The present invention relates in general to microwave signal processing circuitry and, more particularly, to a microwave filter illustrated in microstrip technology in which it is initially being used.
In microwave circuit design, a so-called “notch filter” can be used to reject a specific frequency range, but allow other frequencies to pass with low loss. The notch filter usually features a sharp notch in its frequency response curve with the notch substantially spanning the rejected frequency range of interest. A known microstrip structure for a notch filter 100 is shown in
Multiple stubs may be cascaded to enhance the frequency response, for example as shown in
Another known notch filter circuit 500 shown in
In some applications, it may be desired to reject a specific notch frequency but not the associated third harmonic. In other applications, it may be desired to reject a specific frequency but not at least one specific higher order odd harmonic, such as the 5th, 7th, 9th or other higher order odd harmonic.
In order to reject a specific notch frequency but accept the third harmonic, or some other higher order odd harmonic, normally a more complex circuit is required, such as a combination of cascaded high-pass and low-pass circuits. A more complex circuit in turn demands more space on the circuit board, and entails more loss due to the ohmic losses in the conductor making up the circuit.
In accordance with the teachings of the present application, a notch filter blocks a central notch frequency but passes at least one select odd harmonic of the central frequency without requiring the complex circuit structures of the prior art. A circuit is coupled to a transmission line and configured to appear to the transmission line as a short circuit at the central frequency and to appear as an open circuit at the at least one select odd harmonic of the central frequency. The currently preferred circuit structure is a stub line that has a spurline embedded therein so that a simple structure is still provided for the notch filter.
According to one aspect of the present invention, a microwave filter comprises a transmission line comprising a signal input port and a signal output port. A stub is connected to the transmission line between the input port and the output port and a spurline is embedded in the stub. The microwave filter is configured to substantially attenuate a frequency while substantially passing a predetermined odd harmonic of the frequency. The stub may have a first electrical length and the spurline a second electrical length with the first and second electrical lengths being fractions of a wavelength of the frequency. The predetermined odd harmonic may comprise the third harmonic of the frequency.
According to another aspect of the present invention, a microwave filter device comprises a transmission line comprising a signal input port and a signal output port. A plurality of stubs are connected to the transmission line between the input port and the output port with each of the plurality of stubs having a spurline embedded therein. The microwave filter device is configured to substantially attenuate a predetermined frequency and substantially pass a predetermined odd harmonic of the frequency. Each of the plurality of stubs has a first electrical length and each of the embedded spurlines has a second electrical length, the first and second electrical lengths being fractions of a wavelength of the predetermined frequency. The plurality of stubs may be arranged to change the frequency response of the microwave filter device.
According to yet another aspect of the present invention, a microwave filter comprises a transmission line comprising a signal input port and a signal output port. A spiral conductor having first and second ends has the first end connected to the transmission line. The spiral conductor has a spurline embedded therein and the microwave filter is configured to substantially attenuate a frequency and substantially pass a predetermined odd harmonic of the frequency. The predetermined odd harmonic may comprise the third harmonic of the frequency and the second end of the spiral conductor may be connected to electrical ground.
According to still another aspect of the present invention, a microwave filter comprises a transmission line comprising a signal input port and a signal output port. A stub has a first end connected to the transmission line between the input port and the output port and a second end connected to a device which is in turn connected to electrical ground. The device is configured to change an electrical length of the stub and a spurline is embedded in the stub. The microwave filter is configured to substantially attenuate a frequency while substantially passing a predetermined odd harmonic of the frequency. The stub has a first electrical length and the spurline has a second electrical length with the first and second electrical lengths being fractions of a wavelength of the frequency. The predetermined odd harmonic may comprise the third harmonic of the frequency and the device may comprise a capacitor, a switch or an inductor.
According to an additional aspect of the present invention, a microwave filter comprises a transmission line comprising a signal input port and a signal output port. A stub is connected to the transmission line between the input port and the output port and first and second spurlines are embedded in the stub. The microwave filter is configured to substantially attenuate a frequency while passing first and second predetermined odd harmonics of the frequency. The stub has a first electrical length, the first spurline has a second electrical length, and the second spurline has a third electrical length with the first, second and third electrical lengths being fractions of a wavelength of the frequency. The first predetermined odd harmonic may comprise the third harmonic of the frequency and the second predetermined odd harmonic may comprise the fifth harmonic of the frequency.
According to a further aspect of the present invention, a microwave filter comprises a transmission line including a signal input port and a signal output port. A first end of a spiral conductor is connected to the transmission line with the spiral conductor being configured to substantially attenuate a frequency. First and second spurlines are embedded in the spiral conductor so that the microwave filter is configured to substantially attenuate a frequency while passing first and second predetermined odd harmonics of the frequency. The second end of the spiral conductor may be connected to electrical ground. The spiral conductor may have a first electrical length, the first spurline may have a second electrical length, and the second spurline may have a third electrical length, the first, second and third electrical lengths being fractions of a wavelength of the frequency. The first predetermined odd harmonic may comprise the third harmonic of the frequency, and the second predetermined odd harmonic may comprise the fifth harmonic of the frequency.
According to yet still another aspect of the present invention, a microwave filter comprises a transmission line including a signal input port and a signal output port. A stub has a first end connected to the transmission line between the input port and the output port and a second end connected to a device which is in turn connected to electrical ground. The device may be configured to change an electrical length of the stub. First and second spurlines are embedded in the stub so that the microwave filter is configured to substantially attenuate a frequency while passing first and second predetermined odd harmonics of the frequency. The first predetermined odd harmonic may comprise the third harmonic of the frequency, and the second predetermined odd harmonic may comprise the fifth harmonic of the frequency. The device may comprise a capacitor, a switch or an inductor.
The following detailed description of the preferred embodiments of various embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals, and in which:
In the following detailed description of the illustrated embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of various embodiments of the present invention. The microwave filter of the present application is described with reference to microstrip technology for which it is initially being used.
Reference is made to
How this configuration enables the desired notch filter of the present application becomes apparent when the characteristics of the stub and spurline are considered. The base of an open stub attached to a microstrip through-line presents a short-circuit at a frequency corresponding nominally to a wavelength of 4 times it's length, see
When a spurline is embedded in a stub as illustrated in
With this understanding, the open stub 708 acts as a short circuit at the center frequency at the base of the stub 712 so that signals at and around the center frequency are shorted out and do not pass through the transmission line 702. And the spurline 710 embedded into the stub 708 acts as an open circuit at certain odd harmonic frequencies determined by the spurline 710. At those odd harmonic frequencies, the stub 708 appears as an open circuit so that microwave energy at those odd harmonic frequencies is not shorted but passes through the transmission line 702. By incorporating the spurline 710 into the open stub 708, the stub appears as a short circuit at a desired center frequency f and, with proper sizing of the spurline 710, appears as an open circuit at an odd harmonic of the center frequency denoted by nf, where n may be 3, 5, 7 or any other higher order odd number.
It is noted that while the transmission line 702 is illustrated as a microstrip line, filters in accordance with the teachings of the present application may be implemented in striplines, waveguides, coaxial cables, or any medium suitable for propagating electromagnetic energy. Thus, filtering in accordance with the teachings of the present application is accomplished by providing a circuit, illustrated in
For attenuating a notch filter center frequency f having a wavelength of λ but passing the third harmonic of the center frequency f, the nominal dimensions are ¼λ for the stub 708 and one third of ¼λ, i.e., 1/12λ, for the spur 710. The exact lengths of the stub 708 and the spurline 710 within the stub 708 are slightly different from the nominal values of ¼λ and one third of ¼λ, i.e., 1/12λ, as the presence of the spurline 710 impacts the effective electrical length of the open stub 708, and the spurline 710 is impacted itself by it's presence within the open stub 708. As will be apparent to those skilled in the art, small adjustments in stub and spurline lengths yield the desired result, for example rejection of the fundamental notch center frequency but passage of the 3rd harmonic of the notch center frequency. By choosing a value for the spurline of one fifth of ¼λ, i.e., 1/20λ, the fifth harmonic would be preserved but the 3rd, 7th and higher order odd harmonics would be rejected along with the fundamental, etc.
In the filter characteristics shown in
An advantage of the embodiment of
If a deeper notch or asymmetry is required in the frequency response, a cascade microstrip filter 900 can be constructed as shown in
It is also possible in accordance with the teachings of the present application to form two spurlines in a single stub so that a single microstrip filter 1100 is tuned to attenuate a notch filter center frequency f but pass two different odd harmonic frequencies, for example 3f and 5f, the 3rd and 5th harmonics of the center frequency f. As shown in
In general, passing one or two higher order odd harmonics of a selected notch filter center frequency f can be realized by selecting the appropriate electrical lengths of each spurline embedded within a stub. As shown in
While generally not preferred due to the increased length of the stub, as shown in
In another embodiment of a filter in accordance with the teachings of the present application, a spiral-shaped stub 1414 is used in a microstrip notch filter 1400 as illustrated in
Having thus described the invention of the present application in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
The present application is related to a U.S. patent application entitled COMPACT BANDPASS FILTER WITH NO THIRD ORDER RESPONSE (attorney docket VAL 059 PA) that is being filed on the same day as the present application, is assigned to the assignee of the present application and is incorporated by reference herein in its entirety. The present application is related to a U.S. patent application entitled METHODS AND APPARATUS FOR RECEIVING RADIO FREQUENCY SIGNALS (attorney docket VAL 060 PA) that is being filed on the same day as the present application, is assigned to the assignee of the present application and is incorporated by reference herein in its entirety.