 0.1 cc/m2/day.
The barrier film may have a water vapor transmission rate (WVTR) as measuring using ASTM F1249 of less than about 100 g/m2/day. In one aspect, the barrier film has a water vapor transmission rate (WVTR) as measuring using ASTM F1249 of less than about 50 g/m2/day. In another aspect, the barrier film has a WVTR of less than about 15 g/m2/day. In yet another aspect, the barrier film has a WVTR of less than about 1 g/m2/day. In still another aspect, the barrier film has a WVTR of less than about 0.1 g/m2/day. In a still further aspect, the barrier film has a WVTR of less than about 0.05 g/m2/day.
The microwave energy interactive material may be applied to the substrate in any suitable manner, and in some instances, the microwave energy interactive material is printed on, extruded onto, sputtered onto, evaporated on, or laminated to the substrate.
The microwave energy interactive material may be applied to the substrate in any pattern, and using any technique, to achieve the desired heating effect of the food item. For example, the microwave energy interactive material may be provided as a continuous or discontinuous layer or coating including circles, loops, hexagons, islands, squares, rectangles, octagons, and so forth. Examples of various patterns and methods that may be suitable for use with the present invention are provided in U.S. Pat. Nos. 6,765,182; 6,717,121; 6,677,563; 6,552,315; 6,455,827; 6,433,322; 6,414,290; 6,251,451; 6,204,492; 6,150,646; 6,114,679; 5,800,724; 5,759,422; 5,672,407; 5,628,921; 5,519,195; 5,424,517; 5,410,135; 5,354,973; 5,340,436; 5,266,386; 5,260,537; 5221,419; 5,213,902; 5,117,078; 5,039,364; 4,963,424; 4,936,935; 4,890,439; 4,775,771; 4,865,921; and Re. 34,683, each of which is incorporated by reference herein in its entirety. Although particular examples of patterns of microwave energy interactive material are shown and described herein, it should be understood that other patterns of microwave energy interactive material are contemplated by the present invention.
In the example blank 100 illustrated in
Each flanged receiving element 112 includes a plurality of generally planar flange segments 114 defined by a plurality of disruptions, in this example, slits 116 extending through the microwave energy interactive element 110 and base panel 102. The slits 116 or other disruptions may have any shape, length, and with, and may be arranged in, for example, a starburst pattern (as shown in FIG. IA), grid pattern, a spiral pattern, or in any other suitable pattern or configuration. Each flange segment 114 is defined by a pair of adjacent slits 116 or other disruptions that terminate at respective end points 118. The disruptions may extend at least partially through the microwave energy interactive element 110 and/or at least partially through the base panel 102.
As illustrated schematically in
Optionally, a fold line, score line, crease, cut crease, or any other folding feature 120 (collectively “fold line”) may extend between the respective end points 118 to facilitate flexing or hinging of the respective flange segment 114, as depicted in
Any of the numerous microwave interactive elements described herein or contemplated hereby may be continuous, that is, without substantial breaks or interruptions, or may be discontinuous, for example, by including one or more breaks or apertures that transmit microwave energy therethrough. For example, as illustrated in
The breaks or apertures may be sized and positioned to heat particular areas of the food item selectively. In this example, the aperture is substantially circular in shape and is located centrally within the flanged receiving element. However, the number, shape, size, and positioning of such breaks or apertures may vary for a particular application depending on type of container being formed, the food item to be heated therein or thereon, the desired degree of shielding, browning, and/or crisping, whether direct exposure to microwave energy is needed or desired to attain uniform heating of the food item, the need for regulating the change in temperature of the food item through direct heating, and whether and to what extent there is a need for venting.
It will be understood that, in this and other aspects of the invention, the aperture may be a physical aperture or void in the microwave energy interactive element, or may be a non-physical “aperture”. A non-physical aperture may be a portion of the microwave energy interactive element that is microwave energy inactive by deactivation or otherwise, or one that is otherwise transparent to microwave energy. Thus, for example, where a microwave energy interactive material is used to form at least a portion of the tray, the aperture may be a portion of the container formed without a microwave energy active material or, alternatively, may be a portion of the tray formed with a microwave energy active material that has been deactivated. While both physical and non-physical apertures allow the food item to be heated directly by the microwave energy, a physical aperture also provides a venting function to allow steam or other vapors to escape from the interior of the container.
To assemble the blank 100 into a tray 124 for heating, browning, and/or crisping a food item, the side panels 104 are folded along respective fold lines 106 in a direction away from the microwave energy interactive element 110 so that the side panels 104 are somewhat vertical with respect to the base panel 102, as shown in
As shown in schematic side view shown in
The base 202 includes a plurality of flanged receiving elements 216, each including a plurality of flange segments 218 defined by a pair of adjacent slits 220 terminating at respective end points 222. Optionally, a fold line, score line, crease, cut crease, or any other folding feature 224 (collectively “fold line”) may extend between the respective end points 222 to facilitate flexing or hinging of the respective flange segment 218 in a direction away from a microwave energy interactive element 226, for example, a susceptor, that at least partially overlies the base panel 202, similar to that shown in
Each end panel 204 is somewhat trapezoidal in shape, with a first dimension L3 approximately defined by the length of fold line 206 extending between fold lines 210, and a second dimension smaller L4 than the first dimension L3 that corresponds to the length of edge 230, such that the end panel 204 has a tapered width when measured from fold line 206 to respective edges 230. Each end panel 204 includes a pair of somewhat C-shaped opposed receiving slots 232.
Each side panel 208 also is somewhat trapezoidal in shape, with a first dimension L5 defined by the length of fold line 210 extending between fold lines 206, and a second dimension L6 greater than the first dimension L5 corresponding to the length of edge 234, such that the side panel 208 has a reverse tapered width when measured from fold line 210 to edge 234.
Each corner panel 212 includes a notched locking tab 236 dimensioned to fit within the adjacent receiving slot 232 in the respective side panel 208 when the blank 200 is folded into a tray 238, as shown in
To form a tray 238 from the blank 200, the end panels 204 and side panels 208 are folded in a direction away from the microwave energy interactive element 226 so that the panels 204 and 208 are substantially perpendicular to the base panel 202. The corner panels 212 are folded inwardly, and the respective locking tabs 240 each are inserted into the associated receiving slot 232, thereby securing the panels 204 and 206 in this configuration. The folded end panels 204, side panels 208, and corner panels 212 serve as support elements or legs to support the base panel 202, which serves as a platform for placing a food item (not shown) thereon, similar to that described above in connection with FIG. IF and 1G.
Each of the flanged receiving elements 306 in the first tray 302 and the second tray 304 includes a plurality of flange segments 308 defined by radially arranged slits (not shown) extending through each tray 302, 304, as described above. Each flange segment 308 may be defined by a pair of adjacent slits (not shown) terminating at respective end points (not shown). A fold line 310 or other feature may extend between the respective end points to facilitate hinging of the flange segment 308 in response an urging force applied thereto. A microwave energy interactive element 312 overlies a substantial portion of each flange segment 308.
At least one of the trays 302, 304 may include one or more feet, legs, or other support elements 314, for example, extending from a bottom surface 316 thereof, to elevate the tray assembly 300 from the floor of the microwave oven (not shown). Alternatively, the tray assembly 300 may be provided with a separate component, for example, a dimensionally stable ring (not shown), to elevate the tray assembly 300.
As shown in
The second tray 304 then can be placed over the food item F within the first tray 302. In doing so, the flange segments 308 in the second tray 304 flex away from the first tray 302 to receive the food item F therein. In this configuration, a greater portion of the surface of the food item F is in proximate or intimate contact with the microwave energy interactive element 312. Thus, the use of a dual tray assembly 300 significantly increases the amount of proximate or intimate contact between the food item F and microwave energy interactive element 312 on the first tray 302 and the second tray 304, as compared with using a single tray.
The first major panel 402 and the second major panel 404 each include a plurality of flanged receiving elements 414. Each flanged receiving element 414 includes a plurality of flange segments 416 defined by a plurality of radially arranged slits 418. The flanged receiving elements 414 in the first major panel 402 and the flanged receiving elements 414 in the second major panel 404 are arranged in a substantially aligned, opposed relation along a line of symmetry defined by major fold line 406, such that the flanged receiving elements 414 in the first major panel 402 and the second major panel 404 are in a substantially superposed relation when the first major panel 402 is folded toward the second major panel 404 along major fold line 406, as shown in
Still viewing
If desired, the radially arranged slits 418 may extend from a physical aperture 420 through the microwave energy interactive element 412 and the first and/or second major panel 402 or 404. Further, a fold line 422 may extend between the end points 424 of adjacent slits 418 that define each segment 416. Minor panels 426, 428, and 430 may extend from the second major panel 404 along respective fold lines 432, 434, and 436 to serve as support elements in a tray 438 formed from the blank 400.
To form the blank 400 into a tray (not shown), the first minor panel 426, the second minor panel 428, and the third minor panel 430 may be folded along the first minor fold line 432, the second minor fold line 434, and the third minor fold line 436, respectively, in a direction away from the microwave energy interactive element 412 on the second major panel 404. The first major panel 402 then may be folded toward the second major panel 404 along the major fold line 406. The folded panels 402 and 404 then may be positioned on a substantially planar surface (not shown) such that the folded first minor panel 426, the second minor panel 428, and the third minor panel 430 serve as support elements for the first major panel 402 and the second major panel 404. The tray 438 may be used much like that described in connection with
If desired, any of the numerous trays described herein or contemplated hereby may be provided in an outer carton. The food item to be heated therein may be provided within the tray and sealed using an overwrap, adhesive bonding, or any other locking mechanism. Alternatively, the food item may be provided in a separate sealed package, for example, a polymeric film pouch. In such a case, the user removes the food item from the film pouch and places each piece in the tray prior to heating in the microwave oven.
To form the blank 500 into a carton 590 (shown in
To use the system 600, one or more rounded food items F (
In this and other aspects of the invention, the carton may include a microwave energy interactive element overlying at least a portion of the top panel facing the interior space. Such cartons sometimes are referred to herein as “microwave energy interactive cartons”. Any microwave energy interactive element may be used including, but not limited to, a susceptor or a microwave energy interactive insulating material.
As used herein, the term “microwave energy interactive insulating material” or “insulating material” refers any combination of layers of materials that is both responsive to microwave energy and capable of providing some degree of thermal insulation when used to heat a food item.
The insulating material may include various components, provided that each is resistant to softening, scorching, combusting, or degrading at typical microwave oven heating temperatures, for example, at about 250° F. The insulating material may include both microwave energy responsive or interactive components, and microwave energy transparent or inactive components. Each microwave interactive component comprises one or more microwave energy interactive materials or segments arranged in a particular configuration to absorb microwave energy, transmit microwave energy, reflect microwave energy, or direct microwave energy, as needed or desired for a particular microwave heating application. As a result, one or more of the components may promote browning and/or crisping of the food item, shield the food item from microwave energy to prevent overcooking the food item in that area, or transmit microwave energy towards or away from a particular portion of the food item.
In one aspect, the insulating material comprises one or more susceptor layers in combination with one or more expandable insulating cells. Additionally, the insulating material may include one or more microwave energy transparent or inactive materials to provide dimensional stability, to improve ease of handling the microwave energy interactive material, and/or to prevent contact between the microwave energy interactive material and the food item.
Several exemplary insulating materials are depicted in
In one aspect, the microwave energy interactive insulating material comprises a microwave energy interactive material supported on a first polymeric film layer, a moisture-containing layer superposed with the microwave energy interactive material and a second polymeric film layer joined to the moisture-containing layer in a predetermined pattern, thereby forming one or more closed cells between the moisture-containing layer and the second polymeric film layer. The closed cells expand or inflate in response to being exposed to microwave energy, and thereby causing microwave energy interactive material to bulge and deform.
Referring to
Optionally, an additional microwave transparent layer 740 may be adhered by adhesive 745 or otherwise to the first plastic film 710 opposite the microwave energy interactive material 705, as depicted in
The insulating material 700 may be cut and provided as a substantially flat, multi-layered sheet 750, as shown in
In another aspect, the insulating material comprises a durably expandable insulating material. As used herein, the term “durably expandable insulating material” or “durably expandable material” refers to a microwave energy interactive insulating material that includes expandable insulating cells that tend to remain at least partially expanded after exposure to microwave energy has been terminated. In some instances, the cells may remain substantially expanded after exposure to microwave energy has been terminated.
In one example, the durably expandable material comprises one or more reagents or additives that release a gas upon exposure to microwave energy. For example, the additive may comprise a combination of sodium bicarbonate (NaHCO3) and a suitable acid, which react to form carbon dioxide. As the carbon dioxide is released, the gas causes the cells to expand. While certain reagents and gases are described herein, it will be understood that other reagents and released gases are contemplated hereby. The reagents may be incorporated into the durably expandable material in any suitable manner and, in some instances, are coated as a dispersion or a latex onto all or a portion of one or more layers adjacent the expandable cells.
In one example, the durably expandable material comprises a combination of several different layers. A susceptor that includes a thin layer of microwave interactive material on a first plastic film is bonded, for example, by lamination with an adhesive, to a dimensionally stable substrate, for example, paper. The substrate is bonded to a second plastic film using a patterned adhesive or other material, such that closed cells are formed in the material. The closed cells are substantially resistant to vapor migration. A coating including one or more reagents that generate a gas upon exposure to microwave energy covers all or a portion of the microwave energy interactive material. Alternatively, the coating may be applied to the substrate.
As the susceptor heats upon impingement by microwave energy, water vapor and other gases normally held in the substrate, for example, paper, and any air trapped in the thin space between the second plastic film and the substrate in the closed cells, expand. The expansion of water vapor and air in the closed cells applies pressure on the susceptor film and the substrate on one side and the second plastic film on the other side of the closed cells. Additionally, depending on the particular reagents selected, the presence of water vapor and/or heat may initiate the reaction between the reagents. Each side of the material forms the closed cells reacts simultaneously, but uniquely, to the heating and vapor expansion. The cells expand or inflate to form a quilted top surface of cells separated by channels in the susceptor film and substrate lamination, which lofts above a bottom surface formed by the second plastic film. This expansion may occur within 1 to 15 seconds in an energized microwave oven, and in some instances, may occur within 2 to 10 seconds. After the exposure to microwave energy has been terminated, the cells remain inflated.
In this and other aspects, the exemplary insulating materials contemplated hereby provide several benefits before, during, and after heating in a microwave oven. First, the water vapor, air, and other gases contained in the closed cells provides insulation between the food item and the ambient environment of the microwave oven. The base of a microwave oven, for example, the glass tray found in most microwave ovens, acts as a large heat sink, absorbing much of the heat generated by the susceptor film or within the food item itself. The vapor pockets in the cells formed by the present invention may be used to insulate the food item and susceptor film from the microwave oven surfaces and the vented air in the microwave oven cavity, thereby increasing the amount of heat that stays within or is transferred to the food item.
Second, the formation of the cells allows the material to conform more closely to the surface of the food item, placing the susceptor film in greater proximity to the food item. This enhances the ability of the susceptor film to brown and crisp the surface of the food item by conduction heating, in addition to some convection heating, of the food item.
It will be appreciated that the various insulating materials used in accordance with the present invention enhances the heating, browning, and crisping of a food item adjacent thereto. By using insulating cells in cooperation with a susceptor, more of the sensible heat generated by the susceptor is transferred to the surface of the food item rather than to the microwave oven environment. Without the insulating material, some or all the heat generated by the susceptor may be lost via conduction to the surrounding air and other conductive media, such as the microwave oven floor or turntable. Thus, more of the sensible heat generated by the susceptor is directed to the food item and browning and crisping is enhanced. Furthermore, insulating materials may help to retain moisture in the food item when cooking in the microwave oven, thereby improving the texture and flavor of the food item. Additional benefits and aspects of such materials are described in PCT Application No. PCT/US03/03779, U.S. Pat. Nos. 7,019,271, and U.S. Pat No. 7,351,942, each of which is incorporated by reference herein in its entirety.
It will be understood by those of skill in the art that any of the insulating materials described herein or contemplated hereby may include an adhesive pattern that is selected to enhance cooking of a particular food item. For example, where the food item is a larger item, the adhesive pattern may be selected to form substantially uniformly shaped expandable cells. Where the food item is a small item, the adhesive pattern may be selected to form a plurality of different sized cells to allow the individual items to be variably contacted on their various surfaces. While several examples are provided herein, it will be understood that numerous other patterns are contemplated hereby, and the pattern selected will depend on the heating, browning, crisping, and insulating needs of the particular food item and package.
If desired, multiple layers of insulating materials may be used to enhance the insulating properties of the various heating sheets and other constructs described herein or contemplated hereby and, therefore, enhance the browning and crisping of the food item. Where multiple layers are used, the layers may remain separate or may be joined using any suitable process or technique, for example, thermal bonding, adhesive bonding, ultrasonic bonding or welding, mechanical fastening, or any combination thereof. In one example, two sheets of an insulating material may be arranged so that their respective susceptor layers are facing away from each other. In another example, two sheets of an insulating material may be arranged so that their respective susceptor layers are facing towards each other. In still another example, multiple sheets of an insulating material may be arranged in a like manner and superposed. In a still further example, multiple sheets of various insulating materials are superposed in any other configuration as needed or desired for a particular application. The multi-layer material or structure then can be used to form, or can be used in cooperation with, a tray, carton, system, or other construct according to the present invention.
The second symmetrical layer arrangement, beginning at the bottom of the drawings, also comprises a PET film layer 825, a metal layer 830, an adhesive layer 835, and a paper or paperboard layer 840. If desired, the two symmetrical arrangements may be formed by folding one layer arrangement onto itself. The layers of the second symmetrical layer arrangement are bonded together in a similar manner as the layers of the first symmetrical arrangement. A patterned adhesive layer 845 is provided between the two paper layers 820 and 840, and defines a pattern of closed cells 850 configured to expand when exposed to microwave energy. It has been discovered that an insulating material 800 having two metal layers 810 and 830 according to the present invention generates more heat and greater cell loft. As a result, such a material is able to elevate a food item seated thereon to a greater extent than an insulating material having a single microwave energy interactive material layer.
Referring to
Turning to
A microwave energy interactive element 1090 overlies at least a portion of the top panel 1005. In this example, the microwave energy interactive element 1090 is a susceptor film. However, other microwave energy interactive elements may be used with the present invention.
To form the blank 1000 into a carton 1095 (shown in
To use the system 1100, one or more rounded food items F may be placed into the tray 238 and urged against the various flange receiving elements 216. In doing so, the food item F applies a force against the flange segments 218 and causes the flange segments 218 to deflect toward the bottom panel 1050 of the carton 1095. In the fully seated position, at least a portion of the food item F rests against the microwave energy interactive element 226 and remains suspended above the bottom panel 1050 of the carton 1095.
The top panel 1005 then is brought toward the bottom panel 1050 such that the microwave energy interactive element 1090 is brought into proximate or intimate contact with the upper portion of the food item F. The system 1100 then is placed in a microwave oven (not shown) according to instructions provided and the one or more food items F are heated and browned and/or crisped. In this example, the use of a microwave energy interactive element on both the tray and the top panel further enhances the browning and/or crisping of the surface of the food item.
A microwave energy interactive element 1290 overlies at least a portion of the top panel 1205. In this example, the microwave energy interactive element 1290 is an expandable cell insulating material. However, other microwave energy interactive elements may be used with the present invention.
To form the blank 1200 into a carton 1295 (shown in
To use the system 1300, one or more rounded food items F may be urged against the various receiving elements 216 in the tray 238 to cause the flange segments 218 to fold toward the bottom panel 1250 of the carton 1295. In the fully seated position, the food item F rests against the microwave energy interactive element 226 and remains suspended above the bottom panel 1250 of the carton 1295.
The top panel 1205 then is brought toward the bottom panel 1250 such that the microwave energy interactive element 1290 is brought into proximate contact with the upper portion of the food item F. The system 1300 then is placed in a microwave oven (not shown) according to instructions provided and the one or more food items F are heated and browned and/or crisped. Upon exposure to microwave energy, the insulating material 1290 expands and bulges toward the food item F, as shown in
While a particular carton and tray are used in this example, it will be understood that numerous other one piece, multi-piece, top loading, and end loading cartons, and other cartons and trays may be used in any combination in accordance with the invention. For example,
The various blanks, trays, packages, systems, and other constructs described herein or contemplated hereby may be formed from various materials. In one aspect, any of the various blanks, trays, packages, systems, and other constructs may be formed from a paperboard material. The paperboard generally may have a basis weight of from about 60 to about 330 lbs/ream, for example, from about 80 to about 140 lbs/ream. The paperboard generally may have a thickness of from about 6 to about 30 mils, for example, from about 12 to about 28 mils. In one particular example, the paperboard has a thickness of about 12 mils. Any suitable paperboard may be used, for example, a solid bleached or solid unbleached sulfate board, such as SUS® board, commercially available from Graphic Packaging International. If needed or desired, one or more portions of the substrate may be laminated to or coated with one or more different or similar sheet-like materials at selected panels or panel sections.
If desired, one or more panels of the various blanks, trays, packages, systems, and other constructs described herein or contemplated hereby may be coated with varnish, clay, or other materials, either alone or in combination. The coating may then be printed over with product advertising or other information or images. The blanks, trays, packages, systems, and other constructs also may be coated to protect any information printed thereon. Furthermore, the blanks, trays, packages, systems, and other constructs may be coated with, for example, a moisture barrier layer, on either or both sides.
Alternatively or additionally, any of the blanks, trays, packages, systems, and other constructs of the present invention may be coated or laminated with other materials to impart other properties, such as absorbency, repellency, opacity, color, printability, stiffness, or cushioning. Alternatively or additionally, any of the blanks, trays, packages, systems, and other constructs of the present invention may be coated or laminated with other materials to impart other properties, such as absorbency, repellency, opacity, color, printability, stiffness, or cushioning. For example, absorbent susceptors are described in U.S. Provisional Application No. 60/604,637, filed Aug. 25, 2004, and U.S. Patent Application Publication No. US 2006/0049190 A1, published Mar. 9, 2006, both of which are incorporated herein by reference in their entirety. Additionally, the constructs may include graphics or indicia printed thereon.
In the examples shown herein, the construct is somewhat square in shape. However, it will be understood that in this and other aspects of the invention described herein or contemplated hereby, numerous suitable shapes and configurations may be used to form the various panels and, therefore, constructs. Examples of other shapes encompassed hereby include, but are not limited to, polygons, circles, ovals, cylinders, prisms, spheres, polyhedrons, and ellipsoids. The shape of each construct may be determined largely by the type, shape, and quantity of the food item or items to be heated, browned, and/or crisped, and it should be understood that different packages are contemplated for different food items, for example, pretzel bites, potato balls, pizza bites, cheese sticks or balls, pastries, doughs, egg rolls, spring rolls, and so forth. Likewise, the construct may include gussets, pleats, additional panels, or any other feature needed or desired to accommodate a particular food item and/or portion size. Additionally, it will be understood that the present invention contemplates blanks and constructs for single-serving portions and for multiple-serving portions.
It also will be understood that in each of the various blanks and constructs described herein and contemplated hereby, a “fold line” can be any substantially linear, although not necessarily straight, form of weakening that facilitates folding therealong. More specifically, but not for the purpose of narrowing the scope of the present invention, a fold line may be a score line, such as lines formed with a blunt scoring knife, or the like, which creates a crushed portion in the material along the desired line of weakness, a cut that extends partially into a material along the desired line of weakness, and/or a series of cuts that extend partially into and/or completely through the material along the desired line of weakness, or any combination of these features. Where cutting is used to create a fold line, the cutting typically will not be overly extensive in a manner that might cause a reasonable user to consider incorrectly the fold line to be a tear line.
For example, one type of conventional tear line is in the form of a series of cuts that extend completely through the material, with adjacent cuts being spaced apart slightly so that a nick (e.g., a small somewhat bridging-like piece of the material) is defined between the adjacent cuts for typically temporarily connecting the material across the tear line. The nicks are broken during tearing along the tear line. Such a tear line that includes nicks can also be referred to as a cut line, since the nicks typically are a relatively small percentage of the subject line, and alternatively the nicks can be omitted from such a cut line. As stated above, where cutting is used to provide a fold line, the cutting typically will not be overly extensive in a manner that might cause a reasonable user to consider incorrectly the fold line to be a tear line. Likewise, where nicks are present in a cut line (e.g., tear line), typically the nicks will not be overly large or overly numerous in a manner that might cause a reasonable user to consider incorrectly the subject line to be a fold line.
Various exemplary blanks and constructs are shown and described herein as having fold lines, tear lines, score lines, and other lines as extending from a particular feature to another particular feature, for example from one particular panel to another, from one particular edge to another, or any combination thereof. However, it will be understood that such lines need not necessarily extend between such features in a precise manner. Instead, such lines may generally extend between the various features as needed to achieve the objective of such line. For instance, where a particular tear line is shown as extending from a first edge of a blank to another edge of the blank, the tear line need not extend completely to one or both of such edges. Rather, the tear line need only extend to a location sufficiently proximate to the edge so that the removable strip or panel can be manually separated from the blank or construct without causing undesirable damage thereto.
Although certain embodiments of this invention have been described with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are used only for identification purposes to aid the reader's understanding of the various embodiments of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., joined, attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily imply that two elements are connected directly and in fixed relation to each other.
It will be recognized by those skilled in the art, that various elements discussed with reference to the various embodiments may be interchanged to create entirely new embodiments coming within the scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention. The detailed description set forth herein is not intended nor is to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications, and equivalent arrangements of the present invention.
Accordingly, it will be readily understood by those persons skilled in the art that, in view of the above detailed description of the invention, the present invention is susceptible of broad utility and application. Many adaptations of the present invention other than those herein described, as well as many variations, modifications, and equivalent arrangements will be apparent from or reasonably suggested by the present invention and the above detailed description thereof, without departing from the substance or scope of the present invention.
While the present invention is described herein in detail in relation to specific aspects, it is to be understood that this detailed description is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the present invention. The detailed description set forth herein is not intended nor is to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications, and equivalent arrangements of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
06290541 | Mar 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4260060 | Faller | Apr 1981 | A |
4267420 | Brastad | May 1981 | A |
4268738 | Flautt, Jr. et al. | May 1981 | A |
4279933 | Austin et al. | Jul 1981 | A |
4286136 | Mason, Jr. | Aug 1981 | A |
4567341 | Brown | Jan 1986 | A |
4626641 | Brown | Dec 1986 | A |
4678882 | Bohrer et al. | Jul 1987 | A |
4742203 | Brown et al. | May 1988 | A |
4745249 | Daniels | May 1988 | A |
4775771 | Pawlowski | Oct 1988 | A |
4810844 | Anderson | Mar 1989 | A |
4835352 | Sasaki et al. | May 1989 | A |
4865921 | Hollenberg | Sep 1989 | A |
4883936 | Maynard et al. | Nov 1989 | A |
4888459 | Keefer | Dec 1989 | A |
4890439 | Smart | Jan 1990 | A |
4894247 | Fong | Jan 1990 | A |
4894503 | Wendt | Jan 1990 | A |
4896009 | Pawlowski | Jan 1990 | A |
4916280 | Havette | Apr 1990 | A |
4927991 | Wendt et al. | May 1990 | A |
4933193 | Fisher | Jun 1990 | A |
4936935 | Beckett | Jun 1990 | A |
4962293 | Lackey | Oct 1990 | A |
4963424 | Beckett | Oct 1990 | A |
4968865 | Seaborne et al. | Nov 1990 | A |
5008507 | Pesheck et al. | Apr 1991 | A |
5034234 | Andreas | Jul 1991 | A |
5039364 | Beckett | Aug 1991 | A |
5041325 | Larson et al. | Aug 1991 | A |
5053594 | Thota et al. | Oct 1991 | A |
5081330 | Brandberg et al. | Jan 1992 | A |
5084601 | Andreas | Jan 1992 | A |
5096723 | Turpin | Mar 1992 | A |
5117078 | Beckett | May 1992 | A |
5140119 | Brown et al. | Aug 1992 | A |
5164562 | Huffman et al. | Nov 1992 | A |
5177332 | Fong | Jan 1993 | A |
5213902 | Beckett | May 1993 | A |
5217768 | Walters et al. | Jun 1993 | A |
5221419 | Beckett | Jun 1993 | A |
5231268 | Hall et al. | Jul 1993 | A |
5239153 | Beckett | Aug 1993 | A |
5247149 | Peleg | Sep 1993 | A |
5256846 | Walters | Oct 1993 | A |
5260070 | Peleg | Nov 1993 | A |
5260537 | Beckett | Nov 1993 | A |
5266386 | Beckett | Nov 1993 | A |
5294763 | Chamberlain et al. | Mar 1994 | A |
RE34683 | Maynard | Aug 1994 | E |
5334820 | Risch | Aug 1994 | A |
5340436 | Beckett | Aug 1994 | A |
5354973 | Beckett | Oct 1994 | A |
5389767 | Dobry | Feb 1995 | A |
5405663 | Archibald et al. | Apr 1995 | A |
5410135 | Pollart | Apr 1995 | A |
5412187 | Walters et al. | May 1995 | A |
5424517 | Habeger | Jun 1995 | A |
5484984 | Gics | Jan 1996 | A |
5510132 | Gallo, Jr. | Apr 1996 | A |
5519195 | Keefer | May 1996 | A |
5543606 | Gics | Aug 1996 | A |
5565125 | Parks | Oct 1996 | A |
5585027 | Young | Dec 1996 | A |
5628921 | Beckett | May 1997 | A |
5672407 | Beckett | Sep 1997 | A |
5688427 | Gallo, Jr. | Nov 1997 | A |
5698127 | Lai et al. | Dec 1997 | A |
5759422 | Schmelzer | Jun 1998 | A |
5770840 | Lorence | Jun 1998 | A |
5800724 | Habeger | Sep 1998 | A |
5864123 | Keefer | Jan 1999 | A |
5910268 | Keefer | Jun 1999 | A |
5948308 | Wischusen, III | Sep 1999 | A |
6054698 | Mast | Apr 2000 | A |
6114679 | Lai | Sep 2000 | A |
6133560 | Zeng et al. | Oct 2000 | A |
6137099 | Hamblin | Oct 2000 | A |
6150646 | Lai | Nov 2000 | A |
6158589 | Smith et al. | Dec 2000 | A |
6168812 | Paulucci | Jan 2001 | B1 |
6204492 | Zeng | Mar 2001 | B1 |
6251451 | Zeng | Jun 2001 | B1 |
6359272 | Sadek | Mar 2002 | B1 |
6414290 | Cole | Jul 2002 | B1 |
6433322 | Zeng | Aug 2002 | B2 |
6455827 | Zeng | Sep 2002 | B2 |
6501059 | Mast | Dec 2002 | B1 |
6534755 | Paulucci | Mar 2003 | B1 |
6552315 | Zeng | Apr 2003 | B2 |
6559430 | Monforton et al. | May 2003 | B2 |
6677563 | Lai | Jan 2004 | B2 |
6717121 | Zeng | Apr 2004 | B2 |
6765182 | Cole | Jul 2004 | B2 |
7019271 | Wnek | Mar 2006 | B2 |
7514659 | Lafferty | Apr 2009 | B2 |
20010017297 | Zeng et al. | Aug 2001 | A1 |
20010021405 | Zeng | Sep 2001 | A1 |
20020144996 | Zeng et al. | Oct 2002 | A1 |
20030010777 | Milgrom | Jan 2003 | A1 |
20030085224 | Tsontzidis et al. | May 2003 | A1 |
20030111463 | Lai | Jun 2003 | A1 |
20030116562 | Halimi et al. | Jun 2003 | A1 |
20030206997 | Winkelman et al. | Nov 2003 | A1 |
20040149746 | Hoese et al. | Aug 2004 | A1 |
20040173607 | Blankenbeckler et al. | Sep 2004 | A1 |
20040232213 | Pope | Nov 2004 | A1 |
20050042360 | Tiffany et al. | Feb 2005 | A1 |
20060049190 | Middleton | Mar 2006 | A1 |
20060113300 | Wnek | Jun 2006 | A1 |
20060157480 | Lafferty | Jul 2006 | A1 |
20060289521 | Bohme et al. | Dec 2006 | A1 |
20070056962 | Hopkins et al. | Mar 2007 | A1 |
20070087090 | Russell et al. | Apr 2007 | A1 |
20070228036 | Noyelle et al. | Oct 2007 | A1 |
20070251943 | Wnek et al. | Nov 2007 | A1 |
20080023469 | Fitzwater | Jan 2008 | A1 |
20090120929 | Lafferty | May 2009 | A1 |
20100038359 | Laubhan | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
0563999 | Oct 1993 | EP |
0 656 301 | Jun 1995 | EP |
0 970 895 | Jan 2000 | EP |
1840047 | Oct 2007 | EP |
2 828 394 | Feb 2003 | FR |
62-191682 | Dec 1987 | JP |
9-132279 | May 1997 | JP |
9-185991 | Jul 1997 | JP |
WO 8904585 | May 1989 | WO |
WO 9200899 | Jan 1992 | WO |
WO 9711010 | Mar 1997 | WO |
WO 03066435 | Aug 2003 | WO |
WO 2005085091 | Sep 2005 | WO |
WO 2006076501 | Jul 2006 | WO |
WO 2006130789 | Dec 2006 | WO |
WO 2008014377 | Jan 2008 | WO |
WO 2008052096 | May 2008 | WO |
WO 2008115272 | Sep 2008 | WO |
WO 2010019758 | Feb 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20070228036 A1 | Oct 2007 | US |