The present invention relates to a microwave oven, in particular for a domestic appliance.
Microwave ovens are widely used in cooking appliances. Usually, the microwaves are generated by a magnetron arranged out of the oven cavity. A wave guide transports the microwaves from the magnetron to a feeding point in the oven cavity. In order to improve the microwave distribution in the oven cavity, a wave stirrer is arranged inside the wave guide or oven cavity and/or a turntable upon the bottom of the oven cavity supports the food stuff.
The microwave ovens of the prior art as shown in
It is an object of the present invention to provide an improved microwave oven, which overcomes the disadvantages mentioned above.
According to the present invention a microwave oven, in particular for a domestic appliance is provided, wherein
In the context of the present invention a microwave generator of a microwave cooking oven, preferably of a domestic cooking oven, comprises any vacuum tube-type microwave generator such as e.g. a magnetron or any electronic microwave generator such as e.g. a solid state generator, generally any suitable kind of electromagnetic field source such as e.g. a dipole or monopole source that can be used for microwave heating in a cooking oven, in particular in a domestic microwave oven.
The microwave oven according to the present invention is realized without any moveable components. The inventive microwave oven provides more space in the oven cavity. Further, the inventive microwave oven comprises a relative small opening in the cavity wall, which improves the thermal insulation of the oven cavity. Moreover, the inventive microwave oven does not require any complex wave guides.
In particular, an antenna cap is interconnected between the microwave antenna (e.g. magnetron antenna) and the antenna extension, wherein preferably the antenna cap includes a blind hole for receiving the microwave/magnetron antenna.
For example, the antenna extension is arranged inside an upper portion of the oven cavity, wherein preferably said antenna extension is formed as a serpentine.
Further, the antenna extension may be arranged in a plane parallel to and beneath a top wall of the oven cavity, wherein preferably the distance between the antenna extension and the top wall of the oven cavity is N*λ/8 or comparable with λ/8, i.e. N is an essentially integral number greater zero, preferably wherein N is essentially 1, 2 or 3, still preferably wherein N is essentially 1, and wherein λ is the wavelength of the microwaves.
Relating to the dimensions, an outer diameter of the antenna cap, an inner diameter of the matching section and/or a length of the matching section may be essentially integer multiples of λ/8, i.e. N*λ/8 wherein N is an essentially integral number greater zero, preferably wherein N is essentially 1, 2 or 3, still preferably wherein N is essentially 1 and wherein λ is the wavelength of the microwaves.
Moreover, at least the outer surface of the antenna extension may be made of electrically conductive material, wherein preferably the antenna extension is hollow and made of copper or steel.
In particular, the cavity wall of the oven cavity is grounded.
According to another embodiment, the microwave oven comprises at least one further antenna extension arranged inside the oven cavity, wherein said further antenna extension is electrically connected to the antenna extension.
For example, the further antenna extension is an electric heating element, in particular a grill heating element, wherein preferably the further antenna extension is arranged in a plane parallel to and beneath the top wall of the oven cavity, and wherein preferably the distance between the further antenna extension and the top wall of the oven cavity is λ/8 or N*λ/8, wherein N is an essentially integral number greater zero, preferably wherein N is essentially 1, 2 or 3, still preferably wherein N is essentially 1 and λ is the wavelength of the microwaves. Alternatively or additionally, a side grid, a support grid or any other electrically conductive components in the oven cavity may be used as further antenna extension.
In particular, the further antenna extension includes a tubular outer sheath and an elongated electric heating coil arranged inside said outer sheath, wherein at least a part of the outer sheath is electrically connected to the antenna extension and said heating coil is connected or connectable to a power supply, and wherein preferably the outer sheath and the heating coil are arranged coaxially to each other.
Moreover, the further antenna extension includes an insulating powder inside the outer sheath, so that the heating coil and the outer sheath are electrically isolated from each other.
Especially, the outer sheath includes an inner part and two outer parts, wherein the inner part is arranged inside the oven cavity and the outer parts penetrate the cavity wall, and wherein the inner part is electrically connected to the antenna extension and the outer parts are electrically connected to the cavity wall.
In this case, the inner part and the outer part may be connected by a separating element made of one or more insulating materials, wherein preferably the distance between the inner part and the outer part is between 1 mm and 2 mm.
Moreover, each outer part of the outer sheath may be enclosed by a flange connected or connectable to the cavity wall of the oven cavity.
Preferably, a connecting element is interconnected between the inner part of the outer sheath and the antenna extension.
Novel and inventive features of the present invention are set forth in the appended claims.
The present invention will be described in further detail with reference to the drawings, in which
The microwave oven comprises a microwave generator 10, e.g. a magnetron 10 and a microwave antenna 12, e.g. a magnetron antenna 12, wherein said microwave/magnetron antenna 12 extends from the microwave generator/magnetron 10. Alternatively, instead of the magnetron 10 the microwave oven may comprise other kinds of electromagnetic field sources, in particular dipole or monopole sources. In particular, any vacuum tube-type microwave generator such as e.g. a magnetron or any electronic microwave generator such as e.g. a solid state generator. Further, the microwave oven comprises an oven cavity 14 and a cavity wall 16 enclosing said oven cavity 14. The microwave generator/magnetron 10 is arranged out of the oven cavity 14. A matching section 18 is interconnected between the microwave generator/magnetron 10 and an opening in the cavity wall 16. The microwave/magnetron antenna 12 extends into said matching section 18. The matching section 18 may have a cylindrical, oval, rectangular or other cross section.
Moreover, the microwave oven comprises an antenna extension 20 arranged substantially inside the oven cavity 14, preferably in the upper part of said oven cavity 14. The antenna extension 20 is electrically connected to the magnetron antenna 12 via an antenna cap 22. A blind hole of the antenna cap 22 receives the magnetron antenna 12 in order to assure a tight mechanical and electrical connection. The antenna extension 20 is formed as a serpentine. In this example, the cross section of the antenna extension 20 may be of an arbitrary shape, e.g. square, rectangular, circular or oval. The antenna extension 20 may be hollow or solid. At least the most external surface of the antenna extension 20 must be made of an electrically conductive material, e.g. metal, in order to allow a propagation of the high frequency electromagnetic field. Preferably, the antenna extension 20 is a hollow cylinder made of copper or steel.
The shape, the length and the distance from other metal surfaces of the antenna extension 20 have to be defined in order to obtain the best matching condition of the microwave generator/magnetron 10 on the one hand and to change or modify the distribution of the electromagnetic field in the oven cavity 14 on the other hand. In the preferred embodiment, the distance between the antenna extension 20 and any other metal surfaces is about λ/8, wherein λ is the wavelength of the microwaves.
The antenna extension 20 allows an improved control of the microwave heating distribution in the oven cavity 14 without any moving elements, like stirrers or turntables. Further, the antenna extension 20 saves space in the microwave oven. Moreover, only a small opening in the cavity wall 16 is required, which improves the insulation of the oven cavity 14.
The microwave oven comprises the microwave generator 10, e.g. the magnetron 10 and the microwave antenna 12, e.g. the magnetron antenna 12. Said Microwave/magnetron antenna 12 extends from the MW-generator/magnetron 10. Alternatively, instead of the magnetron 10 the microwave oven may comprise other kinds of electromagnetic field sources, in particular dipole or monopole sources. In particular, any vacuum tube-type microwave generator such as e.g. a magnetron or any electronic microwave generator such as e.g. a solid state generator. Further, the microwave oven comprises the oven cavity 14 and the cavity wall 16 enclosing said oven cavity 14. The mw-generator/magnetron 10 is arranged out of the oven cavity 14. The matching section 18 is interconnected between the mw-generator/magnetron 10 and the opening in the cavity wall 16. The microwave/magnetron antenna 12 extends into said matching section 18. The matching section 18 may have a cylindrical, oval, rectangular or other cross section.
The microwave oven comprises the antenna extension 20 arranged inside the matching section 18 and the oven cavity 14. The antenna extension 20 penetrates an opening in the cavity wall 16. The antenna extension 20 is electrically connected to the magnetron antenna 12 via the antenna cap 22. The blind hole of the antenna cap 22 receives the microwave/magnetron antenna 12 in order to assure a tight mechanical and electrical connection. In this embodiment, the antenna extension 20 is formed as a linear rod. The cross section of the antenna extension 20 may be of an arbitrary shape, e.g. square, rectangular, circular or oval. The antenna extension 20 may be hollow or solid.
The microwave oven according to the second embodiment comprises a further antenna extension 24. In this example, the further antenna extension 24 is formed as a grill heating element 24. The antenna extension 20 is electrically interconnected between the antenna cap 22 and the further antenna extension 24. The shape, the length and the distance from other metal surfaces of the further antenna extension 24 have to be defined in order to obtain the best matching condition of the microwave generator/magnetron 10, to change or modify the distribution of the electromagnetic field in the oven cavity 14 and to accomplish the original function of the further antenna extension 24, i.e. as the grill heating element 24. In the preferred embodiment, the distance between the further antenna extension 24 and any other metal surfaces is about λ/8, wherein λ is the wavelength of the microwaves.
The matching section 18 is interconnected between the magnetron 10 and the opening in the cavity wall 16. The microwave antenna/magnetron antenna 12 extends from the microwave generator 10, e.g. the magnetron 10 and is arranged inside the matching section 18. The antenna extension 20 is electrically connected to the mw/magnetron antenna 12 via the antenna cap 22. The blind hole of the antenna cap 22 receives the mw/magnetron antenna 12 in order to assure a tight mechanical and electric connection. An outer diameter Do of the antenna cap 22, an inner diameter Di of the matching section 18 and a length L of the matching section 18 are essentially integer multiples of λ/8, i.e. N*λ/8 wherein N is an essentially integral number greater zero, preferably wherein N is essentially 1, 2 or 3, still preferably wherein N is essentially 1.
The grill heating element 50 includes an outer sheath 28, a heating coil 30 and an insulation powder 32. The heating coil 30 extends inside the outer sheath 28. The heating coil 30 and the outer sheath 28 are arranged coaxially to each other. The inner space of the outer sheath 28 is filled with the insulation powder 32. Said insulation powder 32 guarantees the proper insulation between the outer sheath 28 and the heating coil 30. The outer sheath 28 is formed as a metal pipe, preferably made of steel or copper or aluminium.
Further, the grill heating element 50 includes a metal conductor 34, a connector 36, a sealing cap 38 and a flange 40. The metal conductor 34, the connector 36, the sealing cap 38 and the flange 40 are arranged within the range of an opening in the cavity wall 16 of the oven cavity 14. An end portion of the grill heating element 50 penetrates said opening. The sealing cap 38 is arranged out of the oven cavity 14 and closes the end of the outer sheath 28. The metal conductor 34 extends linearly, forms the continuation of the heating coil 30 and penetrates the sealing cap 38. The connector 36 is fixed at an outer end of the metal conductor 34. Via the connector 36 the grill heating element 50 is connectable to the power supply 26. For example, the connector 36 is a faston. The flange 40 encloses the outer sheath 28 and is fixed at the cavity wall 16, so that the grill heating element 50 is fastened by the flange 40 at the cavity wall 16. The heating coil 30 generates heat, while the metal conductor 34 does not generate any appreciable heat.
However, the outer sheath 28 is divided into an inner part and two outer parts, wherein only one inner part is shown. The inner part of the outer sheath 28 is arranged in the central portion of the oven cavity 14, while the outer parts of the outer sheath 28 penetrate the cavity wall 16. A gap is formed between the inner part and the outer part of the outer sheath 28. Said gap extends perpendicular to the longitudinal axis of the outer sheath 28 and is filled by a separating element 42. Further, the inner part and the outer part of the outer sheath 28 are connected by the separating element 42. The separating element 42 is made of an insulating material, so that the inner part and the outer part of the outer sheath 28 are electrically isolated from each other. The metal conductor 34 inside the outer sheath 28 also penetrates the separating element 42. The width G of the gap is as small as possible in order to allow the electrical separation of the inner part and the outer part of the outer sheath 28 on the one hand and to shield the metal conductor 34 from the microwaves on the other hand. Preferably, the width G of the gap is between 1 mm and 2 mm. The inner part of the outer sheath 28 is connected to the antenna extension 20 via a connecting element 44.
The microwave ovens of the prior art shown in
In contrast, the microwave oven according to the present invention is realized without any moveable components. The inventive microwave oven provides more space in the oven cavity 14. Further, the inventive microwave oven comprises a relative small opening in the cavity wall 16. Said small opening improve the thermal insulation of the oven cavity 14. Moreover, the inventive microwave oven does not require any complex wave guides.
Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the present invention is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the invention. All such changes and modifications are intended to be included within the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
15197973 | Dec 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/078934 | 11/28/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/093154 | 6/8/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3388231 | Staats | Jun 1968 | A |
20090236334 | Ben-Shmuel et al. | Sep 2009 | A1 |
20140305933 | Tang | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1241923 | Sep 2002 | EP |
1670290 | Jun 2006 | EP |
2187702 | May 2010 | EP |
2778539 | Sep 2014 | EP |
2931007 | Oct 2015 | EP |
1203297 | Aug 1970 | GB |
Entry |
---|
Translation of EP1241923A1, Microwave oven, Sep. 18,2002, http://dialog.proquest.com/professional (Year: 2002). |
International Search Report & Written Opinion issued in corresponding application No. PCT/EP2016/078934 dated Feb. 23, 2017, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20180359822 A1 | Dec 2018 | US |