1. Technical Field
The present disclosure relates to systems and methods for providing energy to biological tissue and, more particularly, to a microwave ablation surgical antenna having a conical aperture, and methods of use and manufacture therefor.
2. Background of Related Art
Energy-based tissue treatment is well known in the art. Various types of energy (e.g., electrical, ultrasonic, microwave, cryogenic, thermal, laser, etc.) are applied to tissue to achieve a desired result. Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, coagulate or seal tissue. In monopolar electrosurgery, a source or active electrode delivers radio frequency energy from the electrosurgical generator to the tissue and a return electrode carries the current back to the generator. In monopolar electrosurgery, the source electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator. In tissue ablation electrosurgery, the radio frequency energy may be delivered to targeted tissue by an antenna or probe.
Presently, there are several types of microwave probes in use, e.g., monopole, dipole, and helical. One type is a monopole antenna probe, which consists of a single, elongated microwave conductor exposed at the end of the probe. The probe is typically surrounded by a dielectric sleeve. The second type of microwave probe commonly used is a dipole antenna, which consists of a coaxial construction having an inner conductor and an outer conductor with a dielectric junction separating a portion of the inner conductor. The inner conductor may be coupled to a portion corresponding to a first dipole radiating portion, and a portion of the outer conductor may be coupled to a second dipole radiating portion. The dipole radiating portions may be configured such that one radiating portion is located proximally of the dielectric junction, and the other portion is located distally of the dielectric junction. In the monopole and dipole antenna probe, microwave energy generally radiates perpendicularly from the axis of the conductor.
The typical microwave antenna has a long, thin inner conductor that extends along the axis of the probe and is surrounded by a dielectric material and is further surrounded by an outer conductor around the dielectric material such that the outer conductor also extends along the axis of the probe. In another variation of the probe that provides for effective outward radiation of energy or heating, a portion or portions of the outer conductor can be selectively removed. This type of construction is typically referred to as a “leaky waveguide” or “leaky coaxial” antenna. Another variation on the microwave probe involves having the tip formed in a uniform spiral pattern, such as a helix, to provide the necessary configuration for effective radiation. This variation can be used to direct energy in a particular direction, e.g., perpendicular to the axis, in a forward direction (i.e., towards the distal end of the antenna), or combinations thereof.
Invasive procedures and devices have been developed in which a microwave antenna probe may be either inserted directly into a point of treatment via a normal body orifice or percutaneously inserted. Such invasive procedures and devices potentially provide better temperature control of the tissue being treated. Because of the small difference between the temperature required for denaturing malignant cells and the temperature injurious to healthy cells, a known heating pattern and predictable temperature control is important so that heating is confined to the tissue to be treated. For instance, hyperthermia treatment at the threshold temperature of about 41.5° C. generally has little effect on most malignant growth of cells. However, at slightly elevated temperatures above the approximate range of 43° C. to 45° C., thermal damage to most types of normal cells is routinely observed. Accordingly, great care must be taken not to exceed these temperatures in healthy tissue.
In the case of tissue ablation, a high radio frequency electrical current in the range of about 500 MHz to about 10 GHz is applied to a targeted tissue site to create an ablation volume, which may have a particular size and shape. Ablation volume is correlated to antenna design, antenna performance, antenna impedance and tissue impedance. The particular type of tissue ablation procedure may dictate a particular ablation volume in order to achieve a desired surgical outcome. By way of example, and without limitation, a spinal ablation procedure may call for a longer, more narrow ablation volume, whereas in a prostate ablation procedure, a more spherical ablation volume may be required. In some instances, targeted lesions may be located on or near the surface of the target organ. Such surface lesions have been treated with invasive ablation needles or sticks, which may cause damage to adjacent anatomical structures, increase the likelihood of hemorrhaging, and lengthen operative and recovery times.
The present disclosure provides an electromagnetic surgical ablation probe having a distal conical aperture. The disclosed antenna includes a tubular catheter longitudinally disposed thereabout that is configured to circulate a coolant, such as saline or deionized water. At a distal end of the antenna, the catheter flares out distally to form a conical hood having a wide distal opening. The angle of flare may be dependent upon the desired radiating efficiency and radiating pattern at the intended frequency of operation. The conical hood may contain coolant delivered via the catheter and, additionally or alternatively, the conical hood may contain dielectric material. A membrane or plate constructed from radiofrequency-transparent material of low electrical conductance encloses the wide distal opening of the hood to form a tissue interface, e.g., a treatment surface. Any suitable radiofrequency-transparent material of low electrical conductance may be used, for example, high-temperature-resistant polymer or glass epoxy composite.
Radiofrequency energy is supplied to the antenna by a coaxial feedline having an inner conductor, an outer conductor disposed coaxially thereabout, and a dielectric disposed therebetween. The coaxial feedline passes longitudinally from a proximal end of the antenna, through the catheter, to a distal end of the antenna. A radiating section disposed within the conical hood is electrically coupled to the inner conductor. The radiating section may have a conical shape having a narrow proximal end coupled to the inner conductor, and a wide distal end extending toward the radiofrequency-transparent membrane or plate. The radiating section may additionally or alternatively include a flared section, a spiral section, and/or be loaded with disks, which may improve radiating performance and mechanical strength. Additionally or alternatively, the inner conductor may include a sharp tip that protrudes beyond the distal end of the conical opening, or may terminate within the cone. During use, the sharp tip may assist in positioning the antenna on tissue, and/or may improve radiation performance.
In one embodiment, the disclosed electromagnetic surgical ablation probe includes a coaxial feedline having an inner conductor, an outer conductor disposed coaxially thereabout, and a dielectric disposed therebetween. A tubular catheter is disposed coaxially around the feedline to form a fluid path. At a proximal end of the instrument the fluid path is in fluid communication with a source of coolant, which may be a coolant pump or gravity-assisted drip. A distal end of the fluid path is in fluid communication with a coolant chamber as will be described in detail hereinbelow. The disclosed probe includes an outer tube, e.g., a hypotube, that is coaxially disposed around the tubular catheter. A reflector, which may have a conical shape that includes a flared distal opening, is disposed at a distal end of the hypotube. A radiating section is disposed within the conical reflector, and is operably coupled to the inner conductor. The probe includes a membrane disposed across the distal opening of the conical reflector to define the coolant chamber. The reflector may additionally or alternatively have a hemispherical shape, trumpet-flared shape, frustoconical, or other flared shape.
The reflector may include at least one dielectric material. The dimensions of the dielectric material, e.g., thickness, shape, and/or position, may be determined by the desired characteristics of the probe, such as without limitation, impedance matching and ablation (radiation) pattern.
Also disclosed is an electromagnetic surgical ablation system that includes a source of microwave ablation energy operatively coupled to an electromagnetic ablation probe as disclosed herein. The source of microwave ablation energy may include a selectively activatable microwave generator configured to supply microwave or RF energy in a range of about 915 MHz to about 2450 MHz, or additionally or alternatively, microwave or RF energy in a range of about 500 MHz to about 10 GHz. A microwave generator in accordance with the present disclosure may include the capability to deliver ablation energy at a fixed-frequency and/or at a variable frequency. The microwave ablation probe may include a proximal handle portion and a distal shaft portion.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
Particular embodiments of the present disclosure will be described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure, which may be embodied in various forms. Well-known or repetitive functions, constructions are not described in detail to avoid obscuring the present disclosure in unnecessary or redundant detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
In the drawings and in the descriptions that follow, the term “proximal,” as is traditional, shall refer to the end of the instrument that is closer to the user, while the term “distal” shall refer to the end that is farther from the user.
In greater detail,
As seen in
A proximal end of feedline 102 may be operably coupled to a source of microwave ablation energy in the range of about 915 MHz to about 5 GHz.
As seen in
Balun outer conductor 112 has a substantially tubular shape, having a proximal end 113 thereof abutting a distal end 111 of balun short 110 and extending distally. A distal end 114 of balun outer conductor 112 is positioned substantially adjacent to a distal end 108 of balun insulator 106. Balun insulator 106 may extend distally beyond a distal end 114 of balun outer conductor 112 to enhance microwave performance of the probe, e.g., provide a desired ablation pattern.
A divider tube 140 is concentrically disposed between a hypotube 116 and the inner components of the shaft assembly 101, e.g., feedline 102 and/or balun 109 components, to define a fluid outflow path 144 between hypotube 116 and divider tube 140, and a fluid inflow path 141 between divider tube 140 and feedline 102 and/or balun 109. At a proximal end thereof, fluid inflow path 141 may be in fluid communication with a source of coolant, such as saline or deionized water. At a distal end thereof, fluid inflow path 141 and fluid outflow path 144 are in fluid communication with an interior volume of conical hood 130. A distal end of divider tube 140 may protrude distally beyond a distal end of hypotube 116. Hypotube 116 may be formed from any sufficiently strong electrically-conductive heat-resistant material, e.g., stainless steel. A proximal apex end 131 of conical hood 130 may include an opening (not explicitly shown) that is dimensioned to engage a distal end of hypotube 116. Conical hood 130 may be coupled to hypotube 116 by any suitable manner of bonding, such as welding, soldering, crimping, adhesive, or by integral forming.
A membrane 134 is disposed across the perimeter of distal opening 132 of conical hood 130 to define a fluid chamber 136. Membrane 134 may be formed of any suitable radiofrequency-transparent material of low electrical conductivity, e.g., material that enables efficient transmissivity of microwave ablation signals to tissue from the energy delivery system, including without limitation, the conical radiating structure herein described. Membrane 134 may be formed from a rigid material, or may be formed from flexible and/or elastomeric material. Membrane 134 is sealed to distal opening 132 by any manner of coupling that is resistant to the passage of fluid. The distal surface 122 of distal radiating section cone 120 may be positioned in a coplanar arrangement with proximal surface 135 of membrane 134.
In use, coolant, e.g., saline or deionized water (not explicitly shown) flows distally through fluid inflow path 141, into fluid chamber 136, and proximally through fluid outflow path 144. Fluid chamber 136 may become filled with coolant. The circulation of coolant in this manner may aid in controlling ablation temperature of tissue, ablation patterns, and/or may improve impedance matching due to, at least in part, the dielectric properties of the coolant. In embodiments, the relative positions of fluid inflow path 141 and fluid outflow path 144 may differ from that described hereinabove, e.g., reversed (fluid inflow path 141 may be defined coaxially around fluid outflow path 144), or defined by one or more longitudinal ribs, without departing from the spirit and scope of the present disclosure.
In an embodiment best represented in
Turning now to
In yet another embodiment according to the present disclosure and depicted in
Still another embodiment in accordance with the present disclosure is presented in
Turning now to
In
A method of manufacturing a microwave ablation probe 100 having a conical hood 130 is shown in accordance with the present disclosure with reference now to
As shown in
With reference to
Referring now to
Turning now to
With reference to
A specific absorption rate (SAR) is a unit of measure proportional to the initial rate of temperature increase at a probe-tissue interface, and may be used to evaluate the amount and shape of energy (e.g., an ablation pattern) produced by a probe.
The described embodiments of the present disclosure are intended to be illustrative rather than restrictive, and are not intended to represent every embodiment of the present disclosure. Further variations of the above-disclosed embodiments and other features and functions, or alternatives thereof, may be made or desirably combined into many other different systems or applications without departing from the spirit or scope of the disclosure as set forth in the following claims both literally and in equivalents recognized in law.
Number | Name | Date | Kind |
---|---|---|---|
4752141 | Sun et al. | Jun 1988 | A |
4823812 | Eshel et al. | Apr 1989 | A |
4883354 | Sun et al. | Nov 1989 | A |
4988212 | Sun et al. | Jan 1991 | A |
5029588 | Yock et al. | Jul 1991 | A |
5944749 | Fenn | Aug 1999 | A |
6026331 | Feldberg et al. | Feb 2000 | A |
6036698 | Fawzi et al. | Mar 2000 | A |
6136014 | Sirimanne et al. | Oct 2000 | A |
6287302 | Berube | Sep 2001 | B1 |
6306132 | Moorman | Oct 2001 | B1 |
6355033 | Moorman | Mar 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6471696 | Berube et al. | Oct 2002 | B1 |
6471709 | Fawzi et al. | Oct 2002 | B1 |
6527768 | Berube | Mar 2003 | B2 |
6564806 | Fogarty et al. | May 2003 | B1 |
6582426 | Moorman | Jun 2003 | B2 |
6652520 | Moorman | Nov 2003 | B2 |
6722371 | Fogarty et al. | Apr 2004 | B1 |
6752154 | Fogarty et al. | Jun 2004 | B2 |
6752767 | Prakash | Jun 2004 | B2 |
6878147 | Prakash | Apr 2005 | B2 |
7128739 | Prakash et al. | Oct 2006 | B2 |
7147632 | Prakash et al. | Dec 2006 | B2 |
7160292 | Moorman et al. | Jan 2007 | B2 |
7197363 | Prakash et al. | Mar 2007 | B2 |
7318824 | Prakash et al. | Jan 2008 | B2 |
7326201 | Fjield et al. | Feb 2008 | B2 |
7393352 | Berube | Jul 2008 | B2 |
7468042 | Turovskiy | Dec 2008 | B2 |
7527623 | Prakash et al. | May 2009 | B2 |
7594313 | Prakash et al. | Sep 2009 | B2 |
7642451 | Bonn | Jan 2010 | B2 |
7645142 | McMunigal et al. | Jan 2010 | B2 |
20010029368 | Berube | Oct 2001 | A1 |
20030060813 | Loeb | Mar 2003 | A1 |
20050038419 | Arnold et al. | Feb 2005 | A9 |
20060259024 | Turovskiy et al. | Nov 2006 | A1 |
20060264923 | Prakash et al. | Nov 2006 | A1 |
20060282069 | Prakash et al. | Dec 2006 | A1 |
20060293650 | Prakash et al. | Dec 2006 | A1 |
20070161977 | Moorman et al. | Jul 2007 | A1 |
20070198006 | Prakash et al. | Aug 2007 | A1 |
20080082093 | Prakash et al. | Apr 2008 | A1 |
20080135217 | Turovskiy et al. | Jun 2008 | A1 |
20080266203 | Rosetto et al. | Oct 2008 | A1 |
20080275438 | Gadsby et al. | Nov 2008 | A1 |
20080294162 | Rosetto et al. | Nov 2008 | A1 |
20080308256 | Deborski et al. | Dec 2008 | A1 |
20080319434 | Rick et al. | Dec 2008 | A1 |
20090005766 | Brannan | Jan 2009 | A1 |
20090018536 | Behnke | Jan 2009 | A1 |
20090030412 | Willis et al. | Jan 2009 | A1 |
20090036883 | Behnke | Feb 2009 | A1 |
20090076492 | Behnke | Mar 2009 | A1 |
20090084581 | Johnson et al. | Apr 2009 | A1 |
20090130897 | McMunigal et al. | May 2009 | A1 |
20090131926 | Rusin et al. | May 2009 | A1 |
20090137145 | Arts et al. | May 2009 | A1 |
20090138004 | Bonn | May 2009 | A1 |
20090149850 | Turovskiy et al. | Jun 2009 | A1 |
20090187180 | Brannan | Jul 2009 | A1 |
20090222002 | Bonn et al. | Sep 2009 | A1 |
20090228003 | Sinelnikov | Sep 2009 | A1 |
20100114086 | Deem et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
390937 | Mar 1924 | DE |
1099658 | Feb 1961 | DE |
1139927 | Nov 1962 | DE |
1149832 | Jun 1963 | DE |
1439302 | Jan 1969 | DE |
2439587 | Feb 1975 | DE |
2455174 | May 1975 | DE |
2407559 | Aug 1975 | DE |
2415263 | Oct 1975 | DE |
2429021 | Jan 1976 | DE |
2460481 | Jun 1976 | DE |
2602517 | Jul 1976 | DE |
2504280 | Aug 1976 | DE |
2627679 | Jan 1977 | DE |
2540968 | Mar 1977 | DE |
2820908 | Nov 1978 | DE |
2803275 | Aug 1979 | DE |
2823291 | Nov 1979 | DE |
2946728 | May 1981 | DE |
3143421 | May 1982 | DE |
3045996 | Jul 1982 | DE |
3120102 | Dec 1982 | DE |
3510586 | Oct 1986 | DE |
3604823 | Aug 1987 | DE |
8712328 | Mar 1988 | DE |
3711511 | Jun 1988 | DE |
3904558 | Aug 1990 | DE |
3942998 | Jul 1991 | DE |
4238263 | May 1993 | DE |
4303882 | Aug 1994 | DE |
4339049 | May 1995 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19717411 | Nov 1998 | DE |
19751108 | May 1999 | DE |
19801173 | Jul 1999 | DE |
19848540 | May 2000 | DE |
10224154 | Dec 2003 | DE |
10328514 | Mar 2005 | DE |
102004022206 | Dec 2005 | DE |
202005015147 | Mar 2006 | DE |
0 246 350 | Nov 1987 | EP |
0 481 685 | Apr 1992 | EP |
0 521 264 | Jan 1993 | EP |
0 541 930 | May 1993 | EP |
0 556 705 | Aug 1993 | EP |
0 558 429 | Sep 1993 | EP |
0 572 131 | Dec 1993 | EP |
0 836 868 | Apr 1998 | EP |
1 159 926 | May 2001 | EP |
179607 | Nov 1906 | FR |
1 275 415 | Sep 1960 | FR |
1 347 865 | Nov 1963 | FR |
2 276 027 | Jun 1974 | FR |
2 235 669 | Jan 1975 | FR |
2 313 708 | Dec 1976 | FR |
2 502 935 | Oct 1982 | FR |
2 517 953 | Jun 1983 | FR |
2 573 301 | Nov 1984 | FR |
2 862 813 | May 2005 | FR |
2 864 439 | Jul 2005 | FR |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
08056955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
166452 | Nov 1964 | SU |
401367 | Nov 1974 | SU |
727201 | Apr 1980 | SU |
9904704 | Feb 1999 | WO |
9922657 | May 1999 | WO |
WO 9953853 | Oct 1999 | WO |
03039385 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20110077634 A1 | Mar 2011 | US |