This invention relates generally to microwave heaters, and more particularly, to a microwave heater especially for heating reaction mixtures and components in a chemical reaction or transformation.
A microwave heater employs microwave radiation to heat an object. Microwave heaters may be used in many different applications ranging from home or personal use for heating foods, to commercial or industrial uses. Many of today's microwave heating devices suffer from uneven heating of the heated object due to the unevenness of the applied electromagnetic field, thereby causing a corresponding thermal unevenness in the heated object. Moreover, because of the uneven field distribution, it is very difficult to evenly heat a reaction vessel especially with a length substantially longer than the cross section of the vessel for example, batch or flow reactors that have a form where the length of the reactor is substantially longer than the cross section of the vessel. Accordingly, conventional microwave heaters are not able to be used in certain applications.
Most microwave heater designs use a magnetron as the microwave generator. These microwave heaters suffer from several drawbacks including having a fixed frequency and the need for complicated devices and mechanisms to provide effective tuning. Moreover, these devices are bulky and have high voltage requirements. Additionally, the signals generated by these devices are very noisy and include a lot of sidebands that results in a distorted signal. The devices are also complicated to control and cannot be controlled down to power levels close to zero.
Most of these known microwave heating systems are based on a resonant cavity design in which the load (i.e., the object to be microwave treated) is placed. A load is generally defined as the material (matter) that is purposely intended to absorb the radiated electromagnetic energy. The load can be in any aggregation state such as a solid, liquid or gas form. Two types of microwave heater designs are common and include either a single mode or multi mode microwave cavity. An applicator is a device for transferring electromagnetic energy from an antenna to a load (e.g., reaction vessel). A single mode cavity applicator is a resonant cavity that has dimensions so that only one frequency can resonate inside the cavity. A multi mode applicator is a resonant cavity that has dimensions such that multiple frequencies can resonate inside the cavity. Both types of designs have a very pronounced mode or electromagnetic pattern with hot and cold spots in a repeating pattern. A mode pattern is an electric field pattern established by resonant frequencies inside a cavity. For example, with a commonly used microwave frequency, such as 2.45 GHz, the distance between two consecutive maximum heating areas is approximately 12.4 cm in a single mode applicator. Because the electric field has a sinusoidal shape between the maxima, the heating effect decreases rapidly outside the maxima. Moreover, the electromagnetic field distribution is very dependent on the size, shape and dielectric properties of the load in a resonant applicator. Thus, a large variation in heating efficiency and distribution may result depending on the load volume and size when using the same applicator.
Due to the nature of the resonant applicator, the resonant applicator structure must have a certain dimension to function properly. For commonly used frequencies such as 2.45 GHz, the dimensions result in typically bulky applicators and microwave heating systems with a relatively large cavity size compared to the load. For example, a typical multimode cavity applicator has a dimension of about 300 millimeters (mm)×300 mm×200 mm and a single mode applicator has a typical dimension for a rectangular applicator that is 43 mm×86 mm, using 2.45 GHz as a microwave frequency. In many modern applications, size is an important factor, and more particularly, reduction in size is very desirable. For example, in Positron Emission Tomography (PET) chemistry applications, there is a very limited space inside the hot cell where radio labels (e.g., radioactive molecule that are used to tag another molecule) are produced. PET is a radionuclide imaging technology based on determining the position of where a positron comes to rest and annihilates with an electron causing two gamma ray photons to be released and detected tomographically. A hot cell is a lead shielded compartment where radioactive reactions are carried out.
Additionally, portable or handheld devices should be compact to facilitate transportation and ease of use. Small compact devices are also desirable for automation of chemical reactions where the applicator is a subsystem in a larger system. In many applications it is desirable to replace electrical heaters with microwave heaters where the replaced electrical heater is substantially smaller than current bulky microwave heaters. Also, electrical heaters heat the surrounding environment, whereas microwave heaters only heat the object (load) to be heated. Small size in general is favorable in today's laboratories where bench space is a scarce and expensive resource.
Thus, most conventional microwave heaters used for chemical applications are large, complicated in design, expensive and moreover do not produce an even electromagnetic field in the load. Accordingly, the instrumentation for controlling these microwave heaters is typically complex and expensive to manufacture, particularly in mass market quantities.
In accordance with one embodiment, a microwave heating system is provided that includes a non-resonant enclosure and a continuous helical antenna within the non-resonant enclosure. The continuous helical antenna is configured to receive therein a load to be heated by microwaves radiated from the continuous helical antenna.
In accordance with another embodiment, a microwave heating system is provided that includes a non-resonant enclosure and a resonant antenna within the enclosure formed from a single continuous coil. The single continuous coil has a length greater than a diameter thereof.
In accordance with yet another embodiment, a method for heating a load with microwaves is provided. The method includes forming a continuous coil in a toroidal shape to define an antenna for generating an electromagnetic field therein and configuring the continuous coil to generate the electromagnetic field within a non-resonant structure to heat a load using microwaves.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. To the extent that the figures illustrate diagrams of the functional or operational blocks of various embodiments, the functional or operational blocks are not necessarily indicative of the division between different components or hardware. Thus, for example, one or more of the functional or operational blocks (e.g., components) may be implemented in a single piece of hardware or multiple pieces of hardware. It should be understood that the various embodiments are not limited to the arrangements and instrumentality shown in the drawings.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
It should be noted that although the various embodiments may be described in connection with uses for Positron Emission Tomography (PET) applications, or small scale chemistry applications, the systems and systems methods described herein are not limited to such applications. In particular, the various embodiments may be implemented in connection with heating any type of object or load in different applications, which may or may not be a medical application. For example, other applications include microwave treatment of tissues for diagnostic purposes or in situ hybridization reaction. Further applications include, for example, microwave treatment of tissues for diagnostic purposes, in situ hybridization reaction, thermo cycling in Polymerase Chain Reaction (PCR) reactions, capillary electrophoresis, organic or inorganic chemical reactions, Surface Plasmon Reactions (SPR), chemical binding reaction, digestion of biological material, etc.
Due to the possibility to design small applicators for low power systems the invention is especially suited for handheld battery powered systems. Such systems can be used for mobile field applications or where extremely small dimensions are needed. Examples can be handheld devices for analysis and diagnostic purposes carried in an ambulance, point of care and bed side applications in hospitals and homes, environmental analysis instruments etc.
In general, and as used herein, a microwave generator refers to any device that generates microwaves providing enough power at any given frequency sufficient for the chosen application. The device can also include all the necessary hardware and software for controlling the power, frequency and waveform for any given application. Examples of hardware and software include, but are not limited to: circulators, directional couplers, dummy loads, power sensors, pressure sensors, temperature sensors, microprocessors, control and optimization algorithms, etc. The components also can be either discrete or integrated or a combination thereof.
Exemplary embodiments of the present invention include a microwave heating system. The microwave heating system in the various embodiments is generally a device operating in microwave frequencies that is capable of heating an object or load by applying microwaves thereto. The object or load can be any type of object, substance or structure. In some embodiments, the microwave heating system may be used to heat reaction mixtures and components in a chemical reaction or transformation including both organic and inorganic reactions (e.g., heating solvents to produce radiopharmaceuticals, such as Gallium-68 chemistry solvents). It should be noted that the object or load can be of a stationary nature, such as a batch reaction in an open ended or close ended reaction vial or performed as a flow reaction with a continuous moving or flowing object or load within the vial or other container. The flow or movement of the object or load can also be intermittent.
It should be noted that although the various embodiments may be described in connection with specific component parts, variations and modification are contemplated. For example, microwave generators of the various embodiments may be implemented in different configurations, for example, as a semiconductor based microwave generator.
In general, various embodiments of the invention provide a microwave heater having on a non-resonant enclosure with a resonant antenna inside the enclosure. The enclosure has a transverse physical dimension such that the enclosure is at a frequency cut-off at a selected frequency and does not propagate electromagnetic energy. The antenna is dimensioned to be at resonance at the selected frequency. During heating of the load, the dielectric properties of the load change with a change in load temperature, thus implying the resonant frequency of the load will change. A change in resonant frequency changes the overall efficiency of the heating system. In order to maintain a good efficiency the system can be equipped with one or several tuning devices as described in more detail herein. By changing, for example, the Resistive/Inductive/Capacitive (R/L/C) characteristics of the tuning device, the antenna can be made to change its resonant properties and thereby change the efficiency of the heating system. A tuning device as referred to herein is generally a network containing either passive or active components that attempts to match the impedance of the active device to a transmission line. By monitoring, for example, the reflected power or the temperature of the load and using that as a feedback signal to the tuning device, the antenna can be tuned to optimize the heating efficiency of the system.
It should be noted that other tuning methods may be employed and are contemplated herein. For example, another way of tuning the system is to change the frequency of the microwaves generated by the microwave generator. By changing the frequency the antenna can be tuned to be resonant at any given condition or combination of load, antenna and enclosure. The frequency can be changed manually by changing the frequency control signal to a microwave generator. The change can be performed manually by an operator based on input from any information generated or observed in or on the heating system. Such information can be any visible changes of the load, indications from connected measurement devices such as volt meters, ampere meters, temperature sensors, pressure sensors, pH, conductivity sensor, fluoresces monitor, chemo luminescence, UV, IR/VIS, power meters etc. The frequency change can also be made automatically based on the same signals and input as from the manual methods mentioned described above.
Furthermore, a computer program can be used to optimize the performance of the heating system based on the same signals and input. The performance characteristic to optimize can be, for example, maximum power efficiency, heating rate, temperature stability, pressure, etc. The control and optimization can be performed by a controller as described herein. The controller can be an integrated part of the heating system or a separate device such as a PC, microcontroller, PLC system etc.
At least one technical effect of the various embodiments is generating more uniform electric fields using a non-resonant structure. The resonant antenna also can be designed to generate more even field distribution over the entire object or load without hot or cold spots (regions).
With reference now to the Figures, and as shown in
The antenna 10 is connected to a microwave source 14 (e.g., microwave generator) via a transmission line 15, for example, a coaxial cable. The non-resonant enclosure 11 may be configured to be non-resonant by selecting dimensions to fulfill cut-off conditions for a selected frequency as described in more detail herein. The antenna 10 is made resonant by providing a length of the antenna that corresponds to the resonant conditions or by using a tuning device. Accordingly, the antenna 10 surrounds the load 12 partly or completely and that the total axial length of a coil that forms the antenna 10 is greater than (e.g., two times) the diameter of the coil structure that forms the antenna 10.
It should be noted that when the term resonant or resonance is used herein with respect to an antenna, the term generally refers to an antenna having a resonant component. The resonant component can very during the heating process and between different loads and run conditions. The amplitude of the resonant component can very from close to zero to 100%. As long as the antenna has a resonant component, a certain amount of energy will be radiated from the antenna and transferred to the load. It should be noted that resonant or resonance does not mean that the resonant conditions have to be at a maximum or near the maximum during any period of the process. It is sufficient to have a resonant component in the antenna. The total energy transferred to the load will be a function of the efficiency and the amount of power applied to the antenna. Many different applications, some of which are described herein can be performed with a very low efficiency without losing microwave heating performance. Also, the field concentrating effect and even heating will remain even with a very low efficiency in the system.
The non-resonant enclosure 11 contains an electrically conducting surface and in the illustrated embodiment is cylindrical in profile. For example, the non-resonant enclosure 11 may form an electrically conducting cavity constructed from aluminum, copper, brass, semiconducting material or a combination of materials, etc. However, it should be noted that other materials may be used. Also, it should be noted that the non-resonant enclosure 11 may have a different shaped profile other than cylindrical, for example, spherical, elliptical, cubic, triangular, rectangular etc. The non-resonant enclosure 11 may be shaped and sized based on and configured to receive therein a complementary shaped load holder, for example, a reaction vial 13, which may be removably received therein or permanently secured therein. It should be noted that the various embodiments also are not limited to a reaction vial 13, but a container or structure may be provided that is of any type that can receive therein or on its surface a fluid or other object. For example, instead of a reaction vial 13, a bulb, tube, a capillary structure, a thin film substrate, glass slab, microscope slide, micro titer plate, micro fluidic devices, micro arrays, micro fabricated structures, etc. may be provided.
Moreover, the cut-off frequency for the non-resonant enclosure 11 in one embodiment is determined by the radius of the non-resonant enclosure 11. Accordingly, the radius is selected to be small enough to prevent the propagation of certain microwaves, for example, 2.45 GHz microwaves.
In the various embodiments, the antenna 10 is configured as a one wavelength antenna that is curved around the reaction vessel 13 to form a closed relation to the load 10, and in particular, to form an antenna with helical properties. Accordingly, in operation, a very broadband frequency and a circularly polarized electric field that couples and interacts with the load 12 in many places is provided. It should be noted that the antenna can have any length corresponding to any number of wavelengths or fractions thereof, as long as the length fulfills resonant conditions.
The antenna 10 in various embodiments is formed from a copper wire dimensioned to sustain the required output power. For example, in one embodiment, the antenna 10 may be formed from two millimeter (2 mm) thick wire, such as copper, gold, brass, aluminum, metal coated structures with a core of non conducting materials such as polymers, semiconducting materials or combination of mentioned materials. The wire is provided such that the wire is wide enough to sustain an electric field generated by, for example, 100 watts to 500 watts of power or more. The antenna can also be formed from a printed circuit board arranged around the load. The printed circuit board can be of a flexible type that can be formed around the load. The antenna can also be stereo lithographic printed on a substrate and arranged around the load.
The antenna 10 that forms a curvature or partial helix around the load 12 that is inside the reaction vessel 13 has typically a minimum of one turn, but in the various embodiments can have two to ten turns. However, the antenna can have any number of turns as long as the resonant conditions are sustained as described herein. The pitch of the antenna 10 is adjusted such that the inductive reactance is close to the load impedance as described in more detail herein. The pitch can vary over the length of the antenna, linearly or non-linearly. Because the antenna 10 has a dominant inductive reactance, the frequency response of the structure is broadband in nature. In one embodiment, the reaction vessel 13 has a narrow geometric profile. However, it should be noted that the load 12 can be many times longer than the antenna 10 and the various embodiments can still achieve uniform and even heating.
In operation, the reaction vessel 13 is placed or secured inside or partially inside the helical antenna 10 and accordingly the electric field is strengthened and becomes more concentrated inside the helix rather than outside the helix, resulting in an intensified electric field inside the reaction vessel 13. The electric field propagated from the antenna 10 is also contained within the conductive enclosure, namely the non-resonant enclosure 11. It should be noted that the various embodiments operate using only one microwave source 14 and only one antenna 10, which in the various embodiments is either a single ended continuous helical antenna or a balanced antenna. Moreover, because the antenna 10 is somewhat broadband, the antenna has a moderately low Q value. Accordingly, the antenna 10 can resonate over a wide band of frequencies and is not highly resonant on just one frequency. Thus, the configuration of the microwave heating system 8 is less dependent on the load 12 to be heated.
It should be noted the antenna type can be either a single ended open antenna fed from one end as shown in
The characteristics of the antenna and thereby the generated electrical field can be adjusted (tailor made) to surround the load by combining certain values of the antenna parameters such as the pitch, helical diameter, wire diameter, number of turns, total uncoiled antenna length and the coiled antenna length. By changing these parameters the electrical field can, for example, be evenly distributed and concentrated to the middle of the coil where the load is placed. Another way of changing the electric field distribution in the applicator is to change the dimensions of the non-resonant enclosure.
Referring again to
In the various embodiments, the antenna 10 is a single ended continuous antenna or a balanced antenna that covers part of or the entire load 12. However, it should be noted that the load 12 in some embodiments may extend beyond the ends of the antenna 10. The length of the coil forming the antenna 10 is typically one electrical wavelength in air. Accordingly, for microwaves at 2,45 GHz, a single wavelength in air is approximately 12.4 centimeters and the antenna is formed having a length of 12.4 centimeters. Thus, a single unipole helical antenna 10 curved around the load 12 is provided that generates an electric field inward toward the load 12. For example, the antenna 10 may be configured to be curved around a load 12 of about 0.2 milliliters to about 40 milliliters or more. Accordingly, the field is concentrated mainly inside the coil and to a lesser extent outside the coil.
However, other types of antennas may be used. For example, as shown in
The various embodiments also may provide a supporting structure 16 as shown in
Modifications and variations to the various embodiments may be made. For example, a microwave heating system 40 as shown in
In this embodiment, a temperature sensing device 17, for example, an infrared (IR) temperature sensing device is provided and that may be coupled into the enclosure 11. The temperature sensing device 17 measures the temperature, for example, on the surface of the reaction vial 13. Additionally, electromagnets 18a and 18b are provided that operate to rotate a stirring bar 28 (e.g., horizontal magnetic bar at the bottom of the reaction vial 13) that can stir the load (e.g., chemical fluid) within the reaction vial 13. The electromagnets 18a and 18b may be driven in sequence using, for example, a stepper motor driver (not shown) to rotate the stirring bar 28. It should be noted that while only two electromagnets 18a and 18b are shown, in one embodiment there are four electromagnets to drive the stirring bar 28, with the two additional electromagnets in 90 degree relationship to the electromagnets 18a and 18b.
The microwave heating system 40 optionally may include an alternative temperature measuring device 19. For example, the temperature measuring device 19 may be a thermocouple that is coupled or maintained against the surface of the reaction vial 13 to measure the temperature thereof. Also, an alternative driver 20 for rotating the stirring bar 28 optionally may be provided. For example, the alternative driver 20 may comprise a permanent magnet rotated by an electric motor 21 that causes the stirring bar 28 to rotate.
One or more outlet channels 22 may provide a passageway from inside the enclosure 11 to outside the enclosure 11. The one or more channels 22 may be provided, for example, on a bottom of the enclosure 11 for venting or cooling of the air within the enclosure 11 surrounding the reaction vial 13. Inlet tubing 23 also may be provided for forcing air, for example, cooling air into the enclosure 11 through a channel 30. The inlet tubing 23 may be provided, for example, on a top or side surface of the enclosure 11 and connected to a source of cooling air (not shown) such as a cooling fan radiator or compressed air or any other type of cooling media.
The enclosure 11 also includes a cover or lid 24 to cover a top surface of the enclosure 11 to form a closed vessel comprising of enclosure 11 and cover 24 in which the reaction vial 13 is maintained. Accordingly, the reaction vial 13 is encompassed on all sides and maintained within the closed vessel. The supporting structure 160 may include one or more channels 29 along the side of the reaction vial 13 that allow the passage of cooling air, thereby defining cooling passages. The lid 24 can be connected to the enclosure 11 via a thread or other mechanical means to withstand high mechanical forces created by the internal pressure in the reaction vessel or inside the enclosure. The microwave heating system 40 also may include an internal temperature measuring device 25, for example, a thermocouple device, temperature probe, optical device, etc. to measure the temperature inside the reaction vial 13. The internal temperature measuring device 25 may be positioned inside the reaction vial 13 within the load 12. It should be noted that the temperatures measured by the different temperature measuring devices may be displayed on a screen associated with the measuring device (e.g., LCD screen).
A pressure sensor/load cell 26 also may be provided to measure the reaction force from a moving part (not shown) that may be provided in combination with a lid or cap 27 covering the reaction vial 13. The moving part may be, for example, a septum or plunger that moves outward or upward when the internal pressure within the reaction vial 13 increases and moves the opposite direction when the internal pressure decreases. It should be noted that the lid or cap 27 may be configured to be securely sealed to the reaction vial 13.
In another embodiment, and as another example, a microwave heating system 50 as shown in
End caps 53 are provided on each end of the reaction tube 55 and include ports, for example, an inlet port and outlet port defining passageways to allow the load 54 to be heated by the microwave heating system 50 to be inserted and removed, for example, pumped in and out of the reaction tube 55. The load 54 may be, for example, a chemical reaction mixture or any substance that can be pumped in and out of the reaction tube 55. The embodiment shown in
It should be noted that the reaction tube 55 may be constructed from a microwave transparent material or partially microwave transparent material such as glass, a PTFE material, etc. Also it should be noted that other component parts similar to the other embodiments may be provided, for example, the temperature sensing device 17. It should be noted that the antenna 10 can be exchanged to a balanced antenna.
In another embodiment, and as another example, a microwave heating system 58 as shown in
A metallic lid 62 is provided to close the non-resonant enclosure 60. The metallic lid 62 may provide a pressure tight seal. In this embodiment, the object to be treated with microwaves, namely the load 605 is placed on a holding structure 63 that can be a glass slab. It should be noted that the slab may be made of any material. Moreover, the load 605 can be of any shape or size, for example, a shape and size that fits into or on the holding structure 63. The supporting structure 67 may be formed, for example, having a slot 65 therein for receiving the holding structure. The holding structure 63 can be, for example, a pre-made cassette and may have features such as built in channels for liquid flow and functions like valves, pumps, etc. as an integrated part of the holding structure. The cassette can be made for diagnostic, analytical or preparative purposes. The devices 69a and 69b can be any type of monitoring devices measuring or monitoring process parameters such as temperature, pressure, light scattering, etc. The devices 69a and 69b can be arranged in a way such that one is a transmitter and one is a receiver. The transmitter sends a signal that reflects, transmits, scatters, refracts or in any other way is affected by the load and the receiver receives the affected signal from the transmitter. The signals from both devices 69a and 69b can, for example, be compared using any computational device and algorithm to calculate a result. The result can be used to control the microwave heating system or generate an output signal used for diagnostic or analytic purposes. The transmitter and receiver can be in the same physical enclosure and need only access from one side of the load 605. The transmitted signal can be radiation of any type, for example, laser, Ultraviolet (UV), Infra Red (IR), x-ray, ultrasound, etc. The receiver can be any type of device that detects, for example the change in the transmitted signal caused by the microwave treatment of the load. The supporting structure 67 has a number of openings 601 to gain access to the load for the devices 69a and 69b. The devices 69a and 69b can be extended to form an array.
In another embodiment, and as another example, a microwave heating system 59 as shown in
A metallic lid 62 is provided to close the non-resonant enclosure 60. The metallic lid 62 may provide a pressure tight seal. In this embodiment, the load 605 is placed on or in a load holder 63. In this embodiment the load holder is a glass slab which the load is placed on to be treated by microwaves. It should be noted that the slab may be made of any material and have different features to hold the load. Moreover, the load 605 can be of any shape or size that fits on or in the load holder 63. The supporting structure 67 may be formed, for example, having a slot 65 therein for receiving the slab. Also, the supporting structure 67 can be filled with a liquid 64 such that the load 605 is submerged or partially submerged in the liquid. It should be noted that the liquid can be part of a reaction system where the liquid contains the reactant, catalyst etc. The liquid can be exchanged for a gas. A temperature measuring device 602 can be introduced to measure the temperature in or on the load 605. The load 605 and the holding structure 63 can be, for example, a pre-made cassette with built in channels for liquid flow and functions like valves, pumps etc as an integrated part of the 605. The cassette can be made for diagnostic, analytical or preparative purposes.
It also should be noted that the various metallic structures described herein may be formed of any type of metal or a composite thereof. For example, metals such as copper, aluminum, brass, steel, etc. or combinations or composites thereof may be used.
Accordingly, in various embodiments a microwave heating system 70 as shown in
In another embodiment, as shown in
In yet another embodiment as shown in
In yet another embodiment as shown in
Another embodiment as shown in
Thus, various embodiments provide a microwave heating system having a helical antenna surrounding a load within a non-resonant enclosure. The antenna is formed from a single ended continuous coil or a balanced coil wherein the electric field is mainly propagated inward toward the load. The microwave heating according to the various embodiments provides uniform energy distribution within the antenna structure.
The various embodiments and/or components, for example, the processors for generating microwaves or components and controllers therein, also may be implemented as part of one or more computers or processors that may form part of a larger system. The computer or processor may include a computing device, an input device, a display unit and an interface, for example, for accessing the Internet. The computer or processor may include a microprocessor. The microprocessor may be connected to a communication bus. The computer or processor may also include a memory. The memory may include Random Access Memory (RAM) and Read Only Memory (ROM). The computer or processor further may include a storage device, which may be a hard disk drive or a removable storage drive such as a floppy disk drive, optical disk drive, and the like. The storage device may also be other similar means for loading computer programs or other instructions into the computer or processor.
As used herein, the term “computer” may include any processor-based or microprocessor-based system including systems using microcontrollers, reduced instruction set computers (RISC), application specific integrated circuits (ASICs), logic circuits, and any other circuit or processor capable of executing the functions described herein. The above examples are exemplary only, and are thus not intended to limit in any way the definition and/or meaning of the term “computer”.
The computer or processor executes a set of instructions that are stored in one or more storage elements, in order to process input data. The storage elements may also store data or other information as desired or needed. The storage element may be in the form of an information source or a physical memory element within a processing machine.
The set of instructions may include various commands that instruct the computer or processor as a processing machine to perform specific operations such as the methods and processes of the various embodiments of the invention. The set of instructions may be in the form of a software program. The software may be in various forms such as system software or application software. Further, the software may be in the form of a collection of separate programs, a program module within a larger program or a portion of a program module. The software also may include modular programming in the form of object-oriented programming. The processing of input data by the processing machine may be in response to user commands, or in response to results of previous processing, or in response to a request made by another processing machine.
As used herein, the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by a computer, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. For example, the ordering of steps recited in a method need not be performed in a particular order unless explicitly stated or implicitly required (e.g., one step requires the results or a product of a previous step to be available). While the dimensions and types of materials described herein are intended to define the parameters of the invention, they are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing and understanding the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.