The development of efficient, earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is of great importance to solar fuel production, because the OER is the half reaction that limits the overall efficency.1-3 Developing catalysts for the OER is especially challenging because the oxidation of water to oxygen occurs through a complex four-electron/four-proton transfer4 and many materials require a significant overpotential to drive the catalysis.5 Traditionally, the best catalysts for the OER have been composed of the noble metals Ru and Ir.6-8 However, since the discovery that iron impurities can improve the OER activity of nickel oxide electrocatalysts,9,10 nickel-iron oxyhydroxides (Ni1-xFexOOH), specifically the layered double hydroxide (LDH) structure of Ni1-xFexOOH, have emerged as promising non-precious metal OER electrocatalysts in alkaline media and can rival the performance of iridium oxides.11-30
Provided are methods for making metal oxyhydroxide electrocatalytic materials. Also provided are the materials themselves, electrocatalytic systems comprising the materials, and methods of using the materials and systems.
In one embodiment, a method for making a metal oxyhydroxide electrocatalytic material comprises titrating a precursor solution with a (bi)carbonate salt, the precursor solution comprising a first metal salt and a solvent, wherein the titration induces reactions between the (bi)carbonate salt and the first metal salt to provide first metal carbonate species in the titrated precursor solution; and exposing the titrated precursor solution to microwave radiation to decompose the first metal carbonate species to form the metal oxyhydroxide electrocatalytic material and carbon dioxide.
In one embodiment, a metal oxyhydroxide electrocatalytic material has a morphology characterized as a substantially continuous matrix having irregularly shaped pores distributed throughout the matrix as determined by scanning electron microscopy. The material is also nanoamorphous as determined by high resolution transmission electron microscopy electron diffraction patterns exhibiting a lack of selected area electron diffraction spots at about a 5 nm spatial resolution. The material is also characterized by a homogeneous distribution of metal atoms throughout the material as exhibited by oxygen (O) 1s X-ray photoelectron spectroscopy spectra having no more than a single peak.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Illustrative embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals denote like elements.
Please refer to the definitions in the “Examples” section below for the terms “microwave-assisted”, “solution-derived”, “crystal-derived”, and the like.
Provided are methods for making metal oxyhydroxide electrocatalytic materials, including mixed metal oxyhydroxide electrocatalytic materials such as nickel-iron oxyhydroxide. Also provided are the materials themselves, electrocatalytic systems comprising the materials, and methods of using the materials and systems.
The invention is based, at least in part, on the inventors' discovery of a method for providing metal oxyhydroxide electrocatalytic materials having unique physical properties (relating to their morphology, lack of crystallinity, and homogeneity of metal atoms) and thus, superior catalytic performance. This is compared to metal oxyhydroxide electrocatalytic materials formed using conventional methods, including electrochemical conditioning of crystalline metal oxides. Because of the unique method used to provide the materials, the disclosed metal oxyhydroxide electrocatalytic materials may be structurally distinguished from conventional metal oxyhydroxides labeled as being “amorphous” and/or “homogeneous.” This is further described below. Moreover, the disclosed methods involve mild conditions and readily available materials, thereby facilitating the practical use of the metal oxyhydroxide electrocatalytic materials for catalyzing certain electrochemical reactions, including the oxygen evolution reaction (OER) as well as the hydrogen evolution reaction (HER).
Methods of making metal oxyhydroxide electrocatalytic materials are provided. For reference, an illustrative embodiment of the method is shown in the left schematic of
A variety of metal precursor compounds may be used, including metal salts such as metal nitrates, nitrites, sulfates, sulfites, sulfamates, phosphates, phosphites, fluorides, chlorides, bromides, iododides, perchlorates, carbonates, hydroxides, oxalates, molybdates, paratungstates, metatungstates, and citrates, etc. in their hydrous or anhydrous forms. These types of metal salts can dissolve in the appropriate solvent to form metal cations and associated anions in the precursor solution.
Different relative amounts (e.g., molar ratios) of the metal precursor compounds may be used in the precursor solution, depending upon the desired ratio of metals in the oxyhydroxide electrocatalytic material. By way of illustration, a binary metal oxyhydroxide electrocatalytic material may be referred to as a “M′(1-x):M″x oxyhydroxide electrocatalytic material,” wherein M′ and M″ are different metals. The relative amount may be selected to maximize the catalytic performance of the mixed metal oxyhydroxide electrocatalytic material. In embodiments, x is in the range from greater than 0 to about 1. This includes embodiments in which x is in the range from about 0.1 to about 1, or from about 0.1 to about 0.5. In another embodiment, the metal precursor compounds are nickel and iron precursor compounds and the molar ratio of nickel:iron in the precursor solution is about 8:2 to provide a Ni0.8:Fe0.2 oxyhydroxide electrocatalytic material (although the relative amounts of Ni and Fe may deviate slightly from these values, e.g., by ±10%, ±5%, ±2%). In another embodiment, the metal precursor compounds are nickel and cobalt precursor compounds and the molar ratio of nickel:cobalt in the precursor solution is about 1:1 to provide a Ni:Co oxyhydroxide electrocatalytic material (although the relative amounts of Ni and Co may deviate slightly from these values as described above).
Similarly, a ternary metal oxyhydroxide electrocatalytic material may be referred to as a “M′x:M″y;M″′z oxyhydroxide electrocatalytic material,” wherein M′, M″, and M″′ are different metals. Again, the relative amount may be selected to maximize the catalytic performance of the mixed metal oxyhydroxide electrocatalytic material and x, y, and z may independently range from greater than 0 to about 1. In one embodiment, the metal precursor compounds are tungsten, iron, and cobalt precursor compounds and the molar ratio of tungsten:iron:cobalt in the precursor solution is about 1:1:1 to provide a W:Fe:Co oxyhydroxide electrocatalytic material (although the relative amounts of W, Fe and Co may deviate slightly from these values as described above). In another embodiment, the metal precursor compounds are nickel, iron, and cobalt precursor compounds and the molar ratio of nickel:iron:cobalt in the precursor solution is about 1:1:1 to provide a Ni:Fe:Co oxyhydroxide electrocatalytic material (although the relative amounts of Ni, Fe and Co may deviate slightly from these values as described above).
The solvent may be selected to dissolve the metal precursor compounds in order to form a solution. Illustrative solvents include water, and a variety of organic solvents. In embodiments, the solvent is water and the metal precursor solution is substantially free of organic solvent(s). By “substantially” it is meant that the amount of organic solvent(s) is zero, not measurable, or so small so as to not affect the titration and decomposition reactions which take place in the precursor solution as described below.
The disclosed methods involve titrating the precursor solution with a gelling agent. The gelling agent may be added as a solution, e.g., an aqueous solution. In the titration, the gelling agent is added to the precursor solution at a controlled rate and for a period of time in order to facilitate certain reactions between the metal precursor compound(s) and the gelling agent, as further described below. An illustrative gelling agent is a salt compound such as a carbonate salt of an alkali metal or an alkaline earth metal or a bicarbonate salt of an alkali metal or an alkaline earth metal. The term “(bi)carbonate” as used throughout the present disclosure encompasses both carbonate and bicarbonate. Sodium bicarbonate (NaHCO3) is an illustrative example. Like the metal salts described above, (bi)carbonate salts can dissolve in the appropriate solvent (i.e., the solvent of the precursor solution) to form cations and (bi)carbonate anions. In the titration, metal cations from the metal precursor compound(s) react with the (bi)carbonate anions from the gelling agent to form a metal carbonate species accompanied by the release of carbon dioxide.
By way of illustration, the relevant titration reactions are shown in Equations 1 and 2, below, for the reaction of iron cations (Fe3+) from an iron precursor compound with bicarbonate anions (HCO3−) from sodium bicarbonate. In Equation 1, Fe3+ cations react with HCO3− anions to form iron (III) bicarbonate (Fe(HCO3)3). In Equation 2, Fe(HCO3)3 spontaneously decomposes to iron (III) carbonate (Fe2(CO3)3) and releases carbon dioxide. The subsequent decomposition of the metal carbonate species (e.g., Fe2(CO3)3) to form the metal oxyhydroxide and additional carbon dioxide is further described below (see also Equation 3, below). If there are additional metal precursor compounds in the precursor solution, additional metal carbonate species will also be formed via analogous reactions.
Fe3++3HCO3−→Fe(HCO3)3 (Equation 1)
2Fe(HCO3)3→Fe2(CO3)3+3CO2+3H2O (Equation 2)
Fe2(CO3)3→iron oxides+3CO2 (Equation 3)
The controlled rate of addition of the gelling agent and the period of time may be selected to facilitate the titration reactions illustrated by Equations 1 and 2, that is, the reaction of metal cations from the metal precursor compound(s) with (bi)carbonate anions from the gelling agent to form metal carbonate species and carbon dioxide. This includes selection of the rate and period of time to obtain a desired conversion, e.g., maximum conversion, of the metal precursor compound(s) to their associate metal carbonate species. The desired conversion may be about 50%, about 60%, about 70%, about 75%, or more. The conversion may be substantially complete. Here, the term “substantially” means a conversion of 90%, 95%, 98%, or 100%. Illustrative rates include from about 0.5 mL/min to about 10 mL/min, from about 1 mL/min to about 10 mL/min, or from about 1 mL/min to about 5 mL/min. Each of these rates may be reported as the rate per 100 mL of the precursor solution. Illustrative periods of time include from about 15 min to about 120 min, from about 30 min to about 100 min, or from about 30 min to about 50 min.
Both formation of the precursor solution and titration of the precursor solution with the gelling agent may take place under ambient conditions, e.g., room temperature (e.g., from about 20° C. to about 25° C.) and atmospheric pressure.
As noted above, the metal carbonate species (e.g., Fe2(CO3)3) can be decomposed to form a metal oxyhydroxide (e.g., Equation 3). The disclosed method may further involve using microwave radiation to force the decomposition of the metal carbonate species while still in solution. This minimizes or prevents crystallization and segregation of metal atoms in the final product. The decomposition of the metal carbonate species is accompanied by the additional release of carbon dioxide to provide the disclosed metal oxyhydroxide electrocatalytic materials. The conditions under which the microwave radiation is applied (e.g., period of time, frequency, power) may be selected to maximize the decomposition of the metal carbonate species. Although some evaporation of the solvent may occur during microwave radiation, the conditions may be selected to avoid excessive boiling of the solvent. Illustrative periods of time include from about 1 s to about 10 min, from about 0.5 min to about 10 min, from about 0.5 min to about 8 min, or from about 1 min to about 5 min. In embodiments, the source of microwave radiation may be a commercially available microwave oven capable of providing microwave radiation in the frequency range of from about 2 GHz to about 1000 MHz or from about 25 GHz to about 800 MHz. It has also been found that the decomposition of the metal carbonate species may occur over a period of days, weeks, or months in the absence of exposure to microwave radiation.
The method may include additional steps. In embodiments, the method includes depositing the titrated, microwaved precursor solution (now containing the metal oxyhydroxide electrocatalytic material) onto the surface of a substrate. Various deposition techniques may be used, including drop-casting and electrophoretic deposition. Electrophoretic deposition may be carried out at about −5 V with a W, Ti, and carbon, etc. counter electrode for about 10 minutes in a two electrode system. The deposited material may be further dried, e.g., by exposure to heat for a period of time. Various temperatures (e.g., about 50-100° C. may be used) and periods of time (e.g., about 10-60 minutes) may be used. However, by contrast to conventional methods, no lengthy, high temperature annealing steps are used or required. The deposition (and drying) step provides a film of metal oxyhydroxide electrocatalytic material on the substrate.
The deposition (and drying) step may be repeated to provide a multi-layer film having a desired average thickness (by “average” it is meant the average value across the surface of the film). The average thickness may be selected to maximize the catalytic performance of the metal oxyhydroxide electrocatalytic material/film. Various average thicknesses may be used (e.g., from about 0.01 μm to about 50 μm, from about 0.1 μm to about 50 μm, from about 0.5 μm to about 30 μm, or from about 1 μm to about 20 μm).
Various substrates may be used, including those that are incompatible with conventional methods, e.g., those including high temperature annealing steps, electrodeposition, etc. Illustrative substrates include conductive substrates such as FTO-coated glass, glassy carbon, high surface area carbon, etc. The film of metal oxyhydroxide electrocatalytic material on the substrate may be used as an electrode.
The Examples below provide additional details (e.g., illustrative suitable conditions, etc.) regarding the method of making the disclosed metal oxyhydroxide electrocatalytic materials.
Due to the unique method of making the disclosed metal oxyhydroxide electrocatalytic materials involving the titration reactions and the microwave exposure, the materials (and/or films of the materials) may be distinguished (both structurally and functionally) from those made using conventional methods. Structural differences include those related to the morphology, lack of crystallinity, and homogeneity of the disclosed materials.
Regarding the morphology of the disclosed metal oxyhydroxide electrocatalytic materials, the physical shape of the material may be characterized as a sponge-like network, i.e., a substantially continuous matrix having irregularly shaped pores distributed throughout the matrix. By way of illustration,
Regarding the crystallinity of the disclosed metal oxyhydroxide electrocatalytic materials, the materials may be characterized as being amorphous. Surprisingly, as demonstrated by the high resolution transmission electron microscopy (HRTEM) images of an illustrative Ni0.8:Fe0.2 oxyhydroxide electrocatalytic material shown in
Regarding the homogeneity of the disclosed metal oxyhydroxide electrocatalytic materials, the materials may be characterized by a homogeneous distribution of metal atoms throughout the material. That is, metal atoms do not segregate into distinguishable phases. Confirmation of homogeneity and lack of metal atom segregation may be accomplished via X-ray photoelectron spectroscopy (XPS) as described in the Examples, below, which probes the arrangement of atoms and atomic bonding in a material. In at least some embodiments, the metal oxyhydroxide electrocatalytic material is characterized by oxygen (O) is XPS spectra having no more than a single peak. (See
The disclosed metal oxyhydroxide electrocatalytic materials (e.g., in the form of an electrode) may be used to catalyze a variety of electrochemical reactions, including oxidation reactions. The electrochemical reaction may also be a reduction reaction involving the reaction of an electrochemical reactant and free electrons to form a reduction product. In one embodiment, the metal oxyhydroxide electrocatalytic material may be used to catalyze the oxygen evolution reaction (OER) in which H2O is oxidized to produce free electrons, free hydrogen ions and O2. In embodiments, the metal oxyhydroxide electrocatalytic material may catalyze OER under a variety of pH conditions, including neutral (pH˜7) and alkaline (e.g., pH˜14) conditions. In embodiments, the metal oxyhydroxide electrocatalytic material may catalyze HER under similar pH conditions.
The disclosed metal oxyhydroxide electrocatalytic materials may be characterized by their efficiency at catalyzing a particular electrochemical reaction, e.g., the OER. In some embodiments, the efficiency is provided as the overpotential at about 1 mA/cm2 as determined in about 1 M sodium hydroxide and a scan rate of about 1 mV/s and normalized to the electrochemical surface area (ECSA) of the material. In embodiments, a nickel-iron oxyhydroxide electrocatalytic material may be characterized by an efficiency (overpotential) of no more than about 400 mV, no more than about 350, no more than about 300, no more than about 250 mV, or no more than about 200 mV as determined under these conditions.
As demonstrated in the Examples, below, at least some of the disclosed metal oxyhydroxide electrocatalytic materials have higher efficiencies as compared to conventional metal oxyhydroxide catalysts (e.g., electrochemically conditioned crystalline nickel-iron oxide) and as compared to iridium oxide catalysts. Notably, the increased efficiency is greater than would be expected based on the number of metal atoms per nm2 on the surfaces of the metal oxyhydroxide electrocatalytic materials.
Electrocatalytic systems including the disclosed metal oxyhydroxide electrocatalytic materials are also provided. The electrochemical system may include an electrochemical cell configured to contain a fluid including an electrochemical reactant (e.g., a species to be oxidized to form an oxidation product, a species to be reduced to form a reduction product, or both); an electrode including a metal oxyhydroxide electrocatalytic material in contact with the fluid; and a counter electrode. Any of the metal oxyhydroxide electrocatalytic materials described herein may be used. The selection of fluid depends upon the particular electrochemical reaction to be catalyzed. For the OER, the fluid may be an electrolyte solution (e.g., a solution of water and a water-soluble electrolyte), the electrochemical reactant may include water and the oxidation product may include O2 (as well as free electrons, and free hydrogen ions). Various materials for the counter electrode may be used (e.g., Pt wire). The counter electrode may include an electrocatalytic material capable of catalyzing the hydrogen evolution reaction (HER) in which hydrogen ions are reduced to H2. By way of illustration, the FeS2 electrocatalytic materials described in U.S. patent application Ser. No. 15/455,350, now U.S. Patent Publication No. 20180222767, which is hereby incorporated in its entirety, may be used for this purpose. Alternatively, the disclosed metal oxyhydroxides may also be used as the counter electrode to catalyze the HER. The configuration of the electrochemical cells disclosed in U.S. patent application Ser. No. 15/455,350, now U.S. Patent Publication No. 20180222767, may also be used. The electrodes may be immersed in the fluid. The electrodes may be in electrical communication with one another.
The electrocatalytic system may further include a power source in electrical communication with the electrode and the counter electrode, the power source configured to apply an electrical potential across the electrodes. Other components may be used in the electrocatalytic system, e.g., a membrane separating the electrodes, a collection cell configured to collect the oxidation/reduction product(s) from the electrochemical cell, etc.
Methods of using the disclosed metal oxyhydroxide electrocatalytic materials to catalyze an electrochemical reaction are also provided. In one embodiment, the method includes exposing a metal oxyhydroxide electrocatalytic material to a fluid including an electrochemical reactant. The exposure results in the oxidation of the electrochemical reactant (e.g., H2O) at the metal oxyhydroxide electrocatalytic material-fluid interface to produce an oxidation product (e.g., O2), which may be separated from the fluid and collected. The method may be carried out in the presence of another electrocatalytic material (e.g., a FeS2 electrocatalytic material as described above) so that another electrochemical reactant (e.g., hydrogen ions) may be reduced at the FeS2 electrocatalytic material-fluid interface to produce a reduction product (e.g., H2), which may also be separated from the fluid and collected. As noted above, the disclosed metal oxyhydroxide electrocatalytic materials may be used as the counter electrode to catalyze the HER.
In the present disclosure, the term “microwave-assisted”, “nanoamorphous”, or both are used in reference to mixed metal oxyhydroxide electrocatalytic materials formed using the methods described in the “Detailed Description” section, above (e.g., see the illustrative left schematic in
By contrast, the term “solution-derived” is used in reference to a material formed using these same methods except without the step of exposing to microwave radiation.
Also by contrast, the terms “crystal-derived”, “crystalline”, and “crystalline-derived” are used in reference to a material formed using the conventional method described in the “Crystalline-Derived Catalyst” section, below. (Also see the right schematic in
Finally, in the present disclosure, the use of the terms “Ni1-x:Fex” and “Ni0.8:Fe0.2” and the like are not meant to imply the absence of oxygen, hydrogen, and/or hydroxyl groups in the materials.
This Example reports a microwave-assisted synthesis route of creating a nanoamorphous nickel-iron oxide electrocatalyst that contains only “fast” catalytic sites. Benchmarking experiments on flat electrodes (roughness factors <1.4) showed that the microwave-assisted, nanoamorphous (Ni0.8:Fe0.2) oxide had a low OER overpotential of 286 mV at a current density of 10 mA cm−2. The kinetic rate constant of the active sites was measured directly with the surface interrogation mode of scanning electrochemical microscopy (SI-SECM). It is shown that the microwave-assisted, nanoamorphous (Ni0.8:Fe0.2) oxide has only one type of catalytic site with an OER kinetic rate constant of 1.9 s−1 per site—a “fast” catalytic site. This was compared to a crystalline Ni0.8Fe0.2OOH that was synthesized via electrochemical conditioning of crystalline Ni0.8:Fe0.2 oxide. It was verified that the Ni0.8Fe0.2OOH contained two types of catalytic sites—“fast” sites with an OER rate constant of 1.3 s−1 per site and “slow” sites with a OER rate constant of 0.05 s−1 per site. The percentage of “fast” sites in the crystalline Ni0.8Fe0.2OOH was well matched to the total iron atom content, while 100% of the sites were “fast” in the microwave-assisted, nanoamorphous (Ni0.8:Fe0.2) oxide.
Materials and Methods
Chemicals
Iron (III) nitrate nonahydrate (98%+, ACS Reagent, Acros), nickel (II) nitrate hexahydrate (99%, Fisher Scientific), iridium (III) chloride (99.99%, Alfa Aesar), sodium hydroxide (>97%, Fisher Scientific), ethylene glycol (99.8%, anhydrous, Sigma Aldrich), sodium bicarbonate (Fisher Scientific), potassium hydroxide (85%, Acros Organics), iron (III) sulfate hydrate (Reagent Grade, Alfa Aesar), triethanolamine (97%, Acros Organics) were all used as received without additional purification.
Catalyst Synthesis
Crystalline-Derived Catalyst:
Crystalline thin-films of Ni0.8:Fe0.2 oxide were made similar to those previously reported.54 Briefly, two solutions, one of 0.02 M Ni(NO3)2.6H2O and the other of 0.02 M Fe(NO3)3.9H2O, were prepared separately in ethylene glycol and subsequently mixed in an 8:2 ratio. The solution was dropcast and annealed on fluorine-doped tin oxide (FTO) coated glass (Sigma-Aldrich) to create the Ni0.8:Fe0.2 oxide as described in the “Electrode Fabrication” section, below. The oxide was then electrochemically conditioned by applying an oxidation current of ca. 10 mA cm−2 for 1 hour, as has been previously described.25
Nanoamorphous Microwave-Assisted Catalysts:
First, a nanoamorphous Fe catalyst was synthesized using a sol-gel method similar to a previously reported method with some modifications.55,56 Briefly, 8.08 grams of Fe(NO3)3.9H2O was dissolved in 100 mL of 18.2 MΩ water. Separately, 1.99 grams of NaHCO3 was dissolved in 100 mL of 18.2 MΩ water. Both solutions were sonicated until fully dissolved. The Fe(NO3)3.9H2O was placed in a 250 mL Erlenmeyer flask with a Teflon stir bar and placed on a stir plate. The NaHCO3 was placed in a burette and was used to titrate at a rate of 2-3 drops per second to achieve a rate of 2.5-3 mL/min rate while rapidly stirring the Fe(NO3)3 solution. The suspension underwent a gradual color change from orange to deep red at the end. The total titration time was about 40-45 minutes, and the solution continued to stir for one hour after titration. This suspension was then placed in Nalgene bottles to be microwaved. The solution was microwaved for about two minutes, with swirling every 15-20 seconds to mix the contents, in a conventional 1050 W microwave (Rival). After two minutes of microwaving, the solution had begun to boil with bubbles on the sides of the bottles. To form the nanoamorphous Ni catalyst, this procedure was repeated by replacing the Fe(NO3)3.9H2O with 5.82 grams of Ni(NO3)2.6H2O. After microwaving the nickel suspension, some separation occurred. To form the nanoamorphous mixed-metal catalysts, this procedure was repeated except the Ni(NO3)2.6H2O and Fe(NO3)3.9H2O were mixed to create two additional solutions at 1:1 and 8:2 molar ratios, respectively. These solutions were titrated and microwaved as described above. Some separation also occurred in the nanoamorphous mixed-metal suspensions. Electrodes were made by dropcasting the suspensions, both with and without the microwave step, on FTO-coated glass and were dried at 70° C. as described in the “Electrode Fabrication” section, below. After dropcasting, the samples were gently rinsed with 18.2 MS water to remove any material that was not well adhered to the surface. This left a nearly transparent film of the nanoamorphous Ni1-x:Fex catalyst on the FTO-coated glass. Additionally, the microwave-assisted nanoamorphous Ni0.8:Fe0.2 was deposited via electrophoretic deposition on FTO-coated glass to compare to the dropcast samples on FTO. The nanoamorphous Ni0.8:Fe0.2 was also electrophoretically deposited onto a glassy carbon rotating disc electrode (RDE) for benchmarking, and solution-derived (non-microwaved) and microwave-assisted Ni0.8:Fe0.2 were dropcast on a glassy carbon RDE for comparison. Electrophoretic deposition was performed by applying −5 V to the working electrode for 10 minutes in a two electrode system with a Ti counter electrode.
Electrode Fabrication
Drop-Cast Thin Films:
FTO glass sheets (Sigma Aldrich) cut to 0.5-inch squares were cleaned by washing with soap, deionized water, and ethanol. The FTO pieces were placed in a beaker with ethanol and sonicated for 10 minutes. The slides were dried at room temperature for about 5 minutes. Then, using a micropipette, approximately 250 μL of solution was dropped onto each square in the most even thin layer possible. The slides were then placed into an oven at 135° C. for about 30 minutes. This was repeated once more for a second coating. After coating the FTO glass, the crystalline thin-film samples were fired in air at 500° C. for 3 hours with a 1° C. min−1 ramp rate. For each sample, a 2-3 mm edge of coating was scraped off and copper wire tape (Electron Microscopy Sciences) was placed on and scored.
Drop-Cast Solution-Derived and Microwave-Assisted Films:
FTO glass sheets were cut and cleaned as described above. Using a micropipette, approximately 250 μL of the suspension was dropped onto each square in the most even thin layer possible. The slides were then placed into an oven at 70° C. for about 30 minutes. This was repeated once more for a second coating. No additional annealing was applied to the electrode. For suspensions where separation occurred, the suspension was pipetted from the bottom of the container.
Masked Substrate:
The substrate in the scanning electrochemical microscopy (SECM) experiment was a catalyst sample drop-cast on FTO glass (Sigma-Aldrich) and masked to create a pseudo-ultramicroelectrode suitable for surface interrogation mode of SECM. To make the mask, a 2 cm×2 cm square of Teflon FEP Film (50A, American Durafilm) was taped to a Teflon block, which was fixed in the clamp of a CNC Mill. A hole was drilled in the FEP film with a 100 μm diameter drill bit (One Piece, Drill Bits Unlimited). The FEP film mask was placed over the catalyst-coated FTO glass with the hole centered and the excess FEP film trimmed off. The masked substrate was placed in the furnace above 271° C. for 30 minutes to allow the FEP film to heat-bond to the substrate.
Glassy Carbon Ultramicroelectrode:
The glassy carbon (GC) ultramicroelectrode utilized as the SECM tip was fabricated similar to the procedure previously reported with some modifications.15 A 1 cm GC rod (type 2, 1 mm diameter, Alfa Aesar) was electrochemically etched in 4 M KOH by submersing half of the rod and applying 5 V using a graphite counter electrode for 500 s. Subsequently, the rod was flipped and the other end of the rod was electrochemically etched in the same manner. The etching process was repeated, alternating the end of the rod and lowering the etch time as needed, until a sharp GC needle was obtained. The GC needle was rinsed with acetone and deionized water and allowed to dry completely. A silver connection wire (30 AWG, Belden, USA) coated with conductive silver epoxy (Circuit Works, USA) was inserted into one end of a borosilicate glass capillary (1 mm O.D., 0.5 mm I.D., Sutter Instruments, USA). The other end of the borosilicate glass capillary was filled with silver epoxy and the etched GC needle with one end coated in silver epoxy was inserted. The conductive wire was pushed against the GC needle inside the capillary to ensure good electrical contact. The silver epoxy in the electrode was dried in the oven at 120° C. for 30 minutes with the GC tip pointing upwards. The GC tip was completely coated in epoxy (1C&EPKC, Loctite Hysol) and dried in the oven with the GC tip pointing upwards at 120° C., removing the electrode to recoat/remold the epoxy every 20 s until sufficiently coated. Finally, the electrode was dried in the oven at 120° C. for 2 hours to hasten the curing of the epoxy. After the epoxy was fully cured, the tip of the electrode was polished with MicroCloth polishing disks (Beuhler, Canada) until a GC disc was visible. The electrode tip was also sharpened with the MicroCloth polishing disc until the desired RG was reached. Before experimentation, the GC disc was polished with alumina micropolish (1 μm, Beuhler, Canada) until it possessed a mirror-like surface.
Other Synthesis
Redox Mediator:
A Fe(III)-TEA solution was prepared according to a previously reported procedure. (See Arroyo-Currás, N.; Bard, A. J., J. Phys. Chem. C 2015, 119, 8147-8154.) Briefly, 3.2 g of NaOH were added to 10 mL of deionized water while stirring and cooling in a 25° C. water bath. Separately, 20 mL of deionized water was bubbled with argon in a round-bottom flask for 5 minutes. While stirring, 214.4 mg of Fe2(SO4)3.xH2O were added to the round-bottom flask. 104 μL of triethanolamine (TEA) were added dropwise to the round-bottom flask. The NaOH solution was added dropwise to the Fe(III)+ligand solution and the volume was adjusted to 40 mL with deionized water.
Crystalline IrOx:
The crystalline thin-films of IrOx were made similar to the crystalline-derived Ni0.8:Fe0.2 described above. Briefly, a solution of 0.02 M IrCl3 was prepared in ethylene glycol, and the solution was drop-cast and annealed on FTO coated glass (further details can be found in Electrode Fabrication section above).
Materials Characterization
Scanning electron microscope (SEM) images and Energy Dispersive X-Ray Spectrometry (EDS) images were obtained using a FEI Versa 3D Dual Beam SEM. X-ray Diffraction (XRD) data were collected on a Bruker D8 Discover with DaVinci diffractometer, in the standard Bragg-Brentano para-focusing configuration utilizing sealed tube CuK
Electrochemical Characterization
Cyclic voltammetry (CV) was performed on the catalyst coated FTO electrodes in a custom Teflon cell with a holding place for a Ag/AgCl reference electrode with porous Teflon tip (CH Instruments). The size of all FTO glass working electrodes was 0.49 cm2 except for those used in the non-microwaved vs microwaved comparison (See
Benchmarking experiments (i.e. cyclic voltammetry, chronopotentiometry, chronoamperometry) were performed on a catalyst coated glassy carbon custom rotating disc electrode (RDE), 0.071 cm2, in a glass cell with a Ag/AgCl reference electrode with porous Teflon tip (CH Instruments) and a Pt counter electrode (CH Instruments). All RDE experiments were operated at 1600 rpm in 1 M NaOH.
The SECM Instrumentation utilized for the surface interrogation experiments was described previously.61 Before each SECM experiment, the 2 M NaOH c.a. 50 mM Fe(III)-TEA (E0=−0.012 V vs RHE in 2 M NaOH) solution (synthesis described in “Other Synthesis” above) was bubbled with argon for 10 minutes. The experiments were carried out in a custom Teflon cell holding the masked crystal-derived or microwave-assisted Ni0.8:Fe0.2 oxyhydroxide on FTO glass substrate as the working electrode, a 200 μm Pt wire (Electron Microscopy Instruments) as the counter electrode, and a Ag/AgCl electrode with porous Teflon tip (CH Instruments) as the reference electrode. The SECM tip, a glassy carbon (GC) ultramicroelectrode, a=29 μm (fabrication described in “Electrode Fabrication” above), was held at −0.162 V vs RHE while it was approached to an insulating portion of the masked substrate until a current enhancement of 0.3 was reached (Appendix Figure S1).
The SECM Instrumentation utilized for the surface interrogation experiments was described previously.57 Before each SECM experiment, the 2 M NaOH ca. 50 mM Fe(III)-TEA (E0=−1.05 V vs Ag/AgCl in 2 M NaOH) solution (synthesis described in “Other Synthesis” above) was bubbled with argon for 10 minutes. The experiments were carried out in a custom Teflon cell holding the masked crystal-derived oxyhydroxide or microwave-assisted nanoamorphous Ni0.8:Fe0.2 on FTO glass substrate as the working electrode, a 200 μm Pt wire (Electron Microscopy Instruments) as the counter electrode, and a Ag/AgCl electrode with porous Teflon tip (CH Instruments) as the reference electrode. The SECM tip, a glassy carbon (GC) ultramicroelectrode, a=29 μm (fabrication described in “Electrode Fabrication” above), was held at −1.1 V vs Ag/AgCl while it was approached to the approximate location of hole in the masked substrate until a current enhancement of 0.4 was reached (data not shown).
Electrochemical reactivity maps, ranging in size from 200-1600 μm×200-1600 μm, were performed, with step sizes ranging from 10-40 μm and a sample interval of 2 s, until the location of the hole was apparent (data not shown). The GC tip was positioned near the hole and re-approached to a current enhancement of 0.3 before moving the GC tip directly over the hole. For the surface interrogation experiment, a potential step with a 20 s duration was performed on the catalyst with 0.383 V overpotential. Immediately following, the substrate was brought to open circuit for a delay time ranging from 0-2000 ms before a potential step was applied to the GC tip electrode at −1.1 V vs Ag/AgCl with pulse width of 180 s. Finite element analysis simulations were performed with COMSOL Multiphysics v. 5.2 (additional details below).
COMSOL Multiphysics Simulations
COMSOL (COMSOL Multiphysics v. 5.2) simulations were performed to obtain the negative feedback current for the SI-SECM experiments. In COMSOL a 2D axial-symmetric domain was created to simulate the actual size of the SECM tip electrode, the size and thickness of the masked catalyst electrode, and the tip/substrate distance as described in the main paper (image not shown). Two separate edge meshes were used, (1) on the SECM tip boundary, and (2) on the catalyst electrode boundary extending up and halfway across the FEP mask. These edge meshes had a maximum element size of 0.5 μm and a minimum element size of 0.05 μm. A free triangular mesh was used for the solution using COMSOL's built-in “fine” element size, which was calibrated for fluid dynamics.
The COMSOL Electroanalysis module was used to simulate the SECM tip current during the surface interrogation experiment. This module couples Fick's Law of Diffusion with the Butler-Volmer Equation to obtain the concentration of the oxidized and reduced species in solution, as well as the current on the electro-active boundary as a function of applied potential. Since the reduction of Fe(III)-TEA to Fe(II)-TEA is a fast outer-sphere, one-electron transfer, 1 cm/s was used as the electron-transfer kinetic rate constant and a=0.5 for the transfer coefficient. The diffusion coefficient for both the Fe(III)-TEA and Fe(II)-TEA species was 2E-6 cm2/s as previously reported. (See Arroyo-Currás, N.; Bard, A. J., J. Phys. Chem. C 2015, 119, 8147-8154.) The tip potential in the simulations was exactly as it was in the experiment. The tip/substrate distance was 7 microns above the surface of the FEP mask. The initial concentration of redox mediator, Fe(III)-TEA, used was 28 mM for the crystal-derived Ni0.8:Fe0.2 and 65 mM for the microwave-assisted Ni0.8:Fe0.2 (different concentrations of redox mediator were attributed to evaporative losses of solution from argon bubbling in between experiments).
Results and Discussion
Materials Synthesis
Fe3++3HCO3−→Fe(HCO3)3 (Equation 1)
2Fe(HCO3)3→Fe2(CO3)3+3CO2+3H2O (Equation 2)
Fe2(CO3)3→iron oxides+3CO2 (Equation 3)
Materials Characterization
SEM images of the crystal-derived Ni0.8:Fe0.2 prior to electrochemical conditioning (
High resolution transmission electron microscopy (HRTEM) images (
XPS was performed on the crystal-derived Ni0.8:Fe0.2 oxide prior to conditioning (
On the microwave-assisted structure, the Ni 2p3/2 binding energy was 855.9 eV, indicative of Ni(OH)2 or NiOOH.30,60 The single O 1S peak at a binding energy of 531.2 eV is indicative of nickel oxide, nickel hydroxide, or iron hydroxide species.30,59-61 The Fe 2p3/2 binding energy of 711.1 eV is also indicative of an iron binding energy in a hydroxide structure.61 However, the solution-derived (non-microwaved) binding energies contain a crucial difference when compared to that of the microwave-assisted. On the non-microwaved sample, there is a C is binding energy at 289.2 eV, which is not present on the microwave-assisted structure. The 289.2 eV peak is consistent with a carbonate peak,58 which gives strong evidence to support the formation of an inactive iron carbonate species in the initial steps of the synthesis preceding the microwave step. In addition, this XPS data is further evidence that the microwave-assisted synthesis is able to create a nickel-iron structure with no measurable segregation of iron.
Electrochemical Characterization
Rotating disc electrode (RDE) cyclic voltammograms of solution-derived (non-microwaved) and microwave-assisted Ni0.8:Fe0.2 on a glassy carbon electrode, along with bare glassy carbon are shown in
To further demonstrate the utility of the microwave-step, the catalytic activity of non-microwaved and microwave-assisted structures of mixed-metal Ni1-x:Fex with different Ni:Fe ratios (representative cyclic voltammograms are shown in
To compare the MW-E and MW-D Ni0.8:Fe0.2 to the crystal-derived Ni0.8:Fe0.2 oxyhydroxide and crystalline IrOx, cyclic voltammograms were performed with all samples deposited onto FTO-coated glass (
In order to determine if the increase in catalytic activity of the microwave-assisted electrodeposited Ni0.8:Fe0.2 samples was due to an increase in the electrochemical surface area (ECSA), the double layer capacitance was measured via cyclic voltammetry (data not shown). Similar and very low roughness factors were measured on both the crystalline Ni0.8Fe0.2OOH and the microwave-assisted nanoamorphous Ni0.8:Fe0.2 structures, 1.2 and 1.4, respectively. In addition, a slightly higher mass loading was observed for the crystal-derived sample (120±20 μg cm−2) as compared to the microwave-assisted sample (60±20 μg cm−2). These results suggest that the increased electrocatalytic activity of the microwave-assisted structure is not simply due to an increase in the ECSA or an increase in the mass loading.
While the microwave-assisted Ni0.8:Fe0.2 sample showed an OER overpotential of 250 mV at 10 mA cm−2, overpotentials obtained from
Surface-Interrogation Scanning Electrochemical Microscopy
In order to determine if the reason for the increased activity of the microwave-assisted, nanoamorphous (Ni0.8:Fe0.2) structure was due to an increased percentage of “fast” catalytic sites, surface interrogation scanning electrochemical microscopy (SI-SECM) was performed on both the nanoamorphous and crystalline samples. Traditionally, SI-SECM involves two ultramicroelectrodes (UMEs) of the same size aligned such that analyte produced from one of the electrodes (tip or substrate) is quantified via electrochemical detection without the analyte ever escaping the tip/substrate gap.38 The standard use of size-matched UMEs requires that one of the UME surfaces be composed of the electrocatalytic material to be analyzed. Justification of this technique is difficult if the preliminary studies (i.e. cyclic voltammetry) of the catalytic material are better suited on conductive supports (i.e. FTO-coated glass), which are not easily created as UME surfaces. To circumvent this problem, a masking technique was introduced to create pseudo-UME surfaces from large (a >500 μm) substrates. A 12.5 μm thick Teflon fluorinated ethylene propylene (FEP) film with a voided center ([effective] radius a=31 and 37 μm for crystal-derived Ni0.8:Fe0.2 and microwave-assisted Ni0.8:Fe0.2 samples, respectively) was heat-bonded to the electrodes to yield a pseudo-UME substrate suitable to perform SI-SECM. A glassy carbon UME (radius a=29 μm) was crafted similar in procedure to that described elsewhere.37 The redox mediator employed for the SI-SECM titration was an iron(III)-triethanolamine (Fe(III)-TEA) complex (E°=−1.05 V vs Ag/AgCl in 2 M NaOH).34,37
To conduct the SI-SECM experiment, the tip was aligned with the substrate and approached to a tip/substrate gap of ca. 7 μm above the FEP mask. The surface interrogation mode involved two steps (
Fe(III)−TEA+e−→Fe(II)−TEA (Equation 4)
Fe(II)−TEA+S*→Fe(III)−TEA+S (Equation 5)
When the NiIII, NiIV and/or FeIV surface-active species (S*) are present, the titration of the surface species back to NiII and/or FeIII produces positive feedback current on the tip until all surface-active species on the substrate are consumed (Equation 5).34 In this experiment, when the substrate was switched to OCP these surface species participated solely in water oxidation until the potential of the tip was stepped to Etip after tdelay (Equations 6 and 7). By titrating the surface species remaining after different delay times, concentration-time profiles were obtained, allowing for the extraction of the pseudo-first order rate constant of water oxidation by the catalytic sites of the substrate.
To obtain the concentration profiles (data not shown) from the current-time data, the surface charge densities at each tdelay were first quantified by integrating the net current (difference of measured current and negative feedback current).34 The SI-SECM negative feedback trace (data not shown) was simulated via finite element analysis in COMSOL Multiphysics (details provided above).
FeIV+H2OFeIII+OH(ads).+H+ (Equation 6)
NiIV+H2ONiIII+OH(ads).+H+(Equation 7)
The resulting concentration-time profiles (
This Example reports a microwave-assisted synthesis method to create mixed-metal nanoamorphous nickel-iron catalysts for the OER. It was observed that on flat electrodes (roughness factor <1.4), the OER electrocatalytic activity was higher on the microwave-assisted, nanoamorphous Ni0.8:Fe0.2 structure compared to the crystal-derived Ni0.8:Fe0.2 oxyhydroxide. By benchmarking the microwave-assisted, nanoamorphous structure, it was determined that it had a very low overpotential of 286 mV at 10 mA cm−2. The kinetics of the active sites of both the crystal-derived and microwave-assisted Ni0.8:Fe0.2 samples was measured directly using the surface interrogation mode of scanning electrochemical microscopy (SI-SECM). It was determined that the microwave-assisted structure contained all “fast” sites with rate constant 1.9 s−1, and the crystal-derived structure contained 7% “fast” sites with rate constant 1.3 s−1 and 93% slow sites with a rate constant of 0.05 s−1. This finding shows that the amorphous structure provides highly efficient Ni—Fe catalysts for electrochemical water oxidation.
Additional mixed-metal oxyhydroxide electrocatalytic materials were prepared according to the synthesis described in the “Nanoamorphous Microwave-Assisted Catalysts” section of Example 1, above. For Co containing materials, cobalt(II) nitrate [Co(NO3).6H2O] was used. For W containing materials ammonium metatungstate hydrate was used. In all cases, the solvent was water, the gelling agent was NaHCO3 and all other conditions were as described in Example 1, above. The materials included microwave-assisted W:Fe:Co, Ni:Fe:Co, and Ni:Co. Microwave-assisted Co, microwave-assisted Ni0.8:Fe0.2, crystal-derived Co, and crystalline IrOx were prepared as described in Example 1, above, for comparison. Illustrative electrochemical results are shown in
The word “illustrative” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “illustrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”.
The foregoing description of illustrative embodiments of the invention has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
The present application claims priority to U.S. Provisional Patent Application No. 62/329,333 that was filed Apr. 29, 2016, to U.S. Provisional Patent Application No. 62/444,677 that was filed Jan. 10, 2017, and to U.S. Provisional Patent Application No. 62/471,097 that was filed Mar. 14, 2017, the entire disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
20100320155 | Enos | Dec 2010 | A1 |
Entry |
---|
Smith et al., Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel, J. Am. Chem. Soc., 135, Jul. 24, 2013, pp. 11580-11586. |
Wang et al., Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction, Nano Research 8(12), Oct. 10, 2015, pp. 3815-3822. |
Smith et al., Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis, Science, vol. 340, Mar. 28, 2013, pp. 60-63. |
Zhang et al., Homogeneously dispersed multimetal oxygen-evolving catalysts, Science, vol. 352, Mar. 24, 2016, pp. 333-337. |
Katsuki et al., Microwave-Hydrothermal Synthesis of Monodispersed Nanophase α-Fe2O3, J. Am. Ceram. Soc., 84 (10), Oct. 2001, pp. 2313-2317. |
Gorlin et al., Dynamical changes of a Ni—Fe oxide water splitting catalystinvestigated at different pH, Catalysis Today 262, Nov. 24, 2015, pp. 65-73. |
Number | Date | Country | |
---|---|---|---|
20170314142 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62471097 | Mar 2017 | US | |
62444677 | Jan 2017 | US | |
62329333 | Apr 2016 | US |