This invention relates generally to microwave heating and, more particularly, to heating materials in a cylindrical microwave chamber.
Many industrial processes require that materials be heated. Microwave energy is used in many of these processes to cook, dry, sterilize, or cure a variety of materials. In many applications, it is important that the material be heated uniformly. In some cases, the material is wrapped around a fixture, such as a metal mandrel. But the introduction of metal into a microwave exposure chamber can cause arcing and make the electromagnetic field difficult to control. Arcing can cause damage to both the material being processed and the processing equipment. And without good control of the electromagnetic field, the material may not be heated uniformly or efficiently. Consequently, there is a need for a microwave heating apparatus that can efficiently and uniformly heat materials without arcing.
These and other needs are satisfied by a heating apparatus embodying features of the invention. The apparatus comprises a cylindrical wall that extends axially from a first end to a second end. The wall includes an interior surface and an exterior surface. A slot is formed in the wall. An end plate closes off the second end of the wall to form a cylindrical chamber. The apparatus also includes a waveguide. The waveguide forms an opening along its length. The waveguide connects to the cylindrical chamber with the opening in communication with the slot. The waveguide couples microwave energy into the cylindrical chamber through the opening and the slot.
In another aspect of the invention, a waveguide comprises two opposite first walls connected to two opposite second walls to form a length of rectangular waveguide extending in the direction of microwave propagation. An opening is formed in one of the first walls along a portion of the length of the waveguide. Bars extend across the opening. The bars are spaced apart along the length of the waveguide. The waveguide is attachable to a microwave chamber with the opening in communication with a slot in the microwave chamber. The waveguide couples microwave energy through the opening and the slot into the microwave chamber.
In another aspect of the invention, a waveguide forms a pattern of alternating metallic members and gaps in one of the walls of the wave guide. The metallic members are spaced apart in the direction of microwave propagation along the waveguide. The waveguide is attachable to a microwave chamber with the gaps in communication with a slot in the microwave chamber to release microwave energy through the gaps and the slot into the microwave chamber in a preselected manner determined by the pattern of alternating metallic members and gaps.
In yet another aspect of the invention, a mode stirrer for a cylindrical microwave exposure chamber comprises a rotatable shaft defining an axis of rotation. Sector-shaped blades are attached to the shaft. The blades lie in parallel planes normal to the axis of rotation.
These features and aspects of the invention, as well as its advantages, are better understood by reference to the following description, appended claims, and accompanying drawings, in which:
A microwave exposure apparatus embodying features of the invention is shown in
In this version, magnetrons 22 are used as microwave energy sources. In this example, the magnetrons operate at 2.45 GHz and 6 kW, although other frequencies and power levels are possible depending on the application. Each magnetron is connected to an independent waveguide 24. A circulator 23 is connected to the magnetron to protect it from damage. A tuning section 26 in the waveguide is used to tune the magnetron to the load. The rectangular waveguide is dimensioned to support a TE10-mode electromagnetic wave. The microwave energy propagates down the waveguides and is coupled into the chamber through two slots. Each waveguide includes a pair of leaky bar structures 28 that launch microwave energy into the chamber through the slots 20. The structures are connected in series, with the generator end of each at opposite ends of the chamber. The waveguide terminates in a shorting plate 30 for increased efficiency.
The magnetrons are powered by power supplies 32. A controller 34 controls the power supplies and monitors system operating conditions. For example, an electromagnetic radiation leak detector 36 connects to the controller, which monitors the detector's output to indicate the radiation level.
The inside of the microwave chamber is shown in
A mode stirrer 38 (
The leaky bar waveguide 28 is shown alone in
The chamber 10 is especially useful for exposing materials 58 wrapped around an elongated member, such as a metal mandrel 60, to microwave energy. The mandrel is supported by and extends through a cover plate 62. The cover plate is sealed to the first end of the chamber. The mandrel extends axially into the chamber. As shown in
The mandrel is maintained cantilevered in the chamber by means of the cover plate, which has a rotatable bearing 66 against which the mandrel bears as it is rotated by a motor (not shown). As the mandrel rotates, the microwave energy emitted through the slots impinges directly on the material being processed. A uniform radiation pattern is maintained in the chamber through the geometry of the chamber and the mandrel and by the mode stirrer, which better distributes the energy throughout the chamber.
Although the invention has been described in detail with respect to a preferred version, other versions are possible. For example, the bars on the leaky waveguide could have cross sections other than circles, such as square, rectangular, or elliptical, with or without rounded edges, or could even be formed as residual strips of the waveguide wall separated by gaps cut in the wall in a pattern providing a selected release of energy. As another example, if more, closely spaced leaky bar waveguides are used to couple microwave energy into the chamber, rotating material that might otherwise have to be rotated to be uniformly heated may not be necessary. So, as these examples suggest, the spirit and scope of the invention is not limited to the example version described in detail.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/02767 | 1/31/2005 | WO | 00 | 7/25/2006 |
Number | Date | Country | |
---|---|---|---|
60521003 | Feb 2004 | US |