The present disclosure relates generally to microwave circulators, and more specifically to microwave circulators that are based on dielectric waveguides.
Circulators are passive devices that are essential tools in controlling, manipulating and directing radio frequency (RF) signals. As shown in
Circulators contain three or more ports and are configured to be unidirectional and non-reciprocal, such that an input signal of a first port 110 is forwarded as an output signal of a second port 120, but an input signal of the second port 120 is rotated to a third port 130, rather than returned to the first port 110. In some embodiments, a circulator may be configured to be used as an isolator (not shown), when one of the ports is terminated with a matched load. Thus, a signal received at the first port 110 of the isolator circulator is output at the second port 120, but an input signal to the second port 120 is terminated and not output to the first port 110.
The most common type of circulators are ferrite circulators which are composed of ferrite materials and magnets which determine the direction of the signal flow. The interaction of the magnet's magnetic field with the ferrite material creates a directional field in either a clockwise or counterclockwise direction, in relation to the circulator ports. These circulators are often divided into two types: a waveguide embodiment, and a strip line embodiment. The waveguide embodiment, an example of which is shown in
Current designs of circulators, however, require a high production cost for manually assembling and calibrating each circulator, as well as requiring physically large dimensions, both in width and in height.
It would therefore be advantageous to provide a solution that would overcome the challenges noted above.
A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “certain embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.
Certain embodiments disclosed herein include a microwave circulator based on dielectric waveguides, comprising: a dielectric element having three or more ports forming a waveguide; and a ferrite element placed within the dielectric element; wherein a dielectric constant of the dielectric element is correlated to a dielectric constant of the ferrite element.
The subject matter disclosed herein is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed embodiments. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.
The various disclosed embodiments are directed to an RF circulator that includes both a dielectric element and a ferrite element.
The dielectric element further includes three or more ports, where each port of the circulator 400 includes a planar surface 440 and may further include a number of closed edges 450.
The ferrite element 410 is placed within the dielectric element 420 and has a dielectric constant that is correlated to the dielectric constant of the dielectric element 420. The shape of the ferrite element 410 corresponds to the shape of the closed edges 450 of the dielectric element 420 and to the ratio of the dielectric constants of the ferrite and dielectric materials. There are four parameters that are considered: the dielectric constant of the ferrite element, the dielectric constant of the dielectric element, the shape of the ferrite element, and the shape of the dielectric element. The first two parameters depend on the chosen materials, while the last two parameters are derived from associated Maxwell equations in order that the prime electromagnetic mode will be propagated in the waveguide without reflection. Maxwell equations for the two first parameters and the chosen last two parameters can be performed numerically with a finite element method solver, such as HFSS (High-Frequency Structure Simulator) or similar software.
In an embodiment, the closest surface 430 of the ferrite element 410 to a port is positioned facing toward the planar surface 440 of the closest port of the circulator 400.
In an optional embodiment, shown in
In an embodiment, the excitation of the waveguides is accomplished with three metal pins 710 for a three-port circulator 700. A magnetic field is applied in a direction parallel to the axis of the cylindrical ferrite element 730. To achieve the magnetic field, a small permanent magnet is attached to the top or the bottom surface of the ferrite element 730.
As a non-limiting exemplary embodiment, a dielectric element 720 can measure 7 mm by 7 mm by 0.5 mm, is constructed out of ceramic material, and possesses a dielectric constant of 250. The ferrite element 730 can be a cylinder with dimensions of 1.5 mm in diameter and 0.5 mm in height, with a dielectric constant of approximately 20, and the vias 740 are cylinders, each with a diameter of 200 microns.
The microwave circulator disclosed herein can be integrated in hand-held devices such as, but not limited to, a cellular telephone, a smartphone, a tablet computer, a laptop computer, a wearable electronic device, and the like. The RF circulator can also be integrated into other communication devices, such as radars, e.g., for an autonomous vehicle, a base-station, routers, and so on.
In an embodiment, the bandwidth of the microwave circulator disclosed herein is between 1 gigahertz (GHz) and 7 GHz, where the operating frequency of the RF circulator includes a plurality of distinct frequency bands.
As used herein, the phrase “at least one of” followed by a listing of items means that any of the listed items can be utilized individually, or any combination of two or more of the listed items can be utilized. For example, if a system is described as including “at least one of A, B, and C,” the system can include A alone; B alone; C alone; A and B in combination; B and C in combination; A and C in combination; or A, B, and C in combination.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosed embodiment and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosed embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.