Microwave coupled excitation of solid state resonant arrays

Information

  • Patent Grant
  • 7990336
  • Patent Number
    7,990,336
  • Date Filed
    Thursday, June 19, 2008
    16 years ago
  • Date Issued
    Tuesday, August 2, 2011
    13 years ago
Abstract
An electronic receiver array for detecting microwave signals. Ultra-small resonant devices resonate at a frequency higher than the microwave frequency (for example, the optical frequencies) when the microwave energy is incident to the receiver. A microwave antenna couples the microwave energy and excites the ultra-small resonant structures to produce Plasmon activity on the surfaces of the resonant structures. The Plasmon activity produces detectable electromagnetic radiation at the resonant frequency.
Description
COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright or mask work protection. The copyright or mask work owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright or mask work rights whatsoever.


CROSS-REFERENCE TO RELATED APPLICATIONS

The present invention is related to the following co-pending U.S. patent applications which are all commonly owned with the present application:

    • 1. U.S. patent application Ser. No. 11/238,991, entitled “Ultra-Small Resonating Charged Particle Beam Modulator,” filed Sep. 30, 2005;
    • 2. U.S. patent application Ser. No. 10/917,511, entitled “Patterning Thin Metal Film by Dry Reactive Ion Etching,” filed on Aug. 13, 2004;
    • 3. U.S. application Ser. No. 11/203,407, entitled “Method Of Patterning Ultra-Small Structures,” filed on Aug. 15, 2005;
    • 4. U.S. application Ser. No. 11/243,476, entitled “Structures And Methods For Coupling Energy From An Electromagnetic Wave,” filed on Oct. 5, 2005;
    • 5. U.S. application Ser. No. 11/243,477, entitled “Electron beam induced resonance,” filed on Oct. 5, 2005;
    • 6. U.S. application Ser. No. 11/325,448, entitled “Selectable Frequency Light Emitter from Single Metal Layer,” filed Jan. 5, 2006;
    • 7. U.S. application Ser. No. 11/325,432, entitled, “Matrix Array Display,” filed Jan. 5, 2006;
    • 8. U.S. application Ser. No. 11/302,471, entitled “Coupled Nano-Resonating Energy Emitting Structures,” filed Dec. 14, 2005;
    • 9. U.S. application Ser. No. 11/325,571, entitled “Switching Micro-resonant Structures by Modulating a Beam of Charged Particles,” filed Jan. 5, 2006;
    • 10. U.S. application Ser. No. 11/325,534, entitled “Switching Microresonant Structures Using at Least One Director,” filed Jan. 5, 2006;
    • 11. U.S. application Ser. No. 11/350,812, entitled “Conductive Polymers for Electroplating,” filed Feb. 10, 2006;
    • 12. U.S. application Ser. No. 11/349,963, entitled “Method and Structure for Coupling Two Microcircuits,” filed Feb. 9, 2006;
    • 13. U.S. application Ser. No. 11/353,208, entitled “Electron Beam Induced Resonance,” filed Feb. 14, 2006;
    • 14. U.S. application Ser. No. 11/400,280, entitled “Resonant Detectors for Optical Signals,” filed Apr. 10, 2006;
    • 15. U.S. application Ser. No. 11/410,924, entitled “Selectable Frequency EMR Emitter,” filed Apr. 26, 2006; and
    • 16. U.S. application Ser. No. 11/411,129, entitled “Micro Free Electron Laser (FEL),” filed Apr. 26, 2006.


FIELD OF THE DISCLOSURE

This relates in general to an array of receivers that couple energy between electromagnetic radiation (typically, but not necessarily, optical radiation) and an excitation source.


INTRODUCTION

In the related applications described above, micro- and nano-resonant structures are described that react in now-predictable manners when an electron beam is passed in their proximity. Those structures can be formed into groups, or arrays, that allow energy from the electron beam to be converted into the energy of electromagnetic radiation (light) when the electron beam passes nearby. Alternatively, those structures can receive incident electromagnetic radiation (light) and alter a characteristic of the electron beam in a way that can be detected. When the electron beam passes near the structure, it excites synchronized oscillations of the electrons in the structure (surface Plasmon) and/or electrons in the beam. Those excitations can result in reemission of detectable photons as electromagnetic radiation (EMR). The ability to couple energy either into a charged particle beam from light and from a charged particle beam into light has many advantageous applications including, but not limited to, efficient light production, digital signal processing, and receiver array surveillance.


In one or more of the above-referenced prior applications, ultra-small resonant structures were described that have particular interactions upon an electron beam when light was made incident upon them. As shown in FIG. 5, a light receiver 10 can include ultra-small resonant structures 12, such as any one of the ultra-small resonant structures described in U.S. patent application Ser. Nos. 11/238,991; 11/243,476; 11/243,477; 11/325,448; 11/325,432; 11/302,471; 11/325,571; 11/325,534; 11/349,963; and/or 11/353,208 (each of which is identified more particularly above). The resonant structures can be manufactured in accordance with any of U.S. application Ser. Nos. 10/917,511; 11/350,812; or 11/203,407 (each of which is identified more particularly above) or in other ways. Their sizes and dimensions can be selected in accordance with the principles described in those applications and, for the sake of brevity, will not be repeated herein. The contents of the applications described above are assumed to be known to the reader.


In the example of FIG. 5, the receiver 10 includes cathode 20, anode 19, optional energy anode 23, ultra-small resonant structures 12, Faraday cup or other receiving electrode 14, electrode 24, and differential current detector 16.


When the receiver 10 is not being stimulated by encoded light 15, the cathode 20 produces an electron beam 13, which is steered and focused by anode 19 and accelerated by energy anode 23. The electron beam 13 is directed to pass close to but not touching one or more ultra-small resonant structures 12. In this sense, the beam needs to be only proximate enough to the ultra-small resonant structures 12 to invoke detectable electron beam modifications. After the anode 19, the electron beam 13 passes energy anode 23, which further accelerates the electrons in known fashion. When the resonant structures 12 are not receiving the encoded light 15, then the electron beam 13 passes by the resonant structures 12 with the structures 12 having no significant effect on the path of the electron beam 13. The electron beam 13 thus follows, in general, the path 13b and is received by a Faraday cup or other detector electrode 14.


When, however, the encoded light 15 is induced on the resonant structures 12, the encoded light 15 induces surface plasmons to resonate on the resonant structures 12. The ability of the encoded light 15 to induce the surface plasmons is described in one or more of the above applications and is not repeated herein. The electron beam 13 is impacted by the surface plasmon effect causing the electron beam to steer away from path 13b (into the Faraday cup) and into alternative path 13a or 13c, which can be detected by differential current detector 16.


As the term is used herein, the structures are considered ultra-small when they embody at least one dimension that is smaller than the wavelength of the electromagnetic radiation that they are detecting (in the case of FIG. 5, the wavelength of visible light). The ultra-small structures are employed in a vacuum environment. Methods of evacuating the environment where the beam 13 passes by the structures 12 can be selected from known evacuation methods.


With consideration to the solid state resonant arrays described in the related applications, it may be prudent in a wide range of applications to utilize coupled microwave energy as an excitation source. Currently, one proposed method for excitation is a hardwired/driven signal transmitted via electrically connected pads. Although this case has its applications under the conditions of low drive frequency and given that signal transmission/coupling can still excite the devices, there may be alternative applications that may not be optimized from this arrangement. For the benefit of increased coupling, it may be possible to incorporate a microwave antenna to provide energy coupling and excitation to the Solid State Resonant Arrays.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified schematic view of a microwave strip antenna for use with Solid State Resonant Arrays;



FIG. 2 is an alternative simplified schematic view of a microwave spiral antenna for use with Solid State Resonant Arrays;



FIG. 3 is another alternative simplified schematic view of a microwave spiral antenna for use with Solid State Resonant Arrays;



FIG. 4 is another alternative simplified schematic view of a microwave concentric circle antenna for use with Solid State Resonant Arrays; and



FIG. 5 is an example schematic of a charged particle beam antenna described in the related applications.





THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS

The present systems detect microwave energy and convert it into optical (or other higher-than-optical frequency) energy. A simple microwave antenna for use with solid state resonant arrays is shown in FIG. 1. There, a strip antenna 110 includes a microwave antenna 121 of known type arranged near ultra-small resonant structures 120 of the solid state resonant array. In the manner described in the above-referenced applications, the ultra-small resonant structures are designed to emit electromagnetic radiation at a frequency higher than the microwave frequency using very small structures having a physical dimension less that the frequency of the emitted radiation. In the case of emitted optical radiation, the structures have a physical dimension less than the wavelength of the emitted light.


As the microwave antenna 121 is excited, an electromagnetic field profile based on the excitation signal is coupled and transmitted along the microwave antenna 121. The excitation signal can produce plasmon excitation on the ultra-small resonant structures 120 of the solid state resonant array, which based on their configuration, will emit their optical radiation at the designed wavelength.


Alternatively, the microwave antenna could be constructed in more elegant ways so as to excite many arrays at a time. One example is the spiral antenna 112 of FIG. 2. There, several lines of arrays 130 extend outwardly from a central point. The microwave antenna 131 spirals out from that central point beneath the lines of arrays 130.


Other variations on the array alignment and orientation are also of importance, and will be dependent on the application. Yet another example antenna 113 is shown in FIG. 3, in which the spiral-shaped microwave antenna 133 originates at the same central point, but the arrays are not formed in lines as in FIG. 2. Instead, the arrays 134 follow the path of the microwave antenna 133 to couple the microwave energy by their proximity to the edges of the antenna 133.


In addition to being used as a single wavelength resonant device, the detection device 114 of FIG. 4 represents a microwave antenna 135 that will couple a different frequency of microwave energy to a separate area of solid state resonant arrays 136. Thus, the size, length, arrangement and periodicity of the ultra-small resonant structures can be altered to tune different lines of the arrays 136 to different microwave frequencies. With a number of solid state resonant arrays 136 designed for a number of frequencies, essentially conversion of any microwave frequency to optical wavelength output is possible.

Claims
  • 1. A receiver array to detect microwave radiation, comprising: a microwave antenna; andan array of solid state resonant structures proximate to but not touching the microwave antenna to couple energy from the microwave antenna to the resonant structures to thereby produce resonant Plasmon activity on the surfaces of the resonant structures at a resonant frequency higher than the highest frequency in the microwave frequency range, the solid state resonant structures in the array being arranged in a path spaced apart from each other in a vacuum environment and having a physical dimension less than said wavelength of the resonant frequency higher than the microwave frequency.
  • 2. The receiver according to claim 1 wherein the microwave antenna is in the form of a spiral.
  • 3. The receiver according to claim 2 wherein the spiral defines a center and the array of solid state resonant structures proceeds outwardly from the center.
  • 4. The receiver according to claim 2 wherein the spiral defines a center and the array of solid state resonant structures includes multiple lines of solid state resonant structures, wherein each line of solid state resonant structures proceeds outwardly from the center.
  • 5. The receiver according to claim 2 wherein the array is arranged to trace at least a portion of the spiral.
  • 6. The receiver according to claim 1 wherein the microwave antenna is in the form of concentric circles.
  • 7. The receiver according to claim 6 wherein the concentric circles define a center and the array of solid state resonant structures includes multiple lines of solid state resonant structures, wherein each line of solid state resonant structures proceeds outwardly from the center.
  • 8. The receiver according to claim 7 wherein each line of solid state resonant structures is tuned to a different microwave frequency.
  • 9. The receiver according to claim 7 wherein at least two of the lines of solid state resonant structures are tuned to different microwave frequencies.
  • 10. The receiver according to claim 1, wherein the resonant Plasmon activity on the surfaces of the resonant structures is synchronized oscillations of electrons on the surfaces of the resonant structures.
  • 11. A system, comprising: a microwave excitation source producing microwave energy;a microwave antenna to receive the microwave energy; andan array of solid state resonant structures to couple the microwave energy from the microwave antenna to the resonant structures to thereby produce resonant Plasmon activity on the surfaces of the resonant structures at a resonant frequency higher than the highest frequency in the microwave frequency range, the solid state resonant structures in the array being arranged in a path spaced apart from each other in a vacuum environment and having a physical dimension less than said wavelength of the resonant frequency higher than the microwave frequency.
  • 12. The receiver according to claim 11 wherein the microwave antenna is in the form of a spiral.
  • 13. The receiver according to claim 12 wherein the spiral defines a center and the array of solid state resonant structures proceeds outwardly from the center.
  • 14. The receiver according to claim 12 wherein the spiral defines a center and the array of solid state resonant structures includes multiple lines of solid state resonant structures, wherein each line of solid state resonant structures proceeds outwardly from the center.
  • 15. The receiver according to claim 12 wherein the array is arranged to trace at least a portion of the spiral.
  • 16. The receiver according to claim 11 wherein the microwave antenna is in the form of concentric circles.
  • 17. The receiver according to claim 16 wherein the concentric circles define a center and the array of solid state resonant structures includes multiple lines of solid state resonant structures, wherein each line of solid state resonant structures proceeds outwardly from the center.
  • 18. The receiver according to claim 17 wherein each line of solid state resonant structures is tuned to a different microwave frequency.
  • 19. The receiver according to claim 17 wherein at least two of the lines of solid state resonant structures are tuned to different microwave frequencies.
  • 20. The receiver according to claim 11, wherein the resonant Plasmon activity on the surfaces of the resonant structures is synchronized oscillations of electrons on the surfaces of the resonant structures.
US Referenced Citations (389)
Number Name Date Kind
1948384 Lawrence Feb 1934 A
2307086 Varian et al. Jan 1943 A
2431396 Hansell Nov 1947 A
2473477 Smith Jun 1949 A
2634372 Salisbury Apr 1953 A
2932798 Kerst et al. Apr 1960 A
2944183 Drexler Jul 1960 A
2966611 Sandstrom Dec 1960 A
3231779 White Jan 1966 A
3274428 Neville Sep 1966 A
3297905 Rockwell et al. Jan 1967 A
3315117 Udelson Apr 1967 A
3387169 Farney Jun 1968 A
3543147 Kovarik Nov 1970 A
3546524 Stark Dec 1970 A
3560694 White Feb 1971 A
3571642 Westcott Mar 1971 A
3586899 Fleisher Jun 1971 A
3761828 Pollard et al. Sep 1973 A
3886399 Symons May 1975 A
3923568 Bersin Dec 1975 A
3989347 Eschler Nov 1976 A
4053845 Gould Oct 1977 A
4269672 Inoue May 1981 A
4282436 Kapetanakos Aug 1981 A
4296354 Neubauer Oct 1981 A
4450554 Steensma et al. May 1984 A
4453108 Freeman, Jr. Jun 1984 A
4482779 Anderson Nov 1984 A
4528659 Jones, Jr. Jul 1985 A
4570103 Schoen Feb 1986 A
4589107 Middleton et al. May 1986 A
4598397 Nelson et al. Jul 1986 A
4630262 Callens et al. Dec 1986 A
4652703 Lu et al. Mar 1987 A
4661783 Gover et al. Apr 1987 A
4704583 Gould Nov 1987 A
4712042 Hamm Dec 1987 A
4713581 Haimson Dec 1987 A
4727550 Chang et al. Feb 1988 A
4740963 Eckley Apr 1988 A
4740973 Madey Apr 1988 A
4746201 Gould May 1988 A
4761059 Yeh et al. Aug 1988 A
4782485 Gollub Nov 1988 A
4789945 Niijima Dec 1988 A
4806859 Hetrick Feb 1989 A
4809271 Kondo et al. Feb 1989 A
4813040 Futato Mar 1989 A
4819228 Baran et al. Apr 1989 A
4829527 Wortman et al. May 1989 A
4838021 Beattie Jun 1989 A
4841538 Yanabu et al. Jun 1989 A
4864131 Rich et al. Sep 1989 A
4866704 Bergman Sep 1989 A
4866732 Carey et al. Sep 1989 A
4873715 Shibata Oct 1989 A
4887265 Felix Dec 1989 A
4890282 Lambert et al. Dec 1989 A
4898022 Yumoto et al. Feb 1990 A
4912705 Paneth et al. Mar 1990 A
4932022 Keeney et al. Jun 1990 A
4981371 Gurak et al. Jan 1991 A
5023563 Harvey et al. Jun 1991 A
5036513 Greenblatt Jul 1991 A
5065425 Lecomte et al. Nov 1991 A
5113141 Swenson May 1992 A
5121385 Tominaga et al. Jun 1992 A
5127001 Steagall et al. Jun 1992 A
5128729 Alonas et al. Jul 1992 A
5130985 Kondo et al. Jul 1992 A
5150410 Bertrand Sep 1992 A
5155726 Spinney et al. Oct 1992 A
5157000 Elkind et al. Oct 1992 A
5163118 Lorenzo et al. Nov 1992 A
5185073 Bindra Feb 1993 A
5187591 Guy et al. Feb 1993 A
5199918 Kumar Apr 1993 A
5214650 Renner et al. May 1993 A
5233623 Chang Aug 1993 A
5235248 Clark et al. Aug 1993 A
5262656 Blondeau et al. Nov 1993 A
5263043 Walsh Nov 1993 A
5268693 Walsh Dec 1993 A
5268788 Fox et al. Dec 1993 A
5282197 Kreitzer Jan 1994 A
5283819 Glick et al. Feb 1994 A
5293175 Hemmie et al. Mar 1994 A
5302240 Hori et al. Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5341374 Lewen et al. Aug 1994 A
5354709 Lorenzo et al. Oct 1994 A
5446814 Kuo et al. Aug 1995 A
5485277 Foster Jan 1996 A
5504341 Glavish Apr 1996 A
5578909 Billen Nov 1996 A
5604352 Schuetz Feb 1997 A
5608263 Drayton et al. Mar 1997 A
5637966 Umstadter et al. Jun 1997 A
5663971 Carlsten Sep 1997 A
5666020 Takemura Sep 1997 A
5668368 Sakai et al. Sep 1997 A
5705443 Stauf et al. Jan 1998 A
5737458 Wojnarowski et al. Apr 1998 A
5744919 Mishin et al. Apr 1998 A
5757009 Walstrom May 1998 A
5767013 Park Jun 1998 A
5780970 Singh et al. Jul 1998 A
5790585 Walsh Aug 1998 A
5811943 Mishin et al. Sep 1998 A
5821836 Katehi et al. Oct 1998 A
5821902 Keen Oct 1998 A
5825140 Fujisawa Oct 1998 A
5831270 Nakasuji Nov 1998 A
5847745 Shimizu et al. Dec 1998 A
5858799 Yee et al. Jan 1999 A
5889449 Fiedziuszko Mar 1999 A
5889797 Nguyen Mar 1999 A
5902489 Yasuda et al. May 1999 A
5963857 Greywall Oct 1999 A
5972193 Chou et al. Oct 1999 A
6005347 Lee Dec 1999 A
6008496 Winefordner et al. Dec 1999 A
6040625 Ip Mar 2000 A
6060833 Velazco May 2000 A
6080529 Ye et al. Jun 2000 A
6117784 Uzoh Sep 2000 A
6139760 Shim et al. Oct 2000 A
6180415 Schultz et al. Jan 2001 B1
6195199 Yamada Feb 2001 B1
6210555 Taylor et al. Apr 2001 B1
6222866 Seko Apr 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6281769 Fiedziuszko Aug 2001 B1
6297511 Syllaios et al. Oct 2001 B1
6301041 Yamada Oct 2001 B1
6303014 Taylor et al. Oct 2001 B1
6309528 Taylor et al. Oct 2001 B1
6316876 Tanabe Nov 2001 B1
6338968 Hefti Jan 2002 B1
6370306 Sato et al. Apr 2002 B1
6373194 Small Apr 2002 B1
6376258 Hefti Apr 2002 B2
6407516 Victor Jun 2002 B1
6441298 Thio Aug 2002 B1
6448850 Yamada Sep 2002 B1
6453087 Frish et al. Sep 2002 B2
6470198 Kintaka et al. Oct 2002 B1
6504303 Small Jan 2003 B2
6524461 Taylor et al. Feb 2003 B2
6525477 Small Feb 2003 B2
6534766 Abe et al. Mar 2003 B2
6545425 Victor Apr 2003 B2
6552320 Pan Apr 2003 B1
6577040 Nguyen Jun 2003 B2
6580075 Kametani et al. Jun 2003 B2
6603781 Stinson et al. Aug 2003 B1
6603915 Glebov et al. Aug 2003 B2
6624916 Green et al. Sep 2003 B1
6636185 Spitzer et al. Oct 2003 B1
6636534 Madey et al. Oct 2003 B2
6636653 Miracky et al. Oct 2003 B2
6640023 Miller et al. Oct 2003 B2
6642907 Hamada et al. Nov 2003 B2
6687034 Wine et al. Feb 2004 B2
6700748 Cowles et al. Mar 2004 B1
6724486 Shull et al. Apr 2004 B1
6738176 Rabinowitz et al. May 2004 B2
6741781 Furuyama May 2004 B2
6777244 Pepper et al. Aug 2004 B2
6782205 Trisnadi et al. Aug 2004 B2
6791438 Takahashi et al. Sep 2004 B2
6800877 Victor et al. Oct 2004 B2
6801002 Victor et al. Oct 2004 B2
6808955 Ma Oct 2004 B2
6819432 Pepper et al. Nov 2004 B2
6829286 Guilfoyle et al. Dec 2004 B1
6831301 Murphy et al. Dec 2004 B2
6834152 Gunn et al. Dec 2004 B2
6870438 Shino et al. Mar 2005 B1
6871025 Maleki et al. Mar 2005 B2
6885262 Nishimura et al. Apr 2005 B2
6900447 Gerlach et al. May 2005 B2
6908355 Habib et al. Jun 2005 B2
6909092 Nagahama Jun 2005 B2
6909104 Koops Jun 2005 B1
6924920 Zhilkov Aug 2005 B2
6936981 Gesley Aug 2005 B2
6943650 Ramprasad et al. Sep 2005 B2
6952492 Tanaka et al. Oct 2005 B2
6953291 Liu Oct 2005 B2
6954515 Bjorkholm et al. Oct 2005 B2
6944369 Deliwala Nov 2005 B2
6965284 Maekawa et al. Nov 2005 B2
6965625 Mross et al. Nov 2005 B2
6972439 Kim et al. Dec 2005 B1
6995406 Tojo et al. Feb 2006 B2
7010183 Estes et al. Mar 2006 B2
7064500 Victor et al. Jun 2006 B2
7068948 Wei et al. Jun 2006 B2
7092588 Kondo Aug 2006 B2
7092603 Glebov et al. Aug 2006 B2
7099586 Yoo Aug 2006 B2
7120332 Spoonhower et al. Oct 2006 B1
7122978 Nakanishi et al. Oct 2006 B2
7130102 Rabinowitz Oct 2006 B2
7177515 Estes et al. Feb 2007 B2
7194798 Bonhote et al. Mar 2007 B2
7230201 Miley et al. Jun 2007 B1
7253426 Gorrell et al. Aug 2007 B2
7267459 Matheson Sep 2007 B2
7267461 Kan et al. Sep 2007 B2
7279686 Schneiker Oct 2007 B2
7282776 Gorrell Oct 2007 B2
7309953 Tiberi et al. Dec 2007 B2
7342441 Gorrell et al. Mar 2008 B2
7359589 Gorrell et al. Apr 2008 B2
7361916 Gorrell et al. Apr 2008 B2
7362972 Yavor et al. Apr 2008 B2
7375631 Moskowitz et al. May 2008 B2
7397055 Barker et al. Jul 2008 B2
7408147 Blick et al. Aug 2008 B2
7436177 Gorrell et al. Oct 2008 B2
7442940 Gorrell et al. Oct 2008 B2
7443358 Gorrell et al. Oct 2008 B2
7459099 Kubena et al. Dec 2008 B2
7470920 Gorrell et al. Dec 2008 B2
7473917 Singh Jan 2009 B2
7498730 Innocenti et al. Mar 2009 B2
7554083 Gorrell et al. Jun 2009 B2
7557365 Gorrell et al. Jul 2009 B2
7557647 Gorrell et al. Jul 2009 B2
7558490 Gorrell et al. Jul 2009 B2
7569836 Gorrell Aug 2009 B2
7573045 Gorrell et al. Aug 2009 B2
7579609 Gorrell et al. Aug 2009 B2
7583370 Gorrell et al. Sep 2009 B2
7586097 Gorrell et al. Sep 2009 B2
7586167 Gorrell et al. Sep 2009 B2
7605835 Gorrell Oct 2009 B2
7619373 Gorrell et al. Nov 2009 B2
7626179 Gorrell et al. Dec 2009 B2
7646991 Gorrell et al. Jan 2010 B2
7656094 Gorrell et al. Feb 2010 B2
7659513 Gorrell et al. Feb 2010 B2
7688274 Gorrell et al. Mar 2010 B2
7710040 Gorrell et al. May 2010 B2
7714513 Gorrell et al. May 2010 B2
7728397 Gorrell et al. Jun 2010 B2
7728702 Gorrell Jun 2010 B2
7876793 Gorrell Jan 2011 B2
20010002315 Schultz et al. May 2001 A1
20010025925 Abe et al. Oct 2001 A1
20010045360 Omasa Nov 2001 A1
20020009723 Hefti Jan 2002 A1
20020017827 Zuppero et al. Feb 2002 A1
20020027481 Fiedziuszko Mar 2002 A1
20020036121 Ball et al. Mar 2002 A1
20020036264 Nakasuji et al. Mar 2002 A1
20020053638 Winkler et al. May 2002 A1
20020056645 Taylor et al. May 2002 A1
20020068018 Pepper et al. Jun 2002 A1
20020070671 Small Jun 2002 A1
20020071457 Hogan Jun 2002 A1
20020122531 Whitham Sep 2002 A1
20020135665 Gardner Sep 2002 A1
20020139961 Kinoshita et al. Oct 2002 A1
20020158295 Armgarth et al. Oct 2002 A1
20020191650 Madey et al. Dec 2002 A1
20030010979 Pardo Jan 2003 A1
20030012925 Gorrell Jan 2003 A1
20030016412 Small Jan 2003 A1
20030016421 Small Jan 2003 A1
20030034535 Barenburg et al. Feb 2003 A1
20030103150 Catrysse et al. Jun 2003 A1
20030106998 Colbert et al. Jun 2003 A1
20030127944 Clark et al. Jul 2003 A1
20030155521 Feuerbaum Aug 2003 A1
20030158474 Scherer et al. Aug 2003 A1
20030164947 Vaupel Sep 2003 A1
20030179974 Estes et al. Sep 2003 A1
20030206708 Estes et al. Nov 2003 A1
20030214695 Abramson et al. Nov 2003 A1
20030222579 Habib et al. Dec 2003 A1
20040011432 Podlaha et al. Jan 2004 A1
20040061053 Taniguchi et al. Apr 2004 A1
20040080285 Victor et al. Apr 2004 A1
20040085159 Kubena et al. May 2004 A1
20040092104 Gunn, III et al. May 2004 A1
20040108471 Luo et al. Jun 2004 A1
20040108473 Melnychuk et al. Jun 2004 A1
20040108823 Amaldi et al. Jun 2004 A1
20040114854 Ouchi Jun 2004 A1
20040136715 Kondo Jul 2004 A1
20040150991 Ouderkirk et al. Aug 2004 A1
20040154925 Podlaha et al. Aug 2004 A1
20040171272 Jin et al. Sep 2004 A1
20040180244 Tour et al. Sep 2004 A1
20040184270 Halter Sep 2004 A1
20040213375 Bjorkholm et al. Oct 2004 A1
20040217297 Moses et al. Nov 2004 A1
20040218651 Iwasaki et al. Nov 2004 A1
20040231996 Webb Nov 2004 A1
20040240035 Zhilkov Dec 2004 A1
20040264867 Kondo Dec 2004 A1
20050023145 Cohen et al. Feb 2005 A1
20050045821 Noji et al. Mar 2005 A1
20050045832 Kelly et al. Mar 2005 A1
20050054151 Lowther et al. Mar 2005 A1
20050062903 Cok et al. Mar 2005 A1
20050067286 Ahn et al. Mar 2005 A1
20050082469 Carlo Apr 2005 A1
20050092929 Schneiker May 2005 A1
20050104684 Wojcik May 2005 A1
20050105595 Martin et al. May 2005 A1
20050105690 Pau et al. May 2005 A1
20050145882 Taylor et al. Jul 2005 A1
20050152635 Paddon et al. Jul 2005 A1
20050162104 Victor et al. Jul 2005 A1
20050180678 Panepucci et al. Aug 2005 A1
20050190637 Ichimura et al. Sep 2005 A1
20050191055 Maruyama et al. Sep 2005 A1
20050194258 Cohen et al. Sep 2005 A1
20050201707 Glebov et al. Sep 2005 A1
20050201717 Matsumura et al. Sep 2005 A1
20050206314 Habib et al. Sep 2005 A1
20050212503 Deibele Sep 2005 A1
20050230822 Tran Oct 2005 A1
20050231138 Nakanishi et al. Oct 2005 A1
20050231855 Tran Oct 2005 A1
20050249451 Baehr-Jones et al. Nov 2005 A1
20050285541 LeChevalier Dec 2005 A1
20060007730 Nakamura et al. Jan 2006 A1
20060018619 Helffrich et al. Jan 2006 A1
20060023991 Okubora Feb 2006 A1
20060035173 Davidson et al. Feb 2006 A1
20060045418 Cho et al. Mar 2006 A1
20060050269 Brownell Mar 2006 A1
20060060782 Khursheed Mar 2006 A1
20060062258 Brau et al. Mar 2006 A1
20060131176 Hsu Jun 2006 A1
20060131695 Kuekes et al. Jun 2006 A1
20060159131 Liu et al. Jul 2006 A1
20060164496 Tokutake et al. Jul 2006 A1
20060187794 Harvey et al. Aug 2006 A1
20060208667 Lys et al. Sep 2006 A1
20060216940 Gorrell et al. Sep 2006 A1
20060232364 Koh et al. Oct 2006 A1
20060243925 Barker et al. Nov 2006 A1
20060260674 Tran Nov 2006 A1
20060274922 Ragsdale Dec 2006 A1
20070003781 de Rochemont Jan 2007 A1
20070013765 Hudson et al. Jan 2007 A1
20070034518 Gorrell et al. Feb 2007 A1
20070075263 Gorrell et al. Apr 2007 A1
20070075264 Gorrell et al. Apr 2007 A1
20070075907 Gorrell et al. Apr 2007 A1
20070085039 Gorrell et al. Apr 2007 A1
20070086915 LeBoeuf et al. Apr 2007 A1
20070116420 Estes et al. May 2007 A1
20070146704 Schmidt et al. Jun 2007 A1
20070152176 Gorrell et al. Jul 2007 A1
20070154846 Gorrell et al. Jul 2007 A1
20070170370 Gorrell et al. Jul 2007 A1
20070194357 Oohashi Aug 2007 A1
20070200646 Gorrell et al. Aug 2007 A1
20070200940 Gruhlke et al. Aug 2007 A1
20070238037 Wuister et al. Oct 2007 A1
20070252983 Tong et al. Nov 2007 A1
20070257619 Gorrell et al. Nov 2007 A1
20070258492 Gorrell Nov 2007 A1
20070258675 Gorrell et al. Nov 2007 A1
20070258689 Gorrell et al. Nov 2007 A1
20070258690 Gorrell et al. Nov 2007 A1
20070258720 Gorrell et al. Nov 2007 A1
20070259488 Gorrell et al. Nov 2007 A1
20070259641 Gorrell et al. Nov 2007 A1
20070264023 Gorrell et al. Nov 2007 A1
20070264030 Gorrell et al. Nov 2007 A1
20070282030 Anderson et al. Dec 2007 A1
20070284527 Zani et al. Dec 2007 A1
20070297740 Zhou Dec 2007 A1
20080069509 Gorrell et al. Mar 2008 A1
20080083881 Gorrell et al. Apr 2008 A1
20080218102 Sliski et al. Sep 2008 A1
20080283501 Roy Nov 2008 A1
20080302963 Nakasuji et al. Dec 2008 A1
20090027280 Frangioni et al. Jan 2009 A1
20090230332 Buttrill Sep 2009 A1
Foreign Referenced Citations (15)
Number Date Country
0237559 Dec 1991 EP
2004-32323 Jan 2004 JP
WO 8701873 Mar 1987 WO
WO 9321663 Oct 1993 WO
WO 9821788 May 1998 WO
WO 0072413 Nov 2000 WO
WO 0225785 Mar 2002 WO
WO 02077607 Oct 2002 WO
WO 2004086560 Oct 2004 WO
WO 2005015143 Feb 2005 WO
WO 2005098966 Oct 2005 WO
WO 2006042239 Apr 2006 WO
WO 2007081389 Jul 2007 WO
WO 2007081390 Jul 2007 WO
WO 2007081391 Jul 2007 WO
Related Publications (1)
Number Date Country
20090072698 A1 Mar 2009 US
Provisional Applications (1)
Number Date Country
60929265 Jun 2007 US