1. Field of the Invention
The present invention relates to an insulated packaging material which comprises a film of first and second face material layers laminated to a thermal insulating layer and a microwave susceptible coating applied to the second face material layer so that the second layer is preferentially heated by microwave radiation. The first face material layer can be coated with a coating material so that it is printable to form a combination microwave susceptible insulated label and packaging material.
2. Description of Related Art
Insulated enclosures for containers are known, such as that disclosed in U.S. Pat. No. 4,871,597. This enclosure includes a first, or inner-most fabric layer, a second inner-most insulating layer which includes a polymeric foam, a third inner-most metallized polymer film reflective layer, and an outer-most fabric mesh layer. However, the use of four different layers, although providing good insulation for the container, can be cumbersome, which limits the flexibility of the packaging material.
Also known in the film art is a thin electrical tape which comprises a polyester web-reinforced polyester film, as disclosed in 3M Utilities and Telecommunications OEM. However, this tape, which at its thickest is 0.0075 inch (0.0190 cm.), is not suitable for use as an insulated packaging material.
Composite materials for use as microwave susceptors are also known. U.S. Pat. No. 5,021,293 shows a polyethylene terephthalate film coated with flakes of electrically conductive metal or metal alloy. U.S. Pat. No. 4,892,782 shows drapable liquid permeable woven or nonwoven fibrous dielectric substrates that are coated with susceptor materials which can be wrapped around food items for microwave heating. These patents do not disclose both microwave susceptible and insulated packaging materials, nor such packaging materials that may also be printed as labels.
Thus, there exists a need to design an insulated packaging material which is inexpensive to manufacture. Such an insulator would be thick enough to provide adequate insulation, but thin enough to be flexible. Ideally, such packaging material also would be printable to form a label.
The present invention overcomes the problems associated with the prior art by providing an insulated packaging material that has a component which is preferentially heated by microwave radiation. The is insulated packaging material has enough loft, i.e., is thick enough (greater than 0.0075 inch (0.0190 cm)) so as to provide adequate insulation when used, for example, as an insulated pouch, but is thin enough so that it is flexible, and can be formed into such pouch form for wrapping around a food article. The insulated packaging material of the present invention is printable, thereby enhancing its use as a packaging material.
Another advantage of the insulated packaging material of the present invention is that it is less costly to manufacture than known laminated structures formed with adhesives, since in a preferred embodiment it includes a co-extruded bi-layer film with a heat-sealable adhesive layer which is used to adhere (thermally bond) the film to an insulating layer. Prior to adhering the film to the insulating layer, a microwave susceptible coating is applied to the film layer.
Moreover, in the preferred embodiment where the film and the insulating layer are both made of polyester, and include compatible adhesives, the insulated label and packaging container stock of the present invention is wholly recyclable, thereby providing significant environmental advantages over known packaging materials of the prior art.
In accordance with the present invention, the insulated packaging material of the present invention comprises a thermal insulating layer having a thermal resistance of 0.05 to 0.5 CLO (0.0077 to 0.077 m2*K/W) which is laminated to a face material, and wherein the Insulated packaging material has a thickness in the range of 0.0075 inch (0.0190 cm) to 0.07 inch (0.1778 cm). A microwave susceptible layer is coated onto the face material, and preferably a sealant is applied over the microwave susceptible layer.
In a further aspect, the present invention is a method for making an insulating label stock in which a sheet of face material is formed as a co-extruded film having a first layer and a second layer, wherein said second layer has a lower melting temperature than said first layer, and a microwave susceptible coating is applied to a surface of the second layer. Then the sheet is fed together with a thermal insulating layer having a thermal resistance in the range of 0.05 to 0.5 CLO (0.0077 to 0.077 m2*K/W) into a calender roll nip to cause the sheet and thermal insulating layer to be laminated together to form the insulating label stock having a thickness of at least 0.0075 inch (0.0190 cm).
Preferably, the microwave susceptible coating is a material selected from the group consisting of: aluminum, stainless steel, nickel/iron/molybdenum alloys and nickel/iron/copper alloys, and such metal may be coated with a polymer sealant coating. Preferably, the microwave susceptible coating is applied by vapor coating. Preferably, the polymer sealant coating is a layer of polyester copolymer, poly(vinylidene chloride), or a copolymer of ethylene with vinyl acetate. Such polymers are safe for food contact.
a is a cross-sectional view of an insulated packaging material with a microwave susceptible layer.
b is a cross-sectional view of another insulated packaging material according to the present invention, showing face material on both sides of a thermal insulating layer and with a thicker polymer film applied to one of the face material layers to enable the insulated packaging material to support a fitment when the material is formed into a pouch.
In accordance with the present invention, there is provided an insulated packaging material. Such a material is shown generally at 5 in
The insulated packaging material of the present invention includes a thermal insulating layer, shown at 30 in
The thermal insulating layer 30 comprises an organic thermoplastic fiber based material comprising polyester, polyethylene or polypropylene. In a preferred embodiment, the thermal insulating layer is a fiberfill batt comprising polyester. A fiberfill batt sold as THERMOLITE® Active Original by E.I. du Pont de Nemours and Company is especially suitable for use with the present invention. The fiberfill batt used with the present invention has an areal weight in the range of 10 gm/m2 to 200 gm/m2, and a bulk density of less than 0.3 gm/cm3. Alternatively, the thermal insulating layer may comprise melt blown fibers, such as melt blown polyolefins, sold as THINSULATE®, by 3M.
Many other variations of insulating material for the thermal insulating layer can be used with the present invention. For instance, the thermal insulating layer may comprise a foam, such as foamed polypropylene, or any other foam composition as known in the art that may be subjected to microwave heating. Or the thermal insulating layer may be made of an inorganic fiber based material comprising glass wool, borosilicate glass or rockwool.
Alternatively, the thermal insulating layer may comprise a knit fabric, made, for example from a tetrachannel or scalloped oval fiber, sold under the trademark COOLMAX® by E.I. du Pont de Nemours and Company of Wilmington, Del. Or the thermal insulating layer may be a woven or fleece material. The insulating layer could also comprise some sort of nonwoven, such as felt, or a highloft nonwoven or needled nonwoven fabric.
The thermal insulating layer is laminated to multi-layer face materials, shown at 10 and 20 in
The face material 10 may be film, paper and/or fabric. The film is made of a thermoplastic material comprising either polyester, polyethylene or polypropylene. In the embodiment illustrated in
The microwave susceptible coating 60 preferably is a metal or metal alloy, such as aluminum, stainless steel, nickel/iron/molybdenum alloys and nickel/iron/copper alloys. The coating 60 is applied to an outer surface of first layer 22, preferably by vapor coating or alternatively by coating a solution of metal particles dispersed in a solvent over a surface of the layer 22. The coating 60 could also be applied to second layer 24 before joining layers 22, 24 together if layers 22 and 24 are separate layers. For a metal or metal alloy as the susceptor, the preferred coating thickness is from about 20 to 100 Angstroms, preferably from about 50 to 70 Angstroms. Alternatively, the coating thickness for a metallic microwave susceptible coating may be measured in optical density as measured with a Tobias TBX Densitometer, offered by Tobias Associates, Inc. of Glenside, Pa., USA, and preferably is in the range of from about 0.35 to 0.12.
Typically, metallic vapor deposition is performed in a vacuum using a DC arc process. The arc is focused on a cathode of the metal to be deposited (e.g., aluminum). The metal is vaporized and comprises a mixture of ions and charged metallic droplets of small size and size distribution. As is well known to those skilled in the art, the vaporized metal is manipulated with electric fields and focused on the substrate to be coated with the metal. Vapor deposition equipment is available from Vapor Technologies, Inc. of Boulder, Colo., USA. Evaporative vacuum coating equipment is available from Galileo Vacuum Systems, Inc. of East Granby, Conn., USA.
As shown in
Referring to
In a preferred embodiment, hereinafter referred to as the “co-extruded film” embodiment, the face material comprises a film which is co-extruded so that it comprises two layers. Thus, face material 10 comprises a first layer 13 and a second layer 14. In this embodiment, first layer 13 and second layer 14 are made of different materials, but form one sheet of film following the extrusion. Second layer 14 is heat sealable—i.e., it is made of a material which has a lower melting temperature than the material of first layer 13, so that when face material 10 is heated, second layer 14 softens and adheres to the thermal insulating layer when pressure is applied.
Similarly, face material 20 comprises a first layer 22 and a second layer 24. Again, first layer 22 and second layer 24 are made of different materials, but form one sheet of film. Second layer 24 is heat sealable—i.e., it is made of a material which has a lower melting temperature than the material of first layer 22, so that when face material 20 is heated, second layer 24 softens and adheres to the thermal insulating layer when pressure is applied.
Alternatively, rather than “co-extrusion”, layers 13 and 14 and 22 and 24 may be formed by coating separate layers of polymer solution onto the surfaces of the thermal insulation layer.
The packaging material of the present invention can further include a coating on the face material. The coating, shown at 12 in
In a preferred configuration of the co-extruded film embodiment, films with two different thicknesses are used for the face materials, such as face material 10 and face material 20 in FIG. 1. One specific example of a film which is suitable for use as face material 10 in
According to another aspect of the present invention, the face material may be modified on the surface facing away from the thermal insulating layer to facilitate printing thereon by a corona discharge treatment. Specifically, the surface of first layer 13 or 22 is modified. The corona discharge treatment may be done in addition to, or in lieu of, the coating on the face material. Or, alternatively, on top of the coating, or instead of the coating, a vapor deposited metal layer, such as an aluminum layer, may be deposited on the surface facing away from the thermal insulating layer for decorative purposes and for adding optical effects and/or water and gas barrier properties. If this vapor deposition is done, then corona discharge treatment would typically not be performed in addition to this vapor deposition.
According to another modification of the present invention, the face material may be embossed on the surface facing away from the thermal insulating layer in such patterns as may be desired for decoration. The embossing can be done on top of the coating, after corona discharge treatment, if required, and on top of the vapor deposition. Specifically, pressure and heat may be used to make certain areas of the face material thinner, so that the surface appears raised from the areas which were made thinner. Doing so in a pattern may be used to ornament the packaging material. The heat and pressure may be applied by a shaped anvil or iron in a decorative pattern. Alternatively, heat and pressure may be applied by an engraved or etched embossing roller or an engraved reciprocating die in a platen press. The heat should be applied at 200-400° F. (93-204° C.), so that the pressure applied would create permanent indentations in the packaging material. The heat should be applied as to soften at least the face material, and perhaps also the thermal insulating layer. Softening the thermal insulating layer is less critical than softening the face material, but helps the embossing process also.
In addition, the surface modification (i.e., the coating or the corona discharge treatment) may be used to facilitate bonding to another surface with an adhesive layer. In order to bond to another surface, an adhesive layer, such as that shown at 26 in
The packaging material 5 of the present invention may be formed as a label stock 15 and sealed, such as with a hot knife, at its edges so that fluid cannot penetrate the edges of the label stock. Such edges are shown at 132 in
The system in one aspect comprises a container wrapped with an insulating label stock 15 so as to cover a significant portion of the surface area of the container. The container may be a can or cup, shown at 90 and 140 in
Alternatively, in a second aspect the container may be a pouch 300, shown in
In one region of the pouch, a frangible seal 304 portion is formed along the outer periphery. The frangible seal ruptures more easily than the other sealed regions. For example, the frangible portion 304 will break or separate when heated to the softening point or melting point of the sealant material forming the frangible portion. The portion 304 of the sealed peripheral edge of the pouch may be made frangible by heat sealing this portion at a lower temperature or by sealing this portion with a sealing bar that applies a lower sealing pressure at 304. Alternatively, one or more frangible seals may be incorporated within the volume of the pouch to create separate compartments (not shown) that keep apart foodstuffs within the pouch until the frangible seals rupture upon heating or upon applied pressure.
The temperature at which the frangible portion 304 separates or ruptures varies according to the sealant selected. In one embodiment, the frangible seal ruptures when the temperature inside the container or pouch exceeds the sealant's melting point or softening point. For the polymers used in the facing material of the instant insulated packaging material, the frangible seals generally rupture when the temperature inside the container or pouch formed from the material exceeds 100° C. (212° F.).
A frangible target 306 or access port for accessing the pouch volume with a straw also may be provided on one side surface of the pouch 300.
A preferred pouch is formed as a stand up pouch 310 as shown in
After the pouch 310 is formed, a fitment 314 is installed into a surface of the pouch or at its periphery. As shown in
Alternatively, a pouch formed from another material may be wrapped with an insulating label made from a label stock as described above with respect to
In the embodiment of
Further in accordance with the present invention, there is provided a method for making an insulated packaging material. This method is illustrated with reference to FIG. 5. In this method, a sheet of material used for the thermal insulating layer, such as fiberfill batt 30, is fed from a supply roll 45. In addition, face material 10 is fed from a supply roll 40 and is disposed such that coating 12 is oriented away from thermal insulating layer 30 and second layer 14 is facing thermal insulating layer 30. In addition, face material 20 may be fed from a supply roll 50 and is disposed such that the adhesive layer (if required, such being shown at 26 in
A sheet of the thermal insulating layer, such as 30, and at least one sheet of face material, such as 10 and/or 20 are fed into a heated calender roll nip between a pair of heated calender rolls 70 and 80, shown in FIG. 5. The heated calender rolls cause the surfaces of the thermal insulating layer and the face material to adhere to each other.
The calender rolls 70 and 80 are heated to a temperature which activates the heat-sealable layer but which does not melt the entire face material as discussed above. This temperature is in the range of 200° F. to 500° F. (93° C. to 260° C.), with the preferred temperature range being 280°-320° F. (137°-160° C.) for the embodiment using co-extruded 48 gauge and 120 gauge films as the face material and a fiberfill batt as the insulating layer. However, higher temperatures in the range of 450°-500° F. (232°-260° C.) can be used at high line speeds, i.e., speeds of 300 to 400 feet (91 to 122 meters) per minute. The calender rolls are displaced from one another at a distance appropriate to create a nip pressure suitable for lamination.
Alternatively, instead of using a co extruded heat sealable film, an adhesive may be applied between the face material and the thermal insulating layer to adhere them together. This adhesive would be applied by a coating roller, not shown, which would be positioned between feed rolls 40 and 50 and calender rolls 70 and 80 in
A packaging material 5 with a thickness of greater than 0.0075 inch (0.0190 cm.) but less than 0.07 inch (0.1778 cm), preferably between 0.010 inch (0.025 cm.) and 0.040 inch (0.102 cm.), and most preferably between 0.020 inch (0.051 cm.) and 0.030 inch (0.076 cm.) is thus produced. This packaging material could be made with one sheet of face material (not shown), or two sheets of face material, as in
Alternatively, instead of using a single sheet of face material, the thermal insulating layer may be fed between two sheets of face material into the heated calender roll, which causes the surfaces of the thermal insulating layer and the face material to adhere to each other. This embodiment is also illustrated in
The microwave susceptible coating 60 preferably is applied to the surface of the second layer before the face material 20 is fed to the nip between heated calender rolls 70 and 80. Such coating may be applied when the face material 20 is formed by co-extrusion. Alternatively, the coating 60 may be vapor-coated, sprayed or roller coated to the outer surface of the face material 20, or between the face material 20 and an adhesive layer applied to the face material 20 to adhere the face material 20 to the thermal insulating layer 30. Coating 60 is applied preferably to a thickness of from about 20 to 100 Angstroms, most preferably from about 50 to 70 Angstroms, or to an optical density thickness of from about 0.12 to 0.35 as measured with a Tobias TBX Densitometer, offered by Tobias Associates, Inc. of Glenside, Pa., USA. When vapor-coated, the metallic coating forms a discontinuous film. The coating 60 may be applied only to one surface of the material that forms a pouch, or in a pattern such that no microwave susceptible material will be present along the seams of a pouch. The coating 60 may also be applied in other patterns or varying coating thicknesses to preferentially heat a region of the packaging material more than another region. The coating method described generally in U.S. Pat. 5,021,293 may also be used.
It should be apparent to those skilled in the art that modifications may be made to the method of the present invention without departing from the spirit thereof. For instance, the present invention may alternatively include a method for making an insulated packaging material, wherein a card web comprising thermoplastic staple fibers is fed from a commercially available card machine. This card web is run in place of the fiberfill batt in the process described above with respect to
The present invention will be illustrated by the following Example. The test method used in the Example is described below.
For the following Examples, CLO was measured on a “Thermolabo II”, which is an instrument with a refrigerated bath, commercially available from Kato Tekko Co. L.T.D., of Kato Japan, and the bath is available from Allied Fisher Scientific of Pittsburgh, Pa. Lab conditions were 21° C. and 65% relative humidity. The sample was a one-piece sample measuring 10.5 cm×10.5 cm.
The thickness of the sample (in inches) at 6 gm/cm2 was determined using a Frazier Compressometer, commercially available from Frazier Precision Instrument Company, Inc. of Gaithersburg, Md. To measure thickness at 6 g/cm2, the following formula was used to set PSI (pounds per square inch) (kilograms per square centimeter) on the dial:
A reading of 0.8532 on the Frazier Compressometer Calibration Chart (1 in., or 2.54 cm. diameter presser foot) shows that by setting the top dial to 3.5 psi (0.2 kilograms per square centimeter), thickness at 6 g/cm2 was measured.
The Thermolabo II instrument was then calibrated. The temperature sensor box (BT box) was then set to 10° C. above room temperature. The BT box measured 3.3 inch×3.3 inch (8.4 cm×8.4 cm). A heat plate measuring 2 inch×2 inch was in the center of the box, and was surrounded by styrofoam. Room temperature water was circulated through a metal water box to maintain a constant temperature. A sample was placed on the water box, and the BT box was placed on the sample. The amount of energy (in watts) required for the BT box to maintain its temperature for one minute was recorded. The sample was tested three times, and the following calculations were performed:
Where:
W=Watts
D=Thickness of sample measured in inches at 6 g/cm2. (6 g/cm2 was used because the weight of the BT box is 150 gm, the area of the heat plate on the BT box was 25 cm2). Multiplying the thickness by 2.54 converted it to centimeters.
A=Area of BT Plate (25 cm)
ΔT=10° C.
The value of 0.00164 was a combined factor including the correction of 2.54 (correcting thickness from inches to centimeters) times the correction factor of 0.0006461 to convert thermal resistance in cm2×° C./Watts. To convert heat conductivity to resistance, conductivity was put in the denominator of the equation.
An insulated pouch was made according to the process described above with respect to
deposit had an optical density of 0.20 as measured on the Tobias TBX Densitometer, of Tobias Associates, Inc. of Glenside, Pa., USA.
A fiberfill batt of the type sold by E.I. du Pont de Nemours and Company of Wilmington, Del. under the trademark THERMOLITE® Active Original was used as the thermal insulating layer 30. The fiberfill batt had an areal weight of 100 gm/M2 at a specified thickness of 0.25 inch (0.63 cm), or a bulk density of 0.013 gm/cm3.
A pouch was fashioned from the insulating packaging material. The pouch was made by combining a roll of polyester film laminated to a polyolefin sealant layer with a roll of film composed of two layers of polyester film having a layer of thermal insulator between them. The films used as the face material were of the type sold by DuPont Teijin Films of Wilmington, Del. under the trademark MELINEX® 301-H. (MELINEX® 301-H film is comparable to MELINEX® 854, but lacks the primer coating, such as 12 and 26 shown in FIG. 1). The composition of the heat-sealable layers (e.g. 14 and 24 in
The face material 10 was 1.2 mils (0.0012 inch, or 0.0030 cm) thick and face material 20 was 0.48 mils (0.00048 inch or 0.00122 cm) thick, and metallized for microwave susceptibility by Dunmore Corporation of Newtown, Pa. The final label stock thickness, after lamination, was 0.025 inch (0.064 cm). A pouch was made from this insulated packaging stock in which the metallized coating was placed on the interior surfaces of the pouch. A pouch was made from this insulated packaging stock using the Emzo® EV1 vertical liquid pouch packaging machine available from Emzo Corp., formerly of Argentina. Alternate pouch making equipment includes the Bartelt IM offered by Klockner Bartelt of Sarasota, Fla., USA and the Toyo Model MS offered by Toyo Machine Mfg. Co. of Nagoya, Japan.
The heat sealable layers were activated at temperatures between 240 and 350° F. (116 to 177° C.). Pouches were produced at a rate of 40 packages per minute.
Representative data for an insulative packaging material without a microwave susceptible layer is graphed in
Insulated pouches having dimensions of 4 inch×4.5 inch (10.2 cm to 11.4 cm) were formed from insulated label stock according to the invention, with one pouch having an insulated label stock laminated structure that incorporated an aluminum layer as a microwave susceptible coating. Each pouch was filled with 150 ml of water and the temperature of the water was measured with a thermometer. Then, each water filled pouch was separately placed within a GE 1600 W turntable microwave oven from General Electric, and heated at the full power setting for 40 seconds. Each pouch then was removed from the oven and the water temperature was again measured. The water in the pouch that included the microwave susceptible coating in the insulating label stock structure was heated to a higher temperature (heated from starting temperature 67.5° F. (19.7° C.) to 128.1° F. (53.4° C.)) than the water in the pouch without the microwave susceptible coating (heated from starting temperature 67.4° F. (19.7° C.) to 107.7° F. (42.1° C.)). The pouch with the microwave susceptible coating therein retained insulation values comparable to Example 1 above.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/832,503, filed Apr. 11, 2001, now pending.
Number | Name | Date | Kind |
---|---|---|---|
3401475 | Morehouse et al. | Sep 1968 | A |
4139773 | Swanson | Feb 1979 | A |
4273816 | Tollette | Jun 1981 | A |
4801514 | Will et al. | Jan 1989 | A |
4871597 | Hobson | Oct 1989 | A |
4892782 | Fisher et al. | Jan 1990 | A |
5164254 | Todd et al. | Nov 1992 | A |
5404667 | Schmitter | Apr 1995 | A |
5453326 | Siddiqui | Sep 1995 | A |
5527600 | Frankosky et al. | Jun 1996 | A |
5725966 | Abe et al. | Mar 1998 | A |
6150013 | Balaji et al. | Nov 2000 | A |
6286872 | Barre | Sep 2001 | B1 |
6379764 | Pusateri et al. | Apr 2002 | B1 |
6620281 | Sommers | Sep 2003 | B1 |
20030129335 | Benim et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
130564 | Apr 1978 | DE |
0101340 | Feb 1984 | EP |
1064897 | Jan 2001 | EP |
WO 9104152 | Apr 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20030124258 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09832503 | Apr 2001 | US |
Child | 10270802 | US |