1. Technical Field
The present disclosure relates generally to microwave antennas used in tissue ablation procedures. More particularly, the present disclosure is directed to a microwave antenna having a coolant assembly for circulating a dielectric coolant fluid through the microwave antenna.
2. Background of Related Art
Treatment of certain diseases requires destruction of malignant tissue growths (e.g., tumors). It is known that tumor cells denature at elevated temperatures that are slightly lower than temperatures injurious to surrounding healthy cells. Therefore, known treatment methods, such as hyperthermia therapy, heat tumor cells to temperatures above 41° C., while maintaining adjacent healthy cells at lower temperatures to avoid irreversible cell damage. Such methods involve applying electromagnetic radiation to heat tissue and include ablation and coagulation of tissue. In particular, microwave energy is used to coagulate and/or ablate tissue to denature or kill the cancerous cells.
Microwave energy is applied via microwave ablation antennas that penetrate tissue to reach tumors. There are several types of microwave antennas, such as monopole and dipole in which microwave energy radiates perpendicularly from the axis of the conductor. A monopole antenna includes a single, elongated microwave conductor whereas a dipole antenna includes two conductors. In a dipole antenna, the conductors may be in a coaxial configuration including an inner conductor and an outer conductor separated by a dielectric portion. More specifically, dipole microwave antennas may have a long, thin inner conductor that extends along a longitudinal axis of the antenna and is surrounded by an outer conductor. In certain variations, a portion or portions of the outer conductor may be selectively removed to provide more effective outward radiation of energy. This type of microwave antenna construction is typically referred to as a “leaky waveguide” or “leaky coaxial” antenna.
Conventional microwave antennas have a narrow operational bandwidth, a wavelength range at which optimal operational efficiency is achieved, and hence, are incapable of maintaining a predetermined impedance match between the microwave delivery system (e.g., generator, cable, etc.) and the tissue surrounding the microwave antenna. More specifically, as microwave energy is applied to tissue, the dielectric constant of the tissue immediately surrounding the microwave antenna decreases as the tissue is cooked. The drop causes the wavelength of the microwave energy being applied to tissue to increase beyond the bandwidth of the antenna. As a result, there is a mismatch between the bandwidth of conventional microwave antenna and the microwave energy being applied. Thus, narrow band microwave antennas may detune hindering effective energy delivery and dispersion.
According to one aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a connection hub having cable connector coupled to the feedline, an inlet fluid port and an outlet fluid port. The connection hub includes a bypass tube configured to provide for flow of the coolant fluid from the cable connector directly to the outlet fluid port.
According another aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a three-branch connection hub including a first branch having a cable connector coupled to the feedline at a junction point, a second branch having an outlet port, a third branch having an inlet port, and a bypass tube in fluid communication with a proximal end of the first branch and the outlet port, wherein one end of the bypass tube is in proximity with the junction point to provide for flow of the coolant fluid therethrough.
A method for manufacturing a microwave antenna assembly is also contemplated by the present disclosure. The antenna assembly includes a feedline including an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The method includes the step of enclosing the feedline and the radiating portion in a sheath to define a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The method also includes the step of coupling a three-branch connection hub to the feedline and the sheath. The three-branch connection hub including a first branch having a cable connector coupled to the feedline at a junction point, a second branch having an outlet port, a third branch having an inlet port. A step of interconnecting a proximal end of the first branch and the outlet port via a bypass tube is also provided by the method. One end of the bypass tube is in proximity with the junction point to provide for flow of the coolant fluid therethrough
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
Particular embodiments of the present disclosure will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
The antenna assembly 12 includes a radiating portion 18 connected by feedline 20 (or shaft) to the cable 16. More specifically, the antenna assembly 12 is coupled to the cable 16 through a connection hub 22 having an outlet fluid port 30 and an inlet fluid port 32 that are connected in fluid communication with a sheath 38. The sheath 38 encloses radiating portion 18 and feedline 20 allowing a coolant fluid 37 to circulate from ports 30 and 32 around the antenna assembly 12. The ports 30 and 32 are also coupled to a supply pump 34 that is, in turn, coupled to a supply tank 36 via supply line 86. The supply pump 34 may be a peristaltic pump or any other suitable type. The supply tank 36 stores the coolant fluid 37 and in one embodiment, may maintain the fluid at a predetermined temperature. More specifically, the supply tank 36 may include a coolant unit that cools the returning liquid from the antenna assembly 12. In another embodiment, the coolant fluid 37 may be a gas and/or a mixture of fluid and gas.
The dipole antenna 40 includes a proximal portion 42 and a distal portion 44 interconnected at a feed point 46. The distal portion 44 and the proximal portion 42 may be either balanced (e.g., of equal lengths) or unbalanced (e.g., of unequal lengths). The proximal portion 42 is formed from the inner conductor 50 and the inner insulator 52 which are extended outside the outer conductor 56, as shown best in
With reference to
Since the radiating portion 18 and the feedline 20 are in direct contact with the coolant fluid 37 these components of the assembly 12 are sealed by a protective sleeve 63 (
Assembly 12 also includes a tip 48 having a tapered end 24 that terminates, in one embodiment, at a pointed end 26 to allow for insertion into tissue with minimal resistance at a distal end of the radiating portion 18. In those cases where the radiating portion 18 is inserted into a pre-existing opening, tip 48 may be rounded or flat.
The tip 48, which may be formed from a variety of heat-resistant materials suitable for penetrating tissue, such as metals (e.g., stainless steel) and various thermoplastic materials, such as poletherimide, polyamide thermoplastic resins, an example of which is Ultem® sold by General Electric Co. of Fairfield, Conn. The tip 48 may be machined from various stock rods to obtain a desired shape. The tip 48 may be attached to the distal portion 44 using various adhesives, such as epoxy seal. If the tip 48 is metal, the tip 48 may be soldered to the distal portion 44.
The assembly 12 also includes the connection hub 22, as shown in more detail in
The connection hub 22 also includes a base 81 disposed at a distal end of the first branch 74. More than one inflow 86 and outflow 88 tube may be used. The outflow tube 88 is coupled to the second branch 76 and is in fluid communication with the bypass tube 80 through the second branch 76. In one embodiment, the assembly 12 includes one or more inflow tubes 86a and 86b that are fed through the third branch 78 as shown in
In one embodiment, the second and third branches 76 and 78 may include various types of female and/or male luer connectors adapted to couple inflow and outflow tubes 86 and 88, respectively, from the pump 34 to the assembly 12.
The inflow tube 86a is inserted into the distal end of the distal portion 44 and the inflow tube 86b is inserted at a point proximate the midpoint of the assembly 12 (e.g., the feed point 46), as shown in
The above-discussed coolant system provides for circulation of dielectric coolant fluid 37 (e.g., saline, deionized water, etc.) through the entire length of the antenna assembly 12. The dielectric coolant fluid 37 removes the heat generated by the assembly 12. In addition, the dielectric coolant fluid 37 acts as a buffer for the assembly 12 and prevents near field dielectric properties of the assembly 12 from changing due to varying tissue dielectric properties. For example, as microwave energy is applied during ablation, desiccation of the tissue around the radiating portion 18 results in a drop in tissue complex permittivity by a considerable factor (e.g., about 10 times). The dielectric constant (er′) drop increases the wavelength of microwave energy in the tissue, which affects the impedance of un-buffered microwave antenna assemblies, thereby mismatching the antenna assemblies from the system impedance (e.g., impedance of the cable 16 and the generator 14). The increase in wavelength also results in a power dissipation zone which is much longer in length along the assembly 12 than in cross sectional diameter. The decrease in tissue conductivity (er″) also affects the real part of the impedance of the assembly 12. The fluid dielectric buffering according to the present disclosure also moderates the increase in wavelength of the delivered energy and drop in conductivity of the near field, thereby reducing the change in impedance of the assembly 12, allowing for a more consistent antenna-to-system impedance match and spherical power dissipation zone despite tissue behavior.
Referring to
Laser welding allows coupling the cable connector 79 to the feedline 20. However, care must be exercised to avoid damaging the outer conductor 56 by the laser. Soldering avoids this issue, but at higher power levels (e.g., about 90 or more Watts) the soldering connection may begin to reflow due to the excessive heat generated by increased power. Embodiments of the present disclosure also provide for a system and method to alleviate the solder reflow by circulating a dielectric coolant fluid through the entire length of the assembly 12 up to the cable connector 79 such that the junction point 93 of the connector 79 to the inner and outer conductors 50 and 56 is cooled.
The connector 79 includes a threaded portion 94 that couples to the distal end of the cable 16, which may also have a corresponding SMA male connector. The connection hub 22 is inserted onto the distal end of the feedline 20 and is slid toward the distal end thereof. The cable connector 79 is then coupled to the proximal end of the first branch 74 thereby securing the connector hub 22 to the feedline 20 (e.g., gluing the connector hub 22 to the cable connector 79).
In conventional designs, vapor pockets form at the junction between the connector 79 and the feedline 20 and prevent the coolant fluid 37 from reaching the connector 79, thereby preventing any cooling to take place. As a result, the connector 79 continues to heat up and solder attaching the coupling the connector 79 melts. The bypass tube 80 provides for unrestricted flow of the coolant fluid from the proximal end of the first branch 74 and the connector 79. The bypass tube 80 provides for flow of the coolant fluid directly from the cable connector 79 to the outlet port 30 without withdrawing fluid through the second branch 76. This configuration removes the fluid from the assembly 12 at a rate sufficient to prevent vaporization of the fluid as it comes in contact with the junction point 93 of the connector 79, thereby preventing formation of vapor pockets. In other words, the bypass tube 80 allows for the coolant fluid to circuit to the connector 79 without restrictions caused by pressure build-up resulting from the heat generated at the junction point 93.
The above-discussed coolant system provides circulation of dielectric coolant fluid 37 (e.g., saline, deionized water, etc.) through the entire length of the antenna assembly 12. In addition, the coolant is also brought in contact with the cable connector 79 allowing use of a conventional solder connection to attach the connector 79 to the feedline 20. The fluid provides cooling and enhances dielectric matching properties of the assembly 12. The coolant fluid 37 supplied to the cable connector 79 prevents solder re-flow, allowing the assembly 12 to operate at higher power levels (e.g., 150 watts). The coolant fluid 37 circulated through the sheath 38 also wicks heat away from the feedline 20, which allows delivery of high power signals to the antenna radiating section.
The described embodiments of the present disclosure are intended to be illustrative rather than restrictive, and are not intended to represent every embodiment of the present disclosure. Embodiments of the present disclosure may also be implemented in a microwave monopolar antenna or other electrosurgical devices. Various modifications and variations can be made without departing from the spirit or scope of the disclosure as set forth in the following claims both literally and in equivalents recognized in law.
Number | Name | Date | Kind |
---|---|---|---|
3631363 | Miller | Dec 1971 | A |
4140130 | Storm, III | Feb 1979 | A |
4375220 | Matvias | Mar 1983 | A |
4397313 | Vaguine | Aug 1983 | A |
4462412 | Turner | Jul 1984 | A |
4572190 | Azam et al. | Feb 1986 | A |
4658836 | Turner | Apr 1987 | A |
4662383 | Sogawa et al. | May 1987 | A |
4798215 | Turner | Jan 1989 | A |
4823812 | Eshel et al. | Apr 1989 | A |
5097844 | Turner | Mar 1992 | A |
5234004 | Hascoet et al. | Aug 1993 | A |
5344435 | Turner et al. | Sep 1994 | A |
5370676 | Sozanski et al. | Dec 1994 | A |
5413588 | Rudie et al. | May 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5417686 | Peterson et al. | May 1995 | A |
5464445 | Rudie et al. | Nov 1995 | A |
5480417 | Hascoet et al. | Jan 1996 | A |
5509929 | Hascoet et al. | Apr 1996 | A |
5545137 | Rudie et al. | Aug 1996 | A |
5599295 | Rosen et al. | Feb 1997 | A |
5628770 | Thome et al. | May 1997 | A |
5755754 | Rudie et al. | May 1998 | A |
5775338 | Hastings | Jul 1998 | A |
5776176 | Rudie | Jul 1998 | A |
5800486 | Thome et al. | Sep 1998 | A |
5829519 | Uthe | Nov 1998 | A |
5843144 | Rudie et al. | Dec 1998 | A |
5861021 | Thome et al. | Jan 1999 | A |
5904709 | Arndt et al. | May 1999 | A |
5916240 | Rudie et al. | Jun 1999 | A |
5916241 | Rudie et al. | Jun 1999 | A |
5931860 | Reid et al. | Aug 1999 | A |
5938692 | Rudie | Aug 1999 | A |
5944749 | Fenn | Aug 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
6007571 | Neilson et al. | Dec 1999 | A |
6031375 | Atalar et al. | Feb 2000 | A |
6032078 | Rudie | Feb 2000 | A |
6059780 | Gough et al. | May 2000 | A |
6097985 | Kasevich et al. | Aug 2000 | A |
6134476 | Arndt et al. | Oct 2000 | A |
6161049 | Rudie et al. | Dec 2000 | A |
6181970 | Kasevich | Jan 2001 | B1 |
6230060 | Mawhinney | May 2001 | B1 |
6233490 | Kasevich | May 2001 | B1 |
6275738 | Kasevich et al. | Aug 2001 | B1 |
6289249 | Arndt et al. | Sep 2001 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6375606 | Garibaldi et al. | Apr 2002 | B1 |
6440158 | Saab | Aug 2002 | B1 |
6470217 | Fenn et al. | Oct 2002 | B1 |
6496737 | Rudie et al. | Dec 2002 | B2 |
6512956 | Arndt et al. | Jan 2003 | B2 |
6592579 | Arndt et al. | Jul 2003 | B2 |
6603994 | Wallace et al. | Aug 2003 | B2 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6675050 | Arndt et al. | Jan 2004 | B2 |
6725080 | Melkent et al. | Apr 2004 | B2 |
6725095 | Fenn et al. | Apr 2004 | B2 |
6847848 | Sterzer et al. | Jan 2005 | B2 |
6849063 | Eshel et al. | Feb 2005 | B1 |
6866624 | Chornenky et al. | Mar 2005 | B2 |
6944504 | Arndt et al. | Sep 2005 | B1 |
7244254 | Brace et al. | Jul 2007 | B2 |
7271363 | Lee et al. | Sep 2007 | B2 |
7276061 | Schaer et al. | Oct 2007 | B2 |
7311703 | Turovskiy et al. | Dec 2007 | B2 |
7387627 | Erb et al. | Jun 2008 | B2 |
7439736 | Meaney et al. | Oct 2008 | B2 |
7467015 | Van der Weide | Dec 2008 | B2 |
7565207 | Turner et al. | Jul 2009 | B2 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20040097805 | Verard et al. | May 2004 | A1 |
20040133254 | Sterzer et al. | Jul 2004 | A1 |
20040242992 | Hareyama | Dec 2004 | A1 |
20050113893 | Saab | May 2005 | A1 |
20050149010 | Turovskiy et al. | Jul 2005 | A1 |
20050245920 | Vitullo et al. | Nov 2005 | A1 |
20060259024 | Turovskiy et al. | Nov 2006 | A1 |
20070016180 | Lee, Jr. et al. | Jan 2007 | A1 |
20070016181 | Van Der Weide et al. | Jan 2007 | A1 |
20070203551 | Cronin et al. | Aug 2007 | A1 |
20080308256 | Deborski et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
390937 | Mar 1924 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2415263 | Oct 1975 | DE |
2429021 | Jan 1976 | DE |
2460481 | Jun 1976 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2627679 | Jan 1977 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
8712328 | Mar 1988 | DE |
3711511 | Jun 1988 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4238263 | May 1993 | DE |
4303882 | Aug 1994 | DE |
4339049 | May 1995 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19717411 | Nov 1998 | DE |
19751108 | May 1999 | DE |
19801173 | Jul 1999 | DE |
19848540 | May 2000 | DE |
10224154 | Dec 2003 | DE |
10328514 | Mar 2005 | DE |
102004022206 | Dec 2005 | DE |
202005015147 | Mar 2006 | DE |
0 246 350 | Nov 1987 | EP |
0 481 685 | Apr 1992 | EP |
0 521 264 | Jan 1993 | EP |
0 541 930 | May 1993 | EP |
0 556 705 | Aug 1993 | EP |
0 558 429 | Sep 1993 | EP |
0 572 131 | Dec 1993 | EP |
0 836 868 | Apr 1998 | EP |
1 159 926 | May 2001 | EP |
1 278 007 | Jan 2003 | EP |
1 810 627 | Jul 2007 | EP |
179607 | Nov 1906 | FR |
1 275 415 | Sep 1960 | FR |
1 347 865 | Nov 1963 | FR |
2 276 027 | Jun 1974 | FR |
2 235 669 | Jan 1975 | FR |
2 313 708 | Dec 1976 | FR |
2 502 935 | Oct 1982 | FR |
2 517 953 | Jun 1983 | FR |
2 573 301 | Nov 1984 | FR |
2 862 813 | May 2005 | FR |
2 864 439 | Jul 2005 | FR |
2415630 | Jan 2006 | GB |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
166452 | Nov 1964 | SU |
401367 | Nov 1974 | SU |
WO9618349 | Jun 1996 | WO |
WO9741924 | Nov 1997 | WO |
WO9743971 | Nov 1997 | WO |
WO9748449 | Dec 1997 | WO |
WO9748450 | Dec 1997 | WO |
WO9748451 | Dec 1997 | WO |
WO0048672 | Aug 2000 | WO |
WO0051513 | Sep 2000 | WO |
WO0057811 | Oct 2000 | WO |
WO0101847 | Jan 2001 | WO |
WO0174252 | Oct 2001 | WO |
WO0245790 | Jun 2002 | WO |
WO02061880 | Aug 2002 | WO |
WO2004112628 | Dec 2004 | WO |
WO2005011049 | Feb 2005 | WO |
WO2005016119 | Feb 2005 | WO |
WO2007024878 | Mar 2007 | WO |
WO2007076924 | Jul 2007 | WO |
WO2007112081 | Oct 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100053015 A1 | Mar 2010 | US |