Technical Field
The present disclosure relates to a microwave ablation catheter and method of utilizing the same. More particularly, the present disclosure relates to a microwave ablation catheter that is positionable through one or more branched luminal networks of a patient for treating tissue.
Description of Related Art
Microwave ablation may be utilized for treating various maladies, e.g., nodules, of different organs like the liver, brain, heart, lung and kidney. When a nodule is found, for example, within a lung, several factors are considered in making a diagnosis. For example, a biopsy of the nodule may be taken using a biopsy tool under CT guidance. If the biopsy reveals that the nodule is malignant, it may prove useful to ablate the nodule. In this instance, microwave ablation, which typically includes transmitting microwave energy to a percutaneous needle, may be utilized to ablate the nodule. Under certain surgical scenarios, certain current percutaneous methods of microwave ablation procedures can result in pneumothoraces (air leaks) and a collection of air in the space around the lungs which if not appreciated by the clinician can ultimately lead to collapse of the lung or a portion thereof.
Endobronchial navigation uses CT image data to create a navigation plan to facilitate advancing a navigation catheter (or other suitable device) through a bronchoscope and a branch of the bronchus of a patient to the nodule. Electromagnetic tracking may also may be utilized in conjunction with the CT data to facilitate guiding the navigation catheter through the branch of the bronchus to the nodule. In certain instances, the navigation catheter may be positioned within one of the airways of the branched luminal networks adjacent to or within the nodule or point of interest to provide access for one or more tools. Once the navigation catheter is in position, fluoroscopy may be used to visualize biopsy tools, such as, for example, biopsy brushes, needle brushes and biopsy forceps as they are passed through the navigation catheter and into the lung and to the nodule or point of interest.
As can be appreciated, a microwave ablation catheter that is positionable through one or more branched luminal networks of a patient to treat tissue may prove useful in the surgical arena.
Aspects of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
An aspect of the present disclosure provides a microwave ablation catheter. The microwave ablation catheter includes a coaxial cable that is connected at its proximal end to a microwave energy source and at its distal end to a distal radiating section. The coaxial cable includes inner and outer conductors and a dielectric positioned therebetween. The inner conductor extends distally past the outer conductor and is in sealed engagement with the distal radiating section. A balun is formed in part from a conductive material electrically connected to the outer conductor of the coaxial cable and extends along at least a portion of the coaxial cable. The conductive material has a braided configuration and is covered by at least one insulative material. The insulative material covering the conductive material may be polyethylene terephthalate. An outer sheath may be provided and configured to surround the coaxial cable.
The balun may further include an insulator substantially between the conductive layer and the outer conductor. A portion of the outer conductor may be removed to form a feedgap between the distal radiating section and the balun.
The microwave ablation catheter may include a multi-lumen housing configured to receive the coaxial cable, distal radiating section, and balun. The multi-lumen housing includes a hub at a proximal end thereof. The hub includes a plurality of ports.
One of the plurality of ports may be an electrical port that is configured to provide electrical communication between the coaxial cable and the microwave energy source. Moreover, two of the plurality of ports are a fluid intake port and a fluid return port configured to provide respective ingress and egress of a coolant to and from the multi-lumen housing for cooling the distal radiating section of the coaxial cable.
The multi-lumen housing may include a four lumen configuration having two lumens dedicated for communication with a respective one of the fluid intake and return ports and two lumens dedicated to support the coaxial cable including the balun. Alternatively, the multi-lumen housing may include a five lumen configuration having four lumens two of which being dedicated for communication with the fluid intake port and two of which being dedicated for communication with the fluid return port and one lumen designated to support the coaxial cable including the balun.
An aspect of the present disclosure provides a microwave ablation catheter. The microwave ablation catheter includes a coaxial cable that is connected at its proximal end to a microwave energy source and at its distal end to a distal radiating section. The coaxial cable includes inner and outer conductors and a dielectric positioned therebetween. The inner conductor extends distally past the outer conductor and in sealed engagement with the distal radiating section. The outer conductor has a braided configuration to facilitate movement of the microwave ablation catheter through a branched luminal network of a patient. An outer sheath may be provided and configured to surround the coaxial cable. One or more temperature sensors may be disposed at the distal radiating section and may be configured to measure a temperature of target tissue while the distal radiating section is energized. The temperature sensor(s) may be configured to communicate with a temperature sensor system that is in operable communication with the microwave energy source.
The microwave ablation catheter may include a balun that is formed in part from a conductive material electrically connected to the outer conductor of the coaxial cable and extending along at least a portion of the coaxial cable. The conductive material may have a braided configuration and covered by at least one insulative material. The insulative material covering the conductive material may be polyethylene terephthalate. An insulator may be provided substantially between the conductive layer and the outer conductor. A portion of the outer conductor may be removed to form a feedgap between the distal radiating section and the balun.
The microwave ablation catheter may include a multi-lumen housing configured to receive the coaxial cable, distal radiating section, and balun. The multi-lumen housing includes a hub at a proximal end thereof. The hub includes a plurality of ports.
One of the plurality of ports may be an electrical port that is configured to provide electrical communication between the coaxial cable and the microwave energy source. Moreover, two of the plurality of ports are a fluid intake port and a fluid return port configured to provide respective ingress and egress of a coolant to and from the multi-lumen housing for cooling the distal radiating section of the coaxial cable.
The multi-lumen housing may include a four lumen configuration having two lumens dedicated for communication with a respective one of the fluid intake and return ports and two lumens dedicated to support the coaxial cable including the balun. Alternatively, the multi-lumen housing may include a five lumen configuration having four lumens two of which being dedicated for communication with the fluid intake port and two of which being dedicated for communication with the fluid return port and one lumen designated to support the coaxial cable including the balun.
Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
As can be appreciated an energy device, such as a microwave ablation catheter, that is positionable through one or more branched luminal networks of a patient to treat tissue may prove useful in the surgical arena and the present disclosure is directed to such apparatus, systems and methods. Access to lumeninal networks may be percutaneous or through natural orifice. In the case of natural orifice, an endobronchial approach may be particularly useful in the treatment of lung disease. Targets, navigation, access and treatment may be planned pre-procedurally using a combination of imaging and/or planning software. In accordance with these aspects of the present disclosure the planning software may offer custom guidance using pre-procedure images). Navigation of the luminal network may be accomplished using image-guidance. These image-guidance systems may be separate or integrated with the energy device or a separate access tool and may include MRI, CT, fluoroscopy, ultrasound, electrical impedance tomography, optical, and device tracking systems. Methodologies for locating the separate or integrated to the energy device or a separate access tool include EM, IR, echolocation, optical, and others. Tracking systems may integrated to imaging device, where tracking is done in virtual space or fused with preoperative or live images. In some cases the treatment target may be directly accessed from within the lumen, such as for the treatment of the endobronchial wall for COPD, Asthma, lung cancer, etc. In other cases, the energy device and/or an additional access tool may be required to pierce the lumen and extend into other tissues to reach the target, such as for the treatment of disease within the parenchyma. Final localization and confirmation of energy device placement may be performed with imaging and/or navigational guidance using the modalities listed above. The energy device has the ability to deliver an energy field for treatment (including but not limited to electromagnetic fields) and may have the ability to monitor treatment during energy application. The monitoring of the treatment may include thermometry, electrical impedance, radiometry, density measurement, optical absorption, hydration, ultrasound, and others. Additionally or alternatively treatment may be monitored from within the lumen or extracorporeally using an additional device or the image-guidance modalities described above. After treatment, the energy device and/or an additional device may have the ability to confirm adequate treatment was performed, employing at least the techniques described above with respect to treatment monitoring. Further, treatment confirmation may be from within the lumen or extracorporeal. The long term treatment performance may be performed with imaging which may be integrated into a follow-up software application.
One embodiment of the present disclosure is directed, in part, to a microwave ablation catheter that is positionable through one or more branched luminal networks of a patient to treat tissue. The microwave ablation catheter is part of an ablation system that includes a microwave energy source and a planning and navigation system for the placement of the catheter at a desired location within the luminal network. Further, the system includes imaging modalities that can be employed to confirm placement of the catheter and the effect of the application of energy. The microwave catheter itself may include the capability to aide in the confirmation of the placement within the tissue to be treated, or additional devices may be used in combination with the microwave catheter to confirm placement within the tissue to be treated. Still further, one or more thermocouples or temperature sensors on the microwave catheter detect the temperature of the microwave catheter or the tissue surrounding the catheter and enable monitoring of the microwave catheter temperature and the tissue temperature during and after treatment both for safety purposes and for dosage and treatment pattern monitoring purposes. The microwave catheter may also assist in the access to the target tissue, either intraluminal or outside the lumen. The microwave catheter may also assist in the monitoring of the treatment through various measurement techniques and may also be used for treatment confirmation, in addition to assistance from other monitoring and confirmation devices.
The assembly 12 shown in
The ports 26a, 26c of the assembly 12 are in fluid communication with corresponding lumens 19a, 19c of the plurality of lumens 18 provided within the assembly 12 (
A third lumen 19b is provided within the assembly 12 and is configured to support the ablation catheter 14 when the ablation catheter 14 is coupled to the assembly 12. In the embodiment illustrated in
In an embodiment, the assembly 12 may include a 4 lumen configuration (not shown). In this embodiment, three (3) outer lumens (e.g., a combination of outflow and inflow lumens 19a, 19c, respectively) may be equally spaced around a center lumen (e.g., lumen 19b) that is configured to support the ablation catheter 14 when the ablation catheter 14 is coupled to the assembly 12. In one particular embodiment, the three (3) outer lumens may be configured to include two (2) inflow lumens 19c and one (1) outflow lumen 19a (or vice versa).
The outflow and inflow lumens 19a, 19c extend a predetermined distance within the assembly 12 and can function with various coolant feedback protocols (e.g., open or closed feedback protocols). In the embodiments illustrated in
Referring now to
A distal radiating section 42 is provided at a distal end 44 of the coaxial cable 36 and is configured to receive the inner conductor 40, as best seen in
An outer conductor 48 is braided and extends along the dielectric 50 positioned between the inner and outer conductors 40, 48, respectively (
A choke or balun 52 is formed in part of a conductive layer 51 that extends along a portion of the coaxial cable 36. The conductive layer 51 may be a braided material of similar construction as the outer conductor 48 and is connected to the outer conductor 48. Specifically, a portion of the outer conductor 48 is shorted (e.g., soldered, interbraided or otherwise affixed) to a proximal portion 54 of the conductive layer 51.
The balun 52 also includes an insulative layer 56, which may be formed of a polytetrafluoroethylene (PTFE). The insulative layer 56 is generally formed between the conductive material 52 and the outer conductor 48. The insulative layer 56 extends distally past a distal end of the conductive material 52. The insulative layer 56 and its orientation extending beyond the conductive layer can be adjusted during manufacture to control the overall phase, energy field profile, and temperature response of the coaxial cable 36.
The outer conductor 48 extends distally beyond the insulative layer 56. A portion of the outer conductor 48 is removed to expose the dielectric 50 of the coaxial cable 36 and form a feedgap 58. The feedgap 58 is located distally from the balun 52 and proximal of and immediately adjacent the distal radiating section 42. The feedgap 58 and distal radiating section 42 are located and dimensioned to achieve a specific radiation pattern for the ablation catheter 14.
The ablation catheter 14 may optionally include an outer sheath 62 that extends to the proximal end 54 of the balun 52. Alternatively, no outer sheath 62 is employed and just a thin layer of insulative material 60 (e.g., a layer of polyethylene terephthalate (PET)) may be used to cover a portion of the outer conductor 48, and the balun 52 up to the point the insulative layer 56 extends beyond the conductive layer 51 of the balun 52 (
The flexibility of the ablation catheter 14 can be altered to accommodate a specific surgical procedure, a specific luminal structure, specific target tissue, a clinician's preference, etc. For example, in an embodiment, it may prove advantageous to have an ablation catheter 14 that is very flexible for movement through the relatively narrow airway of the lungs of a patient. Alternatively, it may prove advantageous to have an ablation catheter 14 that is only slightly flexible, e.g., where the ablation catheter 14 is needed to pierce or puncture target tissue. Still further, to achieve the desired amount of flexibility it may be desirable to form the balun 52 in a manner consistent with the disclosure of U.S. patent application Ser. No. 13,834,581, now U.S. Pat. No. 9,119,650, entitled “Microwave Energy-Delivery Device and System” the entire contents of which is incorporated herein by reference. Still further, although the microwave ablation catheter described here may be specific, it should be understood to those of skill in the art that other microwave ablation catheter embodiments, either simplified or more complex in structural detail, may be employed without departing from the scope of the instant disclosure.
In embodiments, a temperature monitoring system 3 (
In at least one embodiment, the tissue temperature and/or ablation zone temperature information may be correlated to specific known ablation zone sizes or configurations that have been gathered through empirical testing and stored in one or more data look-up tables and stored in memory of the temperature sensing monitoring system 3 and/or the energy source 16. The data look-up tables may be accessible by a processor of the temperature sensing monitoring system 3 and/or the energy source 16 and accessed by the processor while the distal radiating section 42 is energized and treating target tissue. In this embodiment, the temperature sensors “TS” provide tissue temperature and/or ablation zone temperature to the microprocessor which then compares the tissue temperature and/or ablation zone temperature to the known ablation zone sizes stored in the data look-up tables. The microprocessor may then send a command signal to one or more modules of the temperature sensing monitoring system 3 and/or the energy source 16 to automatically adjust the microwave energy output to the distal radiating section 42. Alternatively, a manual adjustment protocol may be utilized to control the microwave energy output to the distal radiating section 42. In this embodiment, the microprocessor may be configured to provide one or more indications (e.g., visual, audio and/or tactile indications) to a user when a particular tissue temperature and/or ablation zone temperature is matched to a corresponding ablation zone diameter or configuration.
System 10, depicted in
The pathway planning phase includes three general steps. The first step involves using software for generating and viewing a three-dimensional model of the bronchial airway tree (“BT”) and viewing the CT data to identify targets. The second step involves using the software for selection of a pathway on the BT, either automatically, semi-automatically, or manually, if desired. The third step involves an automatic segmentation of the pathway(s) into a set of waypoints along the path that can be visualized on a display. It is to be understood that the airways are being used herein as an example of a branched luminal network. Hence, the term “BT” is being used in a general sense to represent any such luminal network (e.g., the circulatory system, or the gastro-intestional tract, etc.)
Using a software graphical interface 64 as shown in
Next, the software selects a pathway to a target, e.g., target 68 identified by a medical professional. In one embodiment, the software includes an algorithm that does this by beginning at the selected target and following lumina back to the entry point. The software then selects a point in the airways nearest the target. The pathway to the target may be determined using airway diameter.
After the pathway has been determined, or concurrently with the pathway determination, the suggested pathway is displayed for user review. This pathway is the path from the trachea to the target that the software has determined the medical professional is to follow for treating the patient. This pathway may be accepted, rejected, or altered by the medical professional. Having identified a pathway in the BT connecting the trachea in a CT image with a target, the pathway is exported for use by system 10 to place a catheter and tools at the target for biopsy of the target and eventually treatment if necessary. Additional methods of determining a pathway from CT images are described in commonly assigned U.S. patent application Ser. No. 13/838,805, entitled “Pathway Planning System and Method” the entirety of which is incorporated herein by reference.
There are several methods of steering the extended working channel 90. In a first method, a single direction of deflection may be employed. Alternatively, a multi-directional steering mechanism with a manual direction selector may be employed to allow selection of a steering direction by the practitioner without necessitating rotation of the catheter body. With multi-directional steering four elongated tensioning elements (“steering wires”) 98a are implemented as pairs of wires formed from a single long wire extending from handle 92 to distal tip 88. Steering wires 98a are bent over part of a base 98b and return to handle 92. Steering wires 98a are deployed such that tension on each wire individually will steer the distal tip 88 towards a predefined lateral direction. In the case of four steering wires 98a, the directions are chosen to be opposite directions along two perpendicular axes. In other words, the four steering wires 98a are deployed such that each wire, when actuated alone, causes deflection of the distal tip 98 in a different one of four predefined directions separated substantially by multiples of 90°.
Locatable guide 86 is inserted into the extended working channel 90 within which it is locked in position by a locking mechanism 94. A position sensor element 96 of system 10 is integrated with the distal tip 88 of the locatable guide 86 and allows monitoring of the tip position and orientation (6 DOF) relative to the reference coordinate system.
In embodiments, locatable guide 86 may have a curved or hooked configuration as shown in
In embodiments, an integrated radial ultrasound probe “US” (
As noted above, the present disclosure employs CT data (images) for the route planning phase. CT data is also used for the navigation phase. Specifically, the CT system of coordinates is matched with the patient system of coordinates; this is commonly known as registration. Registration is generally performed by identifying locations in both the CT and on or inside the body, and measuring their coordinates in both systems. Manual, semi-automatic or automatic registration can be utilized with the system 10. For purposes herein, the system 10 is described in terms of use with automatic registration. Reference is made to commonly assigned U.S. patent application Ser. No. 12/780,678, which is incorporated herein by reference, for a more detailed description of automatic registration techniques.
The automatic registration method includes moving locatable guide 86 containing position sensor 96 within a branched structure of a patient “P.” Data pertaining to locations of the position sensor 96 while the position sensor 96 is moving through the branched structure is recorded using the transmitter arrangement 80. A shape resulting from the data is compared to an interior geometry of passages of the three-dimensional model of the branched structure. And, a location correlation between the shape and the three-dimensional model based on the comparison is determined.
In addition to the foregoing, the software of the system 10 identifies non-tissue space (e.g. air filled cavities) in the three-dimensional model. Thereafter, the software records position data of the position sensor 96 of the locatable guide 86 as the locatable guide 86 is moved through one or more lumens of the branched structure. Further, the software aligns an image representing a location of the locatable guide 86 with an image of the three-dimensional model based on the recorded position data and an assumption that the locatable guide 86 remains located in non-tissue space in the branched structure.
Once in place in the patient “P,” a screen 93 will be displayed by the software on the monitoring equipment 74 (
Starting with the locatable guide 86, and specifically the position sensor 96 approximately 3-4 cm above the main carina, as viewed through the bronchoscope 72, the bronchoscope 72 is advanced into both the right and left lungs to, for example, the fourth generation of the lung passages. By traversing these segments of the lungs, sufficient data is collected as described above such that registration can be accomplished.
Now that the targets have been identified, the pathway planned, the bronchoscope 72 including locatable guide 86 inserted into the patient “P,” and the virtual bronchoscopy image registered with the image data of the bronchoscope 72, the system 10 is ready to navigate the position sensor 96 to the target 68 within the patient's lungs. The computer 80 provides a display similar to that shown in
Operation of the system 10 to treat target tissue is described with reference to
In some cases the target tissue may be directly accessed from within the lumen (such as for the treatment of the endobronchial wall for COPD, Asthma, lung cancer, etc.), however in other instances, the target is not in direct contact with the BT and use of the locatable guide alone does not achieve access to the target. Additional access tools may be required to cross the lumen and access the target tissue (such as for the treatment of disease within the parenchyma).
Final localization and confirmation of the locatable guide or access tool with extended working channel may be performed with imaging and/or navigational guidance (this may include the same or different combinations of imaging and navigation techniques listed above).
Once the locatable guide 86 or an additional access tool has successfully been navigated to the target 68 location, the locatable guide 86 or access tool may be removed, leaving the extended working channel 90 in place as a guide channel for a biopsy tool 84 to the target 68 location (
Once the locatable guide 86 has successfully been navigated to the target 68 location, the locatable guide 86 may be removed, leaving the extended working channel 90 in place as a guide channel for bringing a tool 84 to the target 68 location (
If it is determined that the target 68 requires treatment (e.g., ablation), the assembly 12 including the ablation catheter 14 may be positioned through the bronchoscope 72 and the extended working channel 90 to enable treatment. Placement of the assembly may occur after the extended working channel 90 has been navigated to the target 68, or the extended working channel 90 may be navigated with the assembly 12 to reach the target 68. This second option may require a sensor providing 6 DOF positioning within either the extended working channel 90 or the assembly 12. As noted above, the braided configuration of the outer conductor 48 and the conductive layer 51 of the balun 52 in combination with the lumen configurations depicted in
In embodiments, the target tissue “T” may be pierced or penetrated to allow placement of the distal radiating section 42 within the target 68 (e.g., centered within the mass for treatment). For example, a guide wire, piercing tool, a biopsy tool 84 or the distal end 21 of the assembly 12 (described with reference to
One or more imaging modalities may be utilized to confirm that the ablation catheter 14 has been properly positioned (e.g. within the target 68.) For example, computer tomography (CT), ultrasound, fluoroscopy, and other imaging modalities may be utilized individually or in combination with one another to confirm that the ablation catheter 14 has been properly positioned within the target 68. One methodology employing both CT and fluoroscopy imaging modalities is described in commonly assigned U.S. application Ser. No. 12/056,123 entitled “CT-Enhanced Fluoroscopy,” the contents of which is incorporated herein by reference.
Yet a further alternative method of ablation catheter 14 placement confirmation is disclosed herein.
The virtual fluoroscopic image and the live fluoroscopic image may be registered to one another. This may be done using, for example, one or more fiducial markers placed either prior to the CT scan and that will also appear on the fluoroscopic image, or by identifying landmarks within the physiology that may act as fiducial markers (e.g., curvature and spacing of the rib cage). The two images, the live fluoroscopic image and the static virtual fluoroscopic image provide the clinician with the ability to compare placement of the extended working channel 90 and the ablation assembly 12 with the location of the target 68. This may be done in either a side by side comparison mode as shown in
Alternatively, where the live and the virtual fluoroscopic images are registered to one another, comparison may be made by overlaying the virtual image (
Following treatment of the target 68, one of the aforementioned imaging modalities may be utilized to confirm that a suitable ablation zone has been formed around the target 68 and to determine whether additional application of energy are necessary. These steps of treating and imaging may be repeated iteratively until a determination is made that the target has been successfully ablated. Moreover, the methodology described above using the imaging modalities to confirm the extent of treatment and determine whether additional application of energy is necessary can be combined with the radiometry and temperature sensing techniques described above to both confirm what is depicted by the imaging modality and to assist in determining treatment cessation points.
In an embodiment, such as, for example, when the target 68 is relatively close to a distal end of the bronchoscope 72, the extended working channel 90 may be removed (
As noted above, temperature monitoring system 3 can be used to determine and monitor temperature of the target tissue 68, ablation zone size, etc. In embodiments, the temperature monitoring system 3 can incorporated into one or more components (e.g., software graphical interface 64) that are configured for use with the system 10.
In embodiments, placement of the extended working channel 90 and/or the ablation catheter 14 within the luminal network may accomplished without the use of the aforementioned pathway planning and pathway navigation methods. In this instance, computer tomography, ultrasound and/or fluoroscopy mat be utilized to facilitate positioning the extended working channel 90, and/or access tools and/or the ablation catheter 14 within the luminal network.
In embodiments, the distal radiating section 42 may be covered by a temperature sensitive “wax” material “W” that melts when energy is applied to the inner conductor 20, thereby absorbing heat from the distal radiating section 42 by changing phase.
Moreover, in place of fluid cooling the distal radiation section 42 may be frozen to create an ice formation therearound. When the distal radiating section is energized, the ice turns to gas which may result in high heat dissipation, which, in turn, cools the distal radiating section 42.
Further, in accordance with the instant disclosure, it may prove advantageous to utilize the ablation catheter 14 without the assembly 12. In this particular embodiment, the extended working channel 90 may be modified to provide for fluid cooling of the ablation catheter 14, for example one of the aforementioned lumen and port configurations and a closed distal tip. As can be appreciated, one or more other modifications may also have to be made to the extended working channel 90 in order for the extended working channel 90 to function as intended herein.
As can be appreciated, a result of the flexible assembly 12 including the ablation catheter 14 being inserted endobrachially is that the likelihood of pneumothoraces occurring is greatly reduced by navigating through the luminal branches of the lung. Moreover, the ability of the system 10 to create a pathway to target tissue takes the guess work out of positioning the locatable guide, the extended working channel and the assembly 12 including the ablation catheter 14.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, one or modifications may be made in the way of device delivery and placement; device cooling and antenna buffering; and sensor feedback. The following are a variety of non-limiting examples of such modifications considered within the scope of the present disclosure.
I. Device Delivery and Placement
In accordance with the instant disclosure, various methods may be utilized to deliver the ablation catheter 14 and/or the extended working channel 90/190 into a desired location in the target tissue 68.
For example, to address the occurrence of bleeding within the patient as a result of biopsy or ablation, the bronchoscope may be employed to create tamponade; that is, the bronchoscope can be wedged into the bronchus to stop the bleeding at points the bronchoscope can reach. However, in accordance with the instant disclosure, the extended working channels 90/190 could be navigated to the target 68 and one or more expandable members may be provided on the extended working channels 90/190 to create tamponade. The expandable member, e.g., a balloon, can be inflated to stop bleeding at these remote locations.
Specifically,
In the embodiment where the balloon “B” is provided on the extended working channel 90, one or more lumens may be provided on the extended working channel 90 and may be in fluid communication with the balloon “B” to provide one or more suitable fluids from the fluid source 32 to the balloon “B” to move the balloon “B” from the inflated configuration to the deflated configuration (and vice versa). Moreover, in this embodiment, the balloon “B” may be configured to control local lung properties which change with respiration. For example, the relative permittivity of deflated lung tissue at 2450 MHz is 48 and the relative permittivity of inflated lung tissue at the same frequency is 20; this large permittivity range makes it difficult to tune an antenna to a single frequency. It has been found through empirical testing that by adding the balloon “B,” the lung can be locally isolated during an inflated or deflated state to produce one or more desired properties, e.g., electrical and thermal. Specifically, thermal conductivity changes with inflation and deflation of the lungs. For example, if local respiration was stopped with the lung inflated and the ablation catheter 14 was matched to the target 68 with a relative permittivity of 45, heating can be focused thermally and electrically to the target 68. Likewise, if the lung were fixed in a deflated configuration, more lung tissue could be thermally treated to produce additional margin around the target 68.
One or more lumens (not shown) may be provided on the ablation catheter 214 and configured to receive one or more suitable fluids from the fluid source 32 to move the balun 252 between the deflated and inflated configurations, see
In use, water may be provided to the extended working channel 390 to move the needle 325 to the extended configuration for penetrating tissue; this may be done prior to energizing the distal radiating section 42 and/or when the distal radiating section 42 is energized. Thus, the cooling water loop serves a dual purpose (cooling of the distal radiating section and extension of the needle 325) and may eliminate the need for a separate push/pull member or sheath.
The electrode 492 may be in electrical communication with the energy source 16 via one or more leads or wires 493 that extend within the extended working channel 490. The electrode 492 may be configured for monopolar operation. A return pad (not shown) may be positioned on a patient and utilized as a return electrode. Alternatively, a second electrode (not shown) can be provided on the extended working channel 490 to create a bipolar electrode configuration. In use, after tissue has been ablated, the upright extensions 494a, 494 may be utilized to transmit microwave energy (or RF) to neighboring tissue. After the tissue has been treated, the upright extensions 494a, 494b may be utilized to scrape the electrosurgically treated tissue. As can be appreciated, having the electrode 492 on the extended working channel 490, allows a user to treat tissue with the electrode 492 while leaving ablation catheter 14 in place within the extended working channel 490.
II. Device Cooling and Antenna Buffering
The following embodiments are configured to protect a patient from unintended heating from the coaxial cable 36 and/or the distal radiating section 42 and/or configured to provide dielectric buffering to the distal radiating section 42.
A partition 511 is provided within the housing 523 adjacent the distal end of the assembly 512 to provide a chamber 514 that is configured to isolate the distal radiating section 542 from the rest of the coaxial cable 536. A dielectric (e.g. ceramic, hydrogel, etc.) 513 is provided within the chamber 514 to cover the distal radiating section 542 and is configured to cool the distal radiating section 542 and the inner conductor 540 when contacted by fluid being transmitted through the lumens 519a, 519c and into contact with the partition 511. In accordance with the instant disclosure, the dielectric 513 is capable of withstanding heat without changing properties to buffer the distal radiating section 542 and create a separate active cooling system around the coaxial cable 536. This reduces, if not eliminates, phase changes around the distal radiating section 542 during activation thereof and may reduce the active cooling requirements on the coaxial cable 536.
In embodiments, the extended working channel 990 may include a fluid return port and a corresponding third lumen that is configured to provide suction for suctioning the cooling fluid dispensed from the extended working channel 990; this may provide a user with the ability to perform a Bronchoalveolar Lavage (BAL) at the end of the microwave ablation procedure, i.e., by stopping fluid flow and sucking the fluid back to retrieve one or more tissue samples.
Alternatively, a plurality of thermally conductive fins 1323 (
III. Sensor Feedback
The following embodiments are configured to provide sensor and/or visual feedback to the system 10 or physician relating device placement (e.g., the extended working channel 90/190, the catheter assembly 12 and/or the ablation catheter 14), tissue environment, ablation progress, device performance, safety, etc.
In accordance with the instant disclosure, one or more feedback mechanisms may be utilized with the instant disclosure. For example,
In embodiments, the fiducial markers may be formed from a shape memory alloy “SM.” In this embodiment, the fiducial markers “SM” are configured to change shape when heated to a predetermined temperature. Additionally or alternatively, the fiducial markers may be formed from poloxamers “PM.” Poloxamers can be transformed from liquid to solid using energy from the distal radiating section of the ablation catheter, e.g., distal radiating section 42. Once in the body, the fiducial markers “PM” cool to body temp and transform back to liquid and are dissolved in the bloodstream. In solid form, the fiducial markers “PM” may be visible under CT, ultrasound, and other imaging modalities to reveal the real time growth of the ablation zone “AZ.”
In embodiments, the electrodes 1641 can be utilized to capture dielectric measurements of the surrounding tissue to ensure placement in tumor tissue. The amount and type of buffering of the distal radiating section 1642 will play a role in how well the electrodes 1641 can capture these measurements. With either of the RF or dielectric measurement types, a controller 17 (or another system 23, e.g., a laptop) connected to the ablation catheter 1614 will be needed to capture and analyze the data to interpret to the user. After the data is analyzed, the controller 17 provides the relevant information to a user, e.g., on a display 37.
In embodiments, the controller 17 may be configured to perform S-parameter (
In embodiments, one or more sensor configurations may be utilized with the system 10. For example, a hydration sensor “HS” (see
Moreover, one or more fiber optic cables “FC” may through the extended working channel 90 for positioning adjacent to target tissue for providing a visual perspective of the target tissue to a clinician. Alternately, the fiber optic cable “FC” may be provided adjacent to the distal radiating section 42 (see
In embodiments, one or more chemical sensor “CS” may be configured to detect one or ore chemicals of tissue prior to, during or after activation of the distal radiating section 42 (see
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a continuation of U.S. patent application Ser. No. 13/836,203, now U.S. Pat. No. 9,247,992, filed Mar. 15, 2013, entitled “MICROWAVE ABLATION CATHETER AND METHOD OF UTILIZING THE SAME,” which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/680,555 filed on Aug. 7, 2012 by Brannan et al.; U.S. Provisional Patent Application Ser. No. 61/783,921 filed on Mar. 14, 2013 by Ladtkow et al.; U.S. Provisional Patent Application Ser. No. 61/784,048 filed on Mar. 14, 2013 by Ladtkow et al.; U.S. Provisional Patent Application Ser. No. 61/784,176 filed on Mar. 14, 2013 by Ladtkow et al.; U.S. Provisional Patent Application Ser. No. 61/784,297 filed on Mar. 14, 2013 by Ladtkow et al.; and U.S. Provisional Patent Application Ser. No. 61/784,407 filed on Mar. 14, 2013 by Ladtkow et al., the entire contents of each being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D223367 | Kountz | Apr 1972 | S |
D263020 | Rau, III | Feb 1982 | S |
D266842 | Villers et al. | Nov 1982 | S |
D278306 | McIntosh | Apr 1985 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
5301687 | Wong et al. | Apr 1994 | A |
5370644 | Langberg | Dec 1994 | A |
D354218 | Van de Peer | Jan 1995 | S |
5545137 | Rudie et al. | Aug 1996 | A |
5603697 | Grundy et al. | Feb 1997 | A |
5624392 | Saab | Apr 1997 | A |
5693082 | Warner et al. | Dec 1997 | A |
5741249 | Moss et al. | Apr 1998 | A |
5974343 | Brevard et al. | Oct 1999 | A |
5980505 | Wilson | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
5995875 | Blewett et al. | Nov 1999 | A |
6014581 | Whayne et al. | Jan 2000 | A |
D424693 | Pruter | May 2000 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6061551 | Sorrells et al. | May 2000 | A |
6106524 | Eggers et al. | Aug 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6139527 | Laufer et al. | Oct 2000 | A |
6186978 | Samson et al. | Feb 2001 | B1 |
6188355 | Gilboa | Feb 2001 | B1 |
6210367 | Carr | Apr 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6277113 | Berube | Aug 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6355016 | Bagaoisan et al. | Mar 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6398781 | Goble et al. | Jun 2002 | B1 |
6485486 | Trembly et al. | Nov 2002 | B1 |
6496737 | Rudie et al. | Dec 2002 | B2 |
6496738 | Carr | Dec 2002 | B2 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6569160 | Goldin et al. | May 2003 | B1 |
6599288 | Maguire et al. | Jul 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6635055 | Cronin | Oct 2003 | B1 |
6645234 | Evans et al. | Nov 2003 | B2 |
6652515 | Maguire et al. | Nov 2003 | B1 |
6676657 | Wood | Jan 2004 | B2 |
D487039 | Webster et al. | Feb 2004 | S |
6706040 | Mahon et al. | Mar 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6740108 | Just et al. | May 2004 | B1 |
6770070 | Balbierz | Aug 2004 | B1 |
6780183 | Jimenez, Jr. et al. | Aug 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
6869431 | Maguire et al. | Mar 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6932776 | Carr | Aug 2005 | B2 |
6997925 | Maguire et al. | Feb 2006 | B2 |
7004938 | Ormsby et al. | Feb 2006 | B2 |
7047068 | Haissaguerre | May 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7089063 | Lesh et al. | Aug 2006 | B2 |
7113832 | Longo | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
7197356 | Carr | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7200445 | Dalbec et al. | Apr 2007 | B1 |
D541938 | Kerr et al | May 2007 | S |
7233820 | Gilboa | Jun 2007 | B2 |
7261001 | Heijnsdijk et al. | Aug 2007 | B2 |
7263398 | Carr | Aug 2007 | B2 |
7285116 | de la Rama et al. | Oct 2007 | B2 |
7294125 | Phalen et al. | Nov 2007 | B2 |
7300436 | Penny et al. | Nov 2007 | B2 |
7303558 | Swanson | Dec 2007 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
7402168 | Sanderson et al. | Jul 2008 | B2 |
7410486 | Fuimaono et al. | Aug 2008 | B2 |
D576932 | Strehler | Sep 2008 | S |
7467015 | van der Weide | Dec 2008 | B2 |
7507229 | Hewitt et al. | Mar 2009 | B2 |
D594736 | Esjunin | Jun 2009 | S |
D594737 | Kelly et al. | Jun 2009 | S |
7559916 | Smith et al. | Jul 2009 | B2 |
7608056 | Kennedy, II | Oct 2009 | B2 |
7611508 | Yang et al. | Nov 2009 | B2 |
D606203 | Husheer et al. | Dec 2009 | S |
D613412 | DeCarlo | Apr 2010 | S |
7713259 | Gosiengfiao et al. | May 2010 | B2 |
7734330 | Carr | Jun 2010 | B2 |
7769469 | Carr et al. | Aug 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
D634010 | DeCarlo | Mar 2011 | S |
7901348 | Soper et al. | Mar 2011 | B2 |
7921855 | Danek et al. | Apr 2011 | B2 |
7933660 | Carr | Apr 2011 | B2 |
7993351 | Worley et al. | Aug 2011 | B2 |
7998062 | Gilboa | Aug 2011 | B2 |
8102416 | Ito et al. | Jan 2012 | B2 |
8152795 | Farr et al. | Apr 2012 | B2 |
8182466 | Stehr et al. | May 2012 | B2 |
8206380 | Lenihan | Jun 2012 | B2 |
8226566 | Nita | Jul 2012 | B2 |
8289551 | Wu | Oct 2012 | B2 |
8292881 | Brannan et al. | Oct 2012 | B2 |
8340740 | Holzer et al. | Dec 2012 | B2 |
D681810 | DeCarlo | May 2013 | S |
8494612 | Vetter et al. | Jul 2013 | B2 |
8655454 | Prakash et al. | Feb 2014 | B2 |
8795268 | Willyard | Aug 2014 | B2 |
8808281 | Emmons et al. | Aug 2014 | B2 |
8852180 | Brannan | Oct 2014 | B2 |
8906008 | Brannan et al. | Dec 2014 | B2 |
8920410 | Brannan | Dec 2014 | B2 |
8932281 | Brannan | Jan 2015 | B2 |
8945113 | Brannan et al. | Feb 2015 | B2 |
8951225 | Evard et al. | Feb 2015 | B2 |
8968290 | Brannan et al. | Mar 2015 | B2 |
8968300 | Brannan | Mar 2015 | B2 |
9017328 | Bahney | Apr 2015 | B2 |
9044254 | Ladtkow et al. | Jun 2015 | B2 |
9066681 | Arts et al. | Jun 2015 | B2 |
9168178 | Reid, Jr. et al. | Oct 2015 | B2 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020042564 | Cooper et al. | Apr 2002 | A1 |
20020049370 | Laufer et al. | Apr 2002 | A1 |
20030191451 | Gilmartin | Oct 2003 | A1 |
20040082860 | Haissaguerre | Apr 2004 | A1 |
20040097805 | Verard et al. | May 2004 | A1 |
20040133254 | Sterzer et al. | Jul 2004 | A1 |
20040176740 | Chouinard | Sep 2004 | A1 |
20050043713 | Zhou | Feb 2005 | A1 |
20050080334 | Willis | Apr 2005 | A1 |
20050215942 | Abrahamson et al. | Sep 2005 | A1 |
20050273006 | Stewart et al. | Dec 2005 | A1 |
20060009833 | Chobotov et al. | Jan 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060155270 | Hancock et al. | Jul 2006 | A1 |
20060167416 | Mathis et al. | Jul 2006 | A1 |
20060184016 | Glossop | Aug 2006 | A1 |
20060241564 | Corcoran et al. | Oct 2006 | A1 |
20060253102 | Nance et al. | Nov 2006 | A1 |
20070027385 | Brister et al. | Feb 2007 | A1 |
20070032723 | Glossop | Feb 2007 | A1 |
20070060944 | Boldenow et al. | Mar 2007 | A1 |
20070077230 | Mon | Apr 2007 | A1 |
20070088319 | Martone | Apr 2007 | A1 |
20070129717 | Brown et al. | Jun 2007 | A1 |
20070185554 | Appling et al. | Aug 2007 | A1 |
20070208301 | Evard et al. | Sep 2007 | A1 |
20070282319 | van der Weide et al. | Dec 2007 | A1 |
20070287912 | Khuri-Yakub et al. | Dec 2007 | A1 |
20080091169 | Heideman et al. | Apr 2008 | A1 |
20080147056 | van der Weide et al. | Jun 2008 | A1 |
20080208031 | Kurpad et al. | Aug 2008 | A1 |
20080208039 | Kurpad et al. | Aug 2008 | A1 |
20080228167 | Mittermeyer et al. | Sep 2008 | A1 |
20080255507 | Mushtaha | Oct 2008 | A1 |
20080262342 | Averbruch | Oct 2008 | A1 |
20080262472 | Lunn et al. | Oct 2008 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090076498 | Saadat et al. | Mar 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090187180 | Brannan | Jul 2009 | A1 |
20090222002 | Bonn et al. | Sep 2009 | A1 |
20090227861 | Ganatra et al. | Sep 2009 | A1 |
20090234220 | Maschke | Sep 2009 | A1 |
20090312754 | Lenihan et al. | Dec 2009 | A1 |
20100004631 | Zhou | Jan 2010 | A1 |
20100036369 | Hancock | Feb 2010 | A1 |
20100053015 | Willyard | Mar 2010 | A1 |
20100076424 | Carr | Mar 2010 | A1 |
20100121319 | Chu et al. | May 2010 | A1 |
20100160719 | Kassab et al. | Jun 2010 | A1 |
20100185191 | Carr et al. | Jul 2010 | A1 |
20100249754 | Griffin et al. | Sep 2010 | A1 |
20100256621 | Babkin et al. | Oct 2010 | A1 |
20100262134 | Jensen et al. | Oct 2010 | A1 |
20100268196 | Hastings et al. | Oct 2010 | A1 |
20100305559 | Brannan et al. | Dec 2010 | A1 |
20100312096 | Guttman et al. | Dec 2010 | A1 |
20110004205 | Chu et al. | Jan 2011 | A1 |
20110029049 | Vertikov et al. | Feb 2011 | A1 |
20110034913 | Brannan | Feb 2011 | A1 |
20110034917 | Brannan | Feb 2011 | A1 |
20110040300 | Brannan | Feb 2011 | A1 |
20110054458 | Behnke | Mar 2011 | A1 |
20110077634 | Brannan | Mar 2011 | A1 |
20110085720 | Averbuch | Apr 2011 | A1 |
20110118721 | Brannan | May 2011 | A1 |
20110130750 | Ormsby et al. | Jun 2011 | A1 |
20110166518 | Nguyen et al. | Jul 2011 | A1 |
20110166519 | Nguyen et al. | Jul 2011 | A1 |
20110282336 | Brannan et al. | Nov 2011 | A1 |
20110301587 | Deem et al. | Dec 2011 | A1 |
20120029359 | Sterzer et al. | Feb 2012 | A1 |
20120035603 | Lenihan | Feb 2012 | A1 |
20120065481 | Hunter et al. | Mar 2012 | A1 |
20120071822 | Romo et al. | Mar 2012 | A1 |
20120078175 | Vreeman | Mar 2012 | A1 |
20120078230 | Lowe et al. | Mar 2012 | A1 |
20120101370 | Razzaque et al. | Apr 2012 | A1 |
20120259326 | Brannan | Oct 2012 | A1 |
20120277730 | Salahieh et al. | Nov 2012 | A1 |
20130137977 | Eder | May 2013 | A1 |
20130190751 | Brannan | Jul 2013 | A1 |
20130197481 | Guo et al. | Aug 2013 | A1 |
20130197482 | Akitomo | Aug 2013 | A1 |
20130253500 | Lee et al. | Sep 2013 | A1 |
20130261617 | Podhajsky | Oct 2013 | A1 |
20130261620 | Brannan et al. | Oct 2013 | A1 |
20130289560 | DeCarlo et al. | Oct 2013 | A1 |
20130304057 | Rossetto | Nov 2013 | A1 |
20130310823 | Gelfand et al. | Nov 2013 | A1 |
20130317495 | Brannan | Nov 2013 | A1 |
20130324910 | Ohri et al. | Dec 2013 | A1 |
20130324911 | Ohri et al. | Dec 2013 | A1 |
20130338661 | Behnke, II | Dec 2013 | A1 |
20130345541 | Nau, Jr. | Dec 2013 | A1 |
20130345551 | Arts et al. | Dec 2013 | A1 |
20130345552 | Arts et al. | Dec 2013 | A1 |
20130345699 | Brannan et al. | Dec 2013 | A1 |
20140000098 | Dunning et al. | Jan 2014 | A1 |
20140005657 | Brannan et al. | Jan 2014 | A1 |
20140018668 | Zheng et al. | Jan 2014 | A1 |
20140018677 | Sharonov | Jan 2014 | A1 |
20140018793 | Sharonov | Jan 2014 | A1 |
20140024909 | Vij et al. | Jan 2014 | A1 |
20140094789 | Brannan | Apr 2014 | A1 |
20140094792 | Sharonov | Apr 2014 | A1 |
20140094793 | Sharonov | Apr 2014 | A1 |
20140094794 | Orszulak | Apr 2014 | A1 |
20140094797 | Brannan | Apr 2014 | A1 |
20140296875 | Moll et al. | Oct 2014 | A1 |
20150022342 | Will et al. | Jan 2015 | A1 |
20150065944 | Ohri et al. | Mar 2015 | A1 |
20150065964 | Ohri et al. | Mar 2015 | A1 |
20150141985 | Mayse et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
2832593 | Jul 2012 | CA |
1103807 | Jun 1995 | CN |
390937 | Mar 1924 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2415263 | Oct 1975 | DE |
2429021 | Jan 1976 | DE |
2460481 | Jun 1976 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2627679 | Jan 1977 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
3712328 | Feb 1988 | DE |
3711511 | Jun 1988 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4238263 | May 1993 | DE |
04303882 | Feb 1995 | DE |
4339049 | May 1995 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19717411 | Nov 1998 | DE |
19751108 | May 1999 | DE |
19801173 | Jul 1999 | DE |
19848540 | May 2000 | DE |
10224154 | Dec 2003 | DE |
10310765 | Sep 2004 | DE |
10328514 | Mar 2005 | DE |
102004022206 | Dec 2005 | DE |
202005015147 | Feb 2006 | DE |
102009015699 | May 2010 | DE |
0 246 350 | Nov 1987 | EP |
0 521 264 | Jan 1993 | EP |
0 556 705 | Aug 1993 | EP |
0 558 429 | Sep 1993 | EP |
0 648 515 | Apr 1995 | EP |
0 836 868 | Apr 1998 | EP |
0 882 955 | Dec 1998 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1055400 | Nov 2000 | EP |
1159926 | Mar 2003 | EP |
2147651 | Jan 2010 | EP |
2322113 | May 2011 | EP |
179 607 | Nov 1906 | FR |
1 275 415 | Nov 1961 | FR |
1 347 865 | Jan 1964 | FR |
2 235 669 | Jan 1975 | FR |
2 276 027 | Jan 1976 | FR |
2 313 708 | Dec 1976 | FR |
2 502 935 | Oct 1982 | FR |
2 517 953 | Jun 1983 | FR |
2 573 301 | May 1986 | FR |
2 862 813 | May 2005 | FR |
2 864 439 | Jul 2005 | FR |
S60108062 | Jun 1985 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Dec 1994 | JP |
H078551 | Jan 1995 | JP |
8-56955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09000492 | Jan 1997 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000107196 | Apr 2000 | JP |
2000135215 | May 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001003776 | Jan 2001 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001037775 | Feb 2001 | JP |
2001070252 | Mar 2001 | JP |
2001128990 | May 2001 | JP |
2001231870 | Aug 2001 | JP |
2002511302 | Apr 2002 | JP |
2002539887 | Nov 2002 | JP |
2008142467 | Jun 2008 | JP |
2009000528 | Jan 2009 | JP |
2010274118 | Dec 2010 | JP |
2011147758 | Aug 2011 | JP |
2011167513 | Sep 2011 | JP |
20070093068 | Sep 2007 | KR |
20100014406 | Feb 2010 | KR |
20120055063 | May 2012 | KR |
166452 | Jan 1965 | SU |
401367 | Oct 1973 | SU |
727201 | Apr 1980 | SU |
9416632 | Aug 1994 | WO |
9724074 | Jul 1997 | WO |
0010456 | Mar 2000 | WO |
0036985 | Jun 2000 | WO |
0057811 | Oct 2000 | WO |
0100114 | Jan 2001 | WO |
0167035 | Sep 2001 | WO |
0245790 | Jun 2002 | WO |
WO02061880 | Aug 2002 | WO |
2006084676 | Aug 2006 | WO |
2008068485 | Jun 2008 | WO |
2010035831 | Apr 2010 | WO |
WO-2010096419 | Aug 2010 | WO |
2011024159 | Mar 2011 | WO |
2011140087 | Nov 2011 | WO |
2011139589 | Nov 2011 | WO |
Entry |
---|
International Search Report corresponding to PCT/US2013/052166, completed Nov. 15, 2013 and mailed Nov. 18, 2013; (12 pp). |
International Search Report corresponding to PCT/US2013/052182, completed Nov. 6, 2013 and mailed Nov. 6, 2013; (14 pp). |
International Search Report corresponding to PCT/US2013/052187, completed Nov. 4, 2013 and mailed Nov. 4, 2013; (19 pp). |
International Search Report corresponding to PCT/US2013/052196, completed Nov. 11, 2013 and mailed Nov. 11, 2013; (21 pp). |
Alexander et al., “Magnetic Resonance Image-Directed Stereotactic Neurosurgery: Use of Image Fusion with Computerized Tomography to Enhance Spatial Accuracy” Journal Neurosurgery, 83 (1995), pp. 271-276. |
Anderson et al., “A Numerical Study of Rapid Heating for High Temperature Radio Frequency Hyperthermia” International Journal of Bio-Medical Computing, 35 (1994), pp. 297-307. |
Anonymous. (1999) Auto Suture MIBB Site Marker: Single Use Clip Applier, United States Surgical (Product Instructions), 2 pages. |
Anonymous. (2001) Disposable Chiba Biopsy Needles and Trays, Biopsy and Special Purpose Needles Cook Diagnostic and Interventional Products Catalog (products list), 4 pages. |
Anonymous. (1987) Homer Mammalok.TM. Breast Lesion Needle/Wire Localizer, Namic.RTM. Angiographic Systems Division, Glens Falls, New York, (Hospital products price list), 4 pages. |
Anonymous. (1999) Mibb Site Marker, United States Surgical (Sales brochure), 4 pages. |
Anonymous. Blunt Tubes with Finished Ends. Pointed Cannula, Popper & Sons Biomedical Instrument Division, (Products Price List), one page, Jul. 19, 2000. |
Anonymous. Ground Cannulae, ISPG, New Milford, CT, (Advertisement) one page, Jul. 19, 2000. |
B. Levy M.D. et al., “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
B. Levy M.D. et al., “Update on Hysterectomy New Technologies and Techniques” OBG Management, Feb. 2003. |
B. Levy M.D., “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
B. F. Mullan et al., (May 1999) “Lung Nodules: Improved Wire for CT-Guided Localization,” Radiology 211:561-565. |
B. T. Heniford M.D. et al., “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Bergdahl et al., “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” Journal of Neurosurgery 75:1 (Jul. 1991), pp. 148-151. |
Bulletin of the American Physical Society, vol. 47, No. 5, Aug. 2002, p. 41. |
C. F. Gottlieb et al., “Interstitial Microwave Hyperthermia Applicators having Submillimetre Diameters”, Int. J. Hyperthermia, vol. 6, No. 3, pp. 707-714, 1990. |
C. H. Durney et al., “Antennas for Medical Applications”, Antenna Handbook: Theory Application and Design, p. 24-40, Van Nostrand Reinhold, 1988 New York, V.T. Lo, S.W. Lee. |
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure.TM. Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas MedicalCenter,Chartotte, NC 2003. |
Carus et al., “Initial Experience With the LigaSure.TM. Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Chicharo et al., “A Sliding Goertzel Algorithm” Aug. 1996 DOS pp. 283-297 Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 52, No. 3. |
Chou, C.K., (1995) “Radiofrequency Hyperthermia in Cancer Therapy,” Chapter 941n Biologic Effects of Nonionizing Electromagnetic Fields, CRC Press, Inc., pp. 1424-1428. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSureTM” Diseases of the Colon & Rectum, vol. 46, No. 1, Jan. 2003. |
Cosman et al., “Methods of Making Nervous System Lesions” In William RH, Rengachary SS (eds): Neurosurgery, New York: McGraw-Hill, vol. 111, (1984), pp. 2490-2499. |
Cosman et al., “Radiofrequency Lesion Generation and its Effect on Tissue Impedence”, Applied Neurophysiology, 51:230-242, 1988. |
Cosman et al., “Theoretical Aspects of Radiofrequency Lesions in the Dorsal Root Entry Zone” Neurosurgery 15: (1984), pp. 945-950. |
Crawford et al., “Use of the LigaSure.TM. Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999, vol. 1, Issue 4, pp. 10-17. |
Dulemba et al., “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford, “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
E. David Crawford, “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Esterline, “Light Key Projection Keyboard” Advanced Input Systems, located at: <http://www.advanced-input.com/lightkey> 2002. |
Esterline Product Literature, “Light Key: Visualize a Virtual Keyboard. One With No Moving Parts”, Nov. 1, 2003; 4 pages. |
Geddes et al., “The Measurement of Physiologic Events by Electrical Impedence” Am. J. MI, Jan. Mar. 1964, pp. 16-27. |
Goldberg et al., “Image-guided Radiofrequency Tumor Ablation: Challenges and Opportunities—Part I”, (2001) J Vasc. Interv. Radiol, vol. 12, pp. 1021-1032. |
Goldberg et al. (1995) “Saline-enhanced RF Ablation: Demonstration of Efficacy and Optimization of Parameters”, Radiology, 197(P): 140 (Abstr). |
Goldberg et al., “Tissue Ablation with Radiofrequency: Effect of Probe Size, Gauge, Duration, and Temperature on Lesion Volume” Acad Radio (1995) vol. 2, No. 5, pp. 399-404. |
H. Schwarzmaier et al., “Magnetic Resonance Imaging of Microwave Induced Tissue Heating” Dept. of Laser Medicine & Dept. of Diagnostic Radiology; Heinrich-Heine-University, Duesseldorf, Germany; Dec. 8, 1994; pp. 729-731. |
Heniford et al., “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2001) 15:799-801. |
Herman at al., “Laparoscopic Intestinal Resection With the LigaSureTM Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002. |
Humphries Jr. et al., “Finite.cndot.Element Codes to Model Electrical Heating and Non.cndot.LInear Thermal Transport in Biological Media”, Proc. ASME HTD-355, 131 (1997). |
Ian D. McRury et al., The Effect of Ablation Sequence and Duration on Lesion Shape Using Rapidly Pulsed Radiofrequency Energy Through Electrodes, Feb. 2000, Springer Netherlands, vol. 4; No. 1, pp. 307-320. |
Jarrett et al., “Use of the LigaSureTM Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Johnson et al., “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature, Jan. 2004. |
Johnson, “Evaluation of the LigaSureTM Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinic La Congress Poster (2000). |
Johnson et al., “New Low-Profile Applicators for Local Heating of Tissues”, IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 1, Jan. 1984, pp. 28-37. |
Johnson, “Use of the LigaSureTM Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Joseph G. Andriole M.D. et al., “Biopsy Needle Characteristics Assessed in the Laboratory”, Radiology 148: 659-662, Sep. 1983. |
U.S. Appl. No. 08/483,742, filed Jun. 7, 1995; Roger A. Stem. |
Search Report dated Nov. 4, 2015 received with Office Action dated Nov. 16, 2015 issued in Chinese Patent Application No. 201380041763.4 by the Chinese Patent Office and English translation (4 pages). |
Joseph Ortenberg, “LigaSureTM System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Kennedy et al., “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878. |
Kopans, D.B. et al., (Nov. 1985) “Spring Hookwire Breast Lesion Localizes Use with Rigid-Compression. Mammographic Systems,” Radiology 157(2):537-538. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
LigaSureTM Vessel Sealing System, the Seal of Confidence in General , Gynecologic, Urologic, and Laparaoscopic Surgery, Sales/Product Literature, Jan. 2004. |
Livraghi et al., (1995) “Saline-enhanced RF Tissue Ablation in the Treatment of Liver Metastases”, Radiology, p. 140 (Abstr). |
Lyndon B. Johnson Space Center, Houston, Texas, “Compact Directional Microwave Antenna for Localized Heating,” NASA Tech Briefs, Mar. 2008. |
M. A. Astrahan, “A Localized Current Field Hyperthermia System for Use with 192-Iridium Interstitial Implants” Medical Physics. 9(3), May/Jun. 1982. |
Magdy F. Iskander et al., “Design Optimization of Interstitial Antennas”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, Feb. 1989, pp. 238-246. |
McGahan et al., (1995) “Percutaneous Ultrasound-guided Radiofrequency Electrocautery Ablation of Prostate Tissue in Dogs”, Acad Radiol, vol. 2, No. 1: pp. 61-65. |
McLellan et al., “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, DC. |
MDTECH product literature (Dec. 1999) “FlexStrand”: product description, 1 page. |
MDTECH product literature (Mar. 2000) I'D Wire: product description, 1 page. |
Medtrex Brochure “The O.R. Pro 300” 1 page, Sep. 1998. |
Michael Choti, “Abdominoperineal Resection with the LigaSureTM Vessel Sealing System and LigaSureTM Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003. |
Muller et al., “Extended Left Hemicolectomy Using the LigaSureTM Vessel Sealing System” Innovations That Work. LJ, Sep. 1999. |
Murakami, R. et al., (1995). “Treatment of Hepatocellular Carcinoma: Value of Percutaneous Microwave Coagulation,” American Journal of Radiology (AJR) 164:1159-1164. |
Ni Wei et al., “A Signal Processing Method for the Coriolis Mass Flowmeter Based on a Normalized . . . ” Journal of Applied Sciences.cndot.Yingyong Kexue Xuebao, Shangha CN, vol. 23, No. 2:(Mar. 2005); pp. 160-184. |
Ogden, “Goertzel Alternative to the Fourier Transform” Jun. 1993 pp. 485-487 Electronics World; Reed Business Publishing, Sutton, Surrey, BG, vol. 99, No. 9, 1687. |
Olsson M.D. et al., “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Organ, L W., “Electrophysiologic Principles of Radiofrequency Lesion Making” Appl. Neurophysiol, vol. 39: pp. 69-76 (1976/77). |
P.R. Stauffer et al., “Interstitial Heating Technologies”, Thermoradiotheray and Thermochemotherapy (1995) vol. I, Biology, Physiology, Physics, pp. 279-320. |
Palazzo et al., “Randomized clinical trial of LigaSureTM versus open haemorrhoidectomy” British Journal of Surgery 2002,89,154-157 “Innovations in Electrosurgery” Sales/Product Literature; Dec. 31, 2000. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001, pp. 236-237. |
Peterson et al., “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
R. Gennari et al., (Jun. 2000) “Use of Technetium-99m-Labeled Colloid Albumin for Preoperative and Intraoperative Localization of Non palpable Breast Lesions,” American College of Surgeons. 190(6):692-699. |
Valleylab Brochure, “Reducing Needlestick Injuries in the Operating Room” 1 page, Mar. 2001. |
Reidenbach, (1995) “First Experimental Results with Special Applicators for High-Frequency Interstitial Thermotherapy”, Society Minimally Invasive Therapy, 4(Suppl 1):40 (Abstr). |
Richard Wolf Medical Instruments Corp. Brochure, “Kleppinger Bipolar Forceps & Bipolar Generator” 3 pages, Jan. 1989. |
Rothenberg et al., “Use of the LigaSureTM Vessel Sealing System in Minimally Invasive Surgery in Children” Int'L Pediatric Endosurgery Group (I PEG) 2000. |
Sayfan et al., “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery, vol. 234, No. 1, Jul. 2001, pp. 21-24. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Sigel et al., “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Solbiati et al., (2001) “Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients”, Radiology, vol. 221, pp. 159-166. |
Solbiati et al. (1995) “Percutaneous US-guided RF Tissue Ablation of Liver Metastases: Long-term Follow-up”, Radiology, pp. 195-203. |
Strasberg et al., “Use of a Bipolar Vassel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sugita et al., “Bipolar Coagulator with Automatic Thermocontrol” J. Neurosurg., vol. 41, Dec. 1944, pp. 777-779. |
Sylvain Labonte et al., “Monopole Antennas for Microwave Catheter Ablation”, IEEE Trans. on Microwave Theory and Techniques, vol. 44, No. 10, pp. 1832-1840, Oct. 1995. |
T. Matsukawa et al., “Percutaneous Microwave Coagulation Therapy in Liver Tumors”, Acta Radiologica, vol. 38, pp. 410-415, 1997. |
T. Seki et al., (1994) “Ultrasonically Guided Percutaneous Microwave Coagulation Therapy for Small Hepatocellular Carcinoma,” Cancer 74(3):817.cndot.825. |
Urologix, Inc.—Medical Professionals: TargisTM Technology (Date Unknown). “Overcoming the Challenge” located at: <http://www.urologix.com|medicaUtechnology.html > Nov. 18, 1999; 3 pages. |
Urrutia et al., (1988). “Retractable-Barb Needle for Breast Lesion Localization: Use in 60 Cases,” Radiology 169 (3):845-847. |
Valleylab Brochure, “Valleylab Electroshield Monitoring System” 2 pages, Nov. 1995. |
ValleyLab Brochure, “Electosurgery: A Historical Overview”, Innovations in Electrosurgery, 1999. |
Vallfors et al., “Automatically Controlled Bipolar Electrocoagulation—‘COA-COMP’” Neurosurgical Review 7:2-3 (1984) pp. 187-190. |
Scott Helton, “LigaSureTM Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature 1999. |
Wald et al., “Accidental Burns”, JAMA, Aug. 16, 1971, vol. 217, No. 7, pp. 916-921. |
Walt Boyles, “Instrumentation Reference Book”, 2002, Butterworth-Heinemann, pp. 262-264. |
Wonnell et al., “Evaluation of Microwave and Radio Frequency Catheter Ablation in a Myocardium-Equivalent Phantom Model”, IEEE Transactions on Biomedical Engineering, vol. 39, No. 10, Oct. 1992; pp. 1086-1095. |
U.S. Appl. No. 08/136,098, filed Oct. 14, 1993; Roger A. Stem. |
Extended European Search Report corresponding to European Patent Application No. 13827919.5, completed Apr. 1, 2016 and mailed Apr. 11, 2016 (9 pp). |
Extended European Search Report corresponding to European Patent Application No. 138283601, completed Apr. 1, 2016 and mailed Apr. 11, 2016; (9 pp). |
Extended European Search Report corresponding to European Patent Application No. 13827441.0, completed Apr. 5, 2016 and mailed Apr. 14, 2016; (9 pp). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Application No. 201380041763.4; dated May 26, 2016. |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041763.4; dated Nov. 21, 2016 (8 pages) along with an English language translation (9 pages). |
Office Action issued by the Australian Government, IP Australia, corresponding to Australian Patent Application No. 2013299989 dated Nov. 22, 2016 (3 pages). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041778.0; dated Oct. 8, 2016 (9 pages) along with an English language translation (7 pages). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041794.X; dated Aug. 25, 2016 with English translation (15 pages). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041783.1; dated Nov. 3, 2016 (7 pages) along with an English language translation (6 pages). |
Office Action issued by the European Patent Office corresponding to European Patent Application No. 13827441.0; dated Mar. 30, 2017 (4 pages). |
Office Action issued by the European Patent Office, corresponding to European Patent Application No. 13828360.1; dated Mar. 30, 2017 (3 pages). |
Office Action issued by the European Patent Office, corresponding to European Patent Application No. 13827919.5, dated Mar. 28, 2017 (3 pages). |
Office Action issued by the Japanese Patent Office corresponding to Japanese Patent Application No. 2015-526563, dated Apr. 13, 2017 (4 pages) along with an English language translation (5 pages). |
Office Action issued by the Japanese Patent Office corresponding to Japanese Patent Application No. 2015-526562, dated Apr. 18, 2017 (3 pages) along with an English language translation (4 pages). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041794.X; dated May 3, 2017 (7 pages) along with an English language translation (6 pages). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041778.0; dated May 16, 2017 (9 pages) along with an English language translation (8 pages). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041763.4; dated May 25, 2017 (7 pages) along with an English language translation (11 pages). |
Office Action issued by the Japanese Patent Office corresponding to Japanese Patent Application No. 12015-526564, dated May 30, 2017 (6 pages) along with an English language translation (6 pages). |
Office Action issued by the State Intellectual Property Office of the People's Republic of China corresponding to Chinese Patent Application No. 201380041783.1; dated Jul. 5, 2017 (5 pages) along with an English language translation (4 pages). |
Chinese Office Action for application No. 201380041778.0 dated Nov. 15, 2017 (15 pages). |
Chinese Office Action for application No. 201380041794.X dated Nov. 22, 2017 (6 pages). |
European Examination Report for application No. 13 827 919.5 dated Sep. 18, 2017 (4 pages). |
European Office Action for application No. 13 828 360.1 dated Sep. 21, 2017. |
Australian Examination Report for application No. 2013299990 dated Oct. 6, 2017 |
Japanese Office Action for Application No. 2015-5265623 dated Dec. 26, 2017 with English translation (7 pages). |
Japanese Office Action for Application No. 2015-526564 dated Jan. 16, 2018 with English Translation (13 pages). |
Extended European Search Report for application No. 17199455.1 dated Mar. 2, 2018, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20160038234 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61680555 | Aug 2012 | US | |
61783921 | Mar 2013 | US | |
61784048 | Mar 2013 | US | |
61784176 | Mar 2013 | US | |
61784297 | Mar 2013 | US | |
61784407 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13836203 | Mar 2013 | US |
Child | 14920555 | US |