1. Field of the Invention
The present invention relates to microwave routing or switching devices, such as microwave waveguides, and devices and systems including same. Particularly, the present invention relates to selectively controlling the transmission of microwave energy via at least one electrical arc.
2. Background of Related Art
Conventional microwave switch devices are known in the art for switching microwave signals. Typically, such conventional microwave switches may be mechanically actuated (e.g., via rotary or linear movement) and may be configured for opening or closing apertures (within a waveguide, for instance) for allowing or preventing microwave energy transmission.
For example, some mechanical microwave switches, described in U.S. Pat. No. 6,037,849 to Ciezarek, include an actuator plate which is mechanically coupled to reeds of a connection assembly may be employed for placing the connection assembly into the selected position. Thus, during operation of the switch, a magnetic force of a permanent magnet may be substantially the only holding force that holds the actuator plate (coupled to various reeds) in place in at least one direction. In another example, a prior art microwave switch of a rotary type is described in U.S. Pat. No. 4,370,631 to and comprises a rotor, a rotor housing, two biasing means, a housing for the biasing means and an electronic circuit to control the biasing means. The rotor and the housing are of conventional design. The biasing means comprise two rotary solenoids, which are mechanically linked to a Maltese transmission mechanism.
Microwave switches may be employed in a variety of applications, including microwave heating/processing, space applications, or other applications. Of course, performance considerations, such as the amount of time for actuating the switch may be of importance. It may be difficult to manufacture parts for a mechanical microwave switch with sufficiently high precision to permit suitable control of microwave energy. Furthermore, mechanical systems may be prone to relatively slow actuation times (i.e., switching times) and also may be prone to mechanical failure. It may be, therefore, desirable to provide a microwave switch with an actuation mechanism that is efficient, reliable, and exhibiting a relatively low actuation time.
Accordingly, some conventional microwave switching devices have been conceived that are non-mechanical microwave switching devices. For example, U.S. Pat. No. 2,493,706 to Washbume et al. discloses an electronic switch for electronically switching and modulating microwaves. More particularly, the conventional device includes an evacuated waveguide wherein an electron beam may be generated for reflecting at least a portion of microwave energy.
In another example, U.S. Pat. No. 3,281,719 to Goldberg discloses a microwave switching apparatus utilizing a spark gap inserted parallel to an electric field wherein a trigger pulse applied to the spark gap ionizes the gas in the vicinity of the gap and the microwave energy being propagated through the waveguide system causes breakdown to occur between then electrodes of the spark gap, thus creating a microwave arc.
In yet a further example, U.S. Pat. No. 4,255,731 to Birx discloses a microwave switching apparatus for producing a beam of electrons, which traverses a central portion of the narrow dimension of a rectangular cavity in a direction parallel to the electrical field of microwave energy traveling therein. The electron beam switch is intended to be used for the purpose of suddenly releasing very large amounts of stored energy accumulated in a waveguide during its so-called ‘open’ state.
These electronic microwave switches described above may be configured for inhibiting transmission of microwave energy or releasing stored microwave energy in a single waveguide. However, there is a need for routing microwave energy to multiple output waveguides while enabling selective transmission of the microwave energy into those output waveguides. In addition, it may be desirable to provide a microwave routing element with an electronic actuation mechanism that is efficient, reliable, and exhibiting a relatively low actuation time relative to mechanical microwave switches.
The present invention, in a number of exemplary embodiments, relates to microwave routing elements including at least one electrode for forming at least one electrical arc to selectively control microwave energy passing through the microwave routing element.
An exemplary embodiment of the present invention includes a microwave routing element comprising at least one inlet region, a plurality of outlet regions operably coupled to the at least one inlet region, and a plurality of junctures, wherein each juncture is positioned substantially between an associated outlet region and the at least one inlet region. The at least one inlet region is configured for receiving and communicating a microwave energy and the plurality of outlet regions are configured for communicating a transmitted portion of the microwave energy. Each juncture includes at least one electrode configured for generating an electrical arc across the juncture to inhibit transmission of the microwave energy through the juncture when the electrical arc is present and permit passage of the transmitted portion through the juncture when the electrical arc is absent.
Another exemplary embodiment includes a microwave routing element comprising at least one inlet region, a plurality of outlet regions operably coupled to the at least one inlet region, and a plurality of partitions, wherein each partition is positioned substantially between an associated outlet region and the at least one inlet region. The at least one inlet region is configured for receiving and communicating a microwave energy and the plurality of outlet regions are configured for communicating a transmitted portion of the microwave energy: Each partition includes a plurality of apertures formed therethrough. Each aperture is configured to allow transmission of the transmitted portion therethrough and each aperture may include at least one electrode configured for generating an electrical arc across the aperture to inhibit transmission of the microwave energy through the aperture when the electrical arc is present and permit passage of the transmitted portion through the aperture when the electrical arc is absent.
Another exemplary embodiment includes a method of directing microwave energy, the method comprising communicating a microwave energy into at least one inlet region of a microwave routing element and toward a plurality of junctures, wherein each juncture is positioned between the at least one inlet region and one of a plurality of outlet regions of the microwave routing element. The method further includes inhibiting transmission of at least a portion of the microwave energy through at least one of the plurality of junctures and into at least one of the plurality of outlet regions by selectively causing an electrical arc across the at least one of the plurality of junctures. In addition, the method includes permitting transmission of the microwave energy through the at least one of the plurality of junctures and into at least one of the plurality of outlet regions in the absence of the electrical arc.
Another exemplary embodiment includes another method of directing microwave energy, the method comprising communicating a microwave energy into at least one inlet region of a microwave routing element and toward a plurality of partitions, each partition positioned between the at least one inlet region and one of a plurality of outlet regions of the microwave routing element, and each partition including a plurality of apertures formed therethrough. The method further includes inhibiting transmission of at least a portion of the microwave energy through at least one of the plurality of apertures and into at least one of the plurality of outlet regions associated therewith by selectively causing an electrical arc across the at least one of the plurality of apertures. In addition, the method includes permitting transmission of the microwave energy through the at least one of the plurality of apertures and into at least one of the plurality of outlet regions associated therewith in the absence of the electrical arc.
Other exemplary embodiments include microwave routing systems comprising at least one microwave source configured for generating a microwave energy, a microwave routing element configured for routing the microwave energy as described in the exemplary embodiments above, and a plurality of microwave processing chambers. Each microwave processing chamber is operably coupled to at least one of a plurality of outlet regions from the microwave routing element and is configured for receiving a transmitted portion of the microwave energy communicated by the outlet region associated with that microwave processing chamber.
Other features and advantages of the present invention will become apparent to those of skill in the art through consideration of the ensuing description, the accompanying drawings, and the appended claims.
Generally, the present invention relates to microwave apparatuses and methods. In the following detailed description, reference is made to the accompanying drawings hereof, which illustrate specific embodiments in accordance with the present invention. It should be understood that other embodiments may be utilized, and that various structural, process, or structural and process changes may be made to the described embodiments of the present invention without departing from the spirit and scope thereof. In addition, for clarity, like numerals may refer to like elements and functions in the various figures of the drawings and illustrating the different embodiments of the present invention.
Referring to
The microwave source 12, by way of example and not limitation, may comprise a microwave signal generator or microwave voltage-controlled oscillator for generating a microwave signal. Further, a high-power broadband amplifier may be employed for amplifying the microwave signal, such as, but not limited to, a traveling wave tube (TWT), tunable magnetron, tunable klystron, tunable twystron, and a tunable gyrotron, may be used to sweep a range of microwave frequencies of up to an octave in bandwidth and spanning a spectrum of from about 10 MHz to about 300 GHz. A range of microwave frequencies may be utilized, in accordance with embodiments of the present invention, and may include virtually any number of frequencies and amplitudes, without limitation.
In one application, use of microwave energy, according to exemplary embodiments of the present invention, can enhance the cure kinetics of an adhesive and can lead to selective heating during processing. Accordingly, in one embodiment, the microwave processing chambers 16A and 16B may comprise an exemplary microwave furnace generally as described in U.S. Pat. No. 5,321,222, to Bible et al., the disclosure of which is incorporated in its entirety by reference herein, but including at least two chambers for exposing an adhesive to microwaves. Similarly, in one embodiment, the microwave processing chambers 16A and 16B may comprise an exemplary microwave furnace generally as described in U.S. Pat. No. 6,758,609 to Fathi et al., the disclosure of which is incorporated in its entirety by reference herein, but including at least two chambers for exposing an adhesive to microwaves. Furthermore, exemplary microwave furnaces for carrying out embodiments of the present invention are the MicroCure® 2100 furnace, the MicroCure® 5100 furnace, the MicroCure® 5300 furnace, and the VariWave (™) 1500 tabletop furnace, all commercially available from Lambda Technologies, Morrisville, N.C. In addition, the microwave processing chambers 16A and 16B may include a positioning apparatus (not shown) configured for positioning or moving samples to be exposed to microwave energy relative to the microwave source in up to six degrees of freedom (e.g., translation and rotation along the X, Y and Z axes, respectively). An exemplary positioning apparatus that may be utilized in accordance with embodiments of the present invention are available from Adept Technology, Inc., San Jose, Calif.
Of course, the microwave routing system 10 according to embodiments of the present invention may be under control of the computer 18. For example, under computer control, the microwave source 12 may be configured for emitting a particular frequency, amplitude, and duration. More specifically, if the microwave routing system 10 includes a curing oven as a microwave processing chamber 16A and 16B, the microwave source 12 may be operated so as to emit an optimum incident frequency for curing a particular adhesive resin, and then may be programmed to sweep around (i.e., above or below) this optimum frequency. Such a configuration may provide a relatively effective curing environment for a given adhesive resin. Further, an optimum curing frequency of the microwave energy may change during the curing of adhesive resin. Accordingly, the frequency of the microwave energy emitted by the microwave source 12 may be adjustable, optionally under computer control, and may be adjusted during curing of an adhesive resin, if desired. In addition, the computer 18 may control the microwave routing element 14 to select the amount and type of microwave energy that may be transmitted to the microwave processing chambers 16A and 16B, as will become apparent from the discussion below.
In
Thus, during operation, it may be appreciated that microwave energy 11 introduced into inlet region 20 may be communicated, as a transmitted portion 23A and 23B, through one or both of outlet regions 22A and 22B, respectively. However, according to the present invention, and as illustrated in detail in
For example, as shown in
More generally, the present invention contemplates that at least one electrode may be employed for selectively allowing or preventing microwave energy 11 transmission across each juncture 21A and 21B. Such a configuration may provide a mechanism for controlling an amount of the transmitted portion 23A and 23B communicated within a selected outlet region 22A and 22B. In the case of one electrode, the microwave-reflecting wall opposite the electrode 32A and 32B may act as a receiver for the electrical arc 34A and 34B, respectively.
Another exemplary embodiment of the present invention is illustrated in
In addition, as shown in
Thus, such an electrical arc (for each aperture 42) may be configured for selectively preventing microwave energy from passing through each aperture 42. Although electrodes 32′ are shown as positioned toward outlet regions 22A and 22B (with respect to partitions 50A and 50B, respectively, electrodes 32′ may be positioned toward inlet region 20, if so desired. However, positioning electrodes 32′ away from inlet region 20 (with respect to partitions 50A and 50B) may reduce undesirable interaction with microwave energy.
It may be further appreciated that, as known in the art, microwave energy that is reflected within microwave routing element 14 may generate electrical potentials between adjacent electrodes 32 due to the interaction of the electromagnetic waves therewith. Thus, electrodes 32 may be structured, sized, and spaced from one another so that a maximum electric potential generated by interaction with microwave energy does not cause an electrical arc to form between proximate electrodes 32. Put another way, electrodes 32 may be sized and configured for preventing or at least inhibiting spontaneous electrical discharge due to interaction with microwave energy (within microwave routing element 14) alone. Such a configuration may simply allow microwave energy to be transmitted or conducted through the apertures 42 and within microwave routing element 14.
In another aspect of the present invention, it may be appreciated that microwave energy introduced within microwave routing element 14 may be shared or apportioned between a plurality of outlet regions 22A and 22B. For instance, as shown in
Such a configuration may allow for microwave processing to be accomplished in an efficient manner. For instance, assuming that a plurality of outlet regions 22A and 22B are operably connected to a respective plurality of microwave processing chambers 16A and 16B, microwave energy may be supplied to at least some of the plurality of microwave processing chambers 16A and 16B, while microwave energy may be prevented from communication with others of the plurality of microwave processing chambers 16A and 16B. Such a configuration may allow for staging and preparation in some of the plurality of microwave processing chambers 16A and 16B while other microwave processing chambers 16A and 16B experience microwave energy. Such a configuration may reduce the amount of time that the microwave source 12 is unused, resulting in greater utilization thereof.
Alternatively or additionally, the electrodes 32 may be employed for implementing a time on, time off control approach (i.e., pulse width modulation) for allowing or preventing transmission of microwave energy through the microwave routing element 14. In such an approach, microwave energy may be introduced into the microwave routing element 14 and the electrodes 32 may be energized for a selected amount of time and the electrodes 32 may de-energized for another selected amount of time. By adjusting the ratio of the on time and the off time, relatively refined control of the microwave energy (e.g., average power) transmitted through the microwave routing element 14 may be controlled.
In another aspect of the present invention, at least one aperture may be structured for allowing a particular range of frequencies therethrough when an arc is not generated thereacross. Explaining further, by virtue of the size of an aperture, a minimum frequency (i.e., a maximum wavelength) may be passed therethrough. Expanding further, a plurality of apertures 42 may exhibit sizes for passing selected ranges of frequencies therethrough. Such a configuration may allow for selectively energizing electrodes 32′ associated with those apertures 42 exhibiting the capability for allowing a particular frequency or particular frequencies of microwave energy therethrough. Such a configuration may simplify control of microwave energy through apertures 42 in a microwave routing element 14 of the present invention.
In one example, as shown in
In a further aspect of the present invention, it may be further understood that more than one microwave source 12 may be utilized, if desirable. For example, the microwave source 12 illustrated in
While the present invention has been disclosed in terms of certain preferred embodiments, those of ordinary skill in the art will recognize and appreciate that the invention is not so limited. Additions, deletions, and modifications to the disclosed embodiments may be effected without departing from the scope of the invention as claimed herein. Similarly, features from one embodiment may be combined with those of another while remaining within the scope of the invention.