The present invention relates generally to suspensions for disk drives. In particular, the invention is a dual stage actuated (DSA) suspension and associated components.
Dual stage actuated (DSA) suspensions, also sometimes known as microactuated or second stage actuated suspensions, are generally known. Such head suspensions typically include a base plate for attaching the head suspension to a disk drive actuator, a mounting region attached to the base plate, a load beam attached or integral to the mounting region, and a flexure supported by the load beam for mounting a magnetic read/write head slider. The one or more microactuators are incorporated to accurately and quickly position the head slider over the desired track on the magnetic disk. Suspensions of these types are disclosed, for example, in the Schirle U.S. Pat. No. 6,621,653, the Kulangara U.S. Pat. No. 7,595,965, the Liu U.S. Patent Application Publication 2011/0228425 and the Okawara U.S. Patent Application Publication 2010/0067151. These references are incorporated herein by reference in their entireties and for all purposes.
The microactuators of head suspensions are typically placed along the loading plate. However, such microactuators must move the distal portion of the base plate and the entire load beam. Relocating the microactuators distally can require the microactuators to move less mass, but distal repositioning of the microactuators may reduce the stroke actuation of the head slider and can cause stability challenges if the actuators are placed along the less stiff load beam. Efforts to miniaturize disk drive head suspensions while at the same time maintaining or increasing performance specifications results in a continuing need for improved DSA-related structures. DSA structures that can provide increased servo bandwidth, increased stroke, increased stability, and/or lower mass would be advantageous.
Embodiments of the present invention concern a head suspension system. Such a head suspension system can comprise a base plate configured to attach to a disk drive actuation system and a load beam connected to the base plate along a spring region and extending distally from the base plate. Such a load beam can comprise a major planar section having a proximal portion and a distal portion, a first rail extending along a first lateral edge of the major planar section, and a second rail extending along a second lateral edge of the major planar section, the first lateral edge opposite the second lateral edge. A load beam can further include a continuous void in a metal base of the major planar section, the continuous void extending from the first rail to the second rail to separate the proximal portion from the distal portion. A first microactuator can be coupled to each of the proximal portion and the distal portion and extend across the continuous void. Likewise, a second microactuator can be coupled to each of the proximal portion and the distal portion and extend across the continuous void. A head slider having circuitry configured to one or both of read and write data magnetically can be positioned at the distal end of the load beam, mounted on either the distal portion and/or on flexure. The flexure can be electrically connected to each of the first microactuator and the second microactuator. Electrical activation of one or both of the first microactuator and the second microactuator can move the distal portion relative to the proximal portion to actuate the head slider laterally.
The first and the second rails function as the structural linkage between the proximal portion and the distal portion of the load beam. The continuous void and linkage enable the distal portion of the load beam to move in a transverse or tracking direction along an X-Y plane with respect to the proximal portion.
The load beam 18 is an elongated member that extends distally from the base plate 16. As shown herein, the load beam 18 is generally triangularly shaped, although other shapes are possible. The load beam 18 includes a proximal portion 42 and a distal portion 38. The load beam 18 can be attached to the base plate 16 along the spring region 46. The spring region 46 can include a single or multi-piece element. The spring region 46 operates to mechanically couple the load beam 18 to the base plate 16. The spring region 46 may be formed from a single stainless steel plate, and the same stainless steel plate may form the rest of the load beam 18, including the first rail 34 and the second rail 36.
The load beam 18 can be generally planar and can be oriented so as to be generally co-planar to the base plate 16. In other embodiments, the load beam 18 may have other configurations. In other embodiments, the load beam 18 may be oriented out of plane with respect to the base plate 16. Regardless of the nominal orientation, the load beam 18 may slightly rotate about the spring region 46 relative to the base plate 16. Such movement of the load beam 18 can be caused by lift on the load beam 18 generated at the head slider 20 by the flow of air from the moving disk 12 during operation of the disk drive 10. Such rotation of the load beam 18 about the spring region 46 causes the head slider 20 to move up or down (i.e. closer or further away from the disk 12) along the Z-axis. Rotation of the base plate 16 causes the head slider 20 to move left and right (i.e. laterally along the disk 12) over an X-Y plane (orthogonal to the Z-axis).
While bending along the spring region 46 of the load beam 18 may be expected for proper operation of the head suspension 14, bending of the load beam 18 in the Z-axis distally of the spring region 46 is generally unwanted. Therefore, a first rail 34 and a second rail 36 are provided along the proximal portion 42 and distal portion 38 of the load beam 18. The first rail 34 and the second rail 36 can each extend along most or all of the load beam 18 distally of the spring region 46 such that, at least along the Z-axis, the load beam 18 is relatively flexible along spring region 46 and relatively stiff distally of the spring region 46. The first rail 34 and the second rail 36 are positioned on opposite lateral sides of the load beam 18 and extend generally along a longitudinal axis of the load beam 18. The term “longitudinal axis” as used herein refers to an axis of an element that extends along the longest dimension of the element.
A flexure 44 is provided on the head suspension 14. The flexure 44 can be any type of flexible circuit having conductive traces for routing electrical signals between components of the head suspension 14 (e.g., read/write heads of the head slider 20) and other components of the disk drive 10 (e.g., a controller). The flexure 44 can be manufactured as a separate member and welded to the load beam 18 or formed as an integral member of the load beam 18.
The air bearing head slider 20 is located at the distal end of the distal portion 38 of the lead beam 18 and is designed to be resiliently moveable (e.g., gimbaled) with respect to load beam 18 in response to the aerodynamic forces generated as the disk 12 rotates relative to the head slider 20. The head slider 20 contains a magnetic head and is bonded to the flexure 44 by adhesive. The flexure 44 allows the gimbal movement of the head slider 20 to follow variations in the surface of the disk 12. As noted above, air pressure at the surface of the spinning disk 12 creates a positive pressure air bearing that causes the head slider 20 to lift away from and “fly” over the disk 12. In some cases, a negative pressure air bearing pulls the head slider 20 toward the disk 12. To counteract these hydrodynamic forces, the head suspension 14 is mounted to the disk drive 10 with the suspension in a loaded state so the spring region 46 biases the head slider 20 either toward or away from the disk 12 to an appropriate fly height.
A first microactuator 30 and a second microactuator 32 are mounted on the load beam 18. Each of the first microactuator 30 and the second microactuator 32 comprise a generally planar element with a length (e.g., along a longitudinal axis) and a width. The first microactuator 30 and the second microactuator 32 can be any suitable type of microactuator, whether now known or later developed. For example, the first microactuator 30 and the second microactuator 32 can each be a piezoelectric microactuator, which may include a piezoelectric layer of lead zirconium titanate, polymers such as polyvinylidene fluoride (PVDF), or other piezoelectric or electrostrictive types of materials. As will be appreciated, each microactuator includes terminals (not shown) for electrically coupling the microactuator to a power supply and to ground. The first microactuator 30 and the second microactuator 32 may include multiple piezoelectric layers and/or may include different piezoelectric materials as are known in the art. Selective activation of the first microactuator 30 and a second microactuator 32 for controlling movement of the distal portion 38 of the load beam 18 is further discussed herein.
The void, in spanning from the first rail 34 to the second rail 36, can be formed by multiple sections. The void can be formed, in part, by a tooling hole 72. The tooling hole 72 can be rounded to avoid stress points in the load beam 18 during bending. It is noted that not all embodiments may include a tooling hole 72. The void includes crossbeam cutout 70 that connects a void of a first pocket 80 with a void of a second pocket 82. The first microactuator 30 can be placed over and/or within the first pocket 80 while the second microactuator 32 can be placed over and/or within the second pocket 82, as further discussed herein. As shown, the first microactuator 30 can span across the first pocket 80 to be attached to each of the proximal portion 42 and the distal portion 38. Likewise, the second microactuator 32 can span across the second pocket 82 and be attached to each of the proximal portion 42 and the distal portion 38. Each microactuator can be attached to the proximal portion 42 and the distal portion 38 by adhesive or other connection technique. The void spanning across the load beam 18 includes the first lateral cutout 74 that extends the void of the first pocket 80 to underneath the first rail 34. Likewise, the second lateral cutout 76 extends the void of the second pocket 82 to underneath the second rail 36. It noted that the void, in some alternative embodiments, may not extend fully between the first rail 34 and the second rail 36. For example, the first lateral cutout 74 and/or the second lateral cutout 76 may not be present. Additionally or alternatively, one or more bridges of base structure may extend between the proximal portion 42 and the distal portion 38.
As shown in
In operation, an applied electrical voltage across the first microactuator 30 and/or second microactuator 32 causes them to expand or contract, thereby causing deformation load beam 18. This deflection provides high resolution positioning of the head slider 20. By having one of the first microactuator 30 or second microactuator 32 expand and the other contract, or visa versa, lateral motion of the head slider 20 can be generated along an X-Y plane that runs parallel to the disk 12, as further discussed herein. Various electronic control circuits for controlling the piezoelectric actuators to perform the functions discussed herein are disclosed in U.S. Pat. No. 5,377,058 (Good et al.); U.S. Pat. No. 5,719,720 (Lee); and U.S. Pat. No. 5,802,701 (Fontana et al.), each of which is incorporated herein by reference in its entirety.
It is noted that flat elements, such as the major planar section 28, the first rail 34, and the second rail 36, in isolation, generally bend relatively easily in the two opposing directions that are orthogonal to the major plane of the flat element but resist bending along an axis that is parallel with the major plane. Being that the first rail 34 and the second rail 36 are both orthogonal to the major planar section 28 of the load beam 18, the first rail 34 and the second rail 36 resist bending of the load beam 18 in a direction orthogonal to the major planar section 28 (e.g., along the Z-axis), stiffening the load beam 18 to movement in the Z-axis. As such, bending of the head suspension 14 that would move the head slider 20 closer or further away from the disk 12 along the Z-axis is generally isolated to the spring region 46, where the first rail 34 and the second rail 36 do not extend. Moreover, the major planar section 28 would generally resist bending of the load beam 18 in a direction orthogonal to the first rail 34 and the second rail 36 (i.e. lateral swaying of the load beam 18). However, the continuous void in the major planar section 28 allows the distal portion 42 to move along an X-Y plane relative to the proximal portion 42 and thereby facilitate lateral translation of the head slider 20 over the disk 12. Selective activation of the first microactuator 30 and the second microactuator 32 can drive such lateral bending of the load beam 18. Specifically, the continuous void in the base structure can allow movement of the distal portion 38 relative to the proximal portion 42, widening or narrowing at least a portion of the void during movement of the distal portion 38 relative to the proximal portion 42. As such, the load beam 18 can be laterally actuated through bending in each of the first rail 34 and the second rail 36, the bending driven by the first microactuator 30 and the second microactuator 32 being oppositely expanded and contracted.
Suspensions having DSA structures in accordance with the present disclosure can provide several advantages. Total strokes of 100 nm or more can be achieved (e.g., at 5-6 nm/V), although the invention can be used in suspensions configured for less stroke. For example, in a tested embodiment, the presence of the crossbeam cutout 70 to the tooling hole 72 increased stroke by 43% while the first lateral cutout 74 and the second lateral cutout 76 increased stroke by 39%. Moreover, the location of the continuous void as being between the proximal flexure welds 64 and 66 on the distal flexure welds 60 and 62 also increased stroke and minimized shock impact. The DSA structure can be efficiently manufactured using conventional or otherwise known processes and equipment. Servo bandwidths can be significantly enhanced. Enhanced stroke and tracking specifications can be achieved. These advantages can be achieved with little or no degradation of shock and resonance performance.
It is noted that performance of some embodiments of the invention can be optimized by using microactuators with relatively narrow widths (“Y” in
As discussed herein, the flexure 44 can extend over the head suspension 14, including the load beam 18, to route electrical signals between control circuitry and read/write elements of the head slider 20. The flexure 44 can be supported by flexure welds 60, 62, 64, and 66 on the load beam 18. For example, each of flexure welds 60, 62, 64, and 66 can provide a location for welding the flexure 44 to the load beam 18 to mechanically support the flexure 44 and/or provide a ground electrical connection to the load beam 18.
To manufacture and assemble the head suspension 14, the base plate 16 and the load beam 18 can be formed using any suitable technique, e.g., etching and bending a metal base structure such as a stainless steel sheet. The load beam 18 can be formed by etching a plurality of cutouts in a metal sheet, the plurality of cutouts corresponding to the voids, holes, and other features in the metal base shown herein. The etching can create the continuous void in the metal sheet. Forming the load beam 18 can further comprise bending the metal sheet to form the first rail 34 and the second rail 36. Typically, the metal sheet is etched before bending or other features are formed, however, etching can occur after one or more bending steps have been performed. After forming the base structure of the lead beam 19, the flexure 44 can be welded to the load beam 18. The first microactuator 30 and the second microactuator 32 can be positioned over or in the first pocket 80 and attached to the proximal portion 42 and the distal portion 38 using, for example, an adhesive or other technique providing a mechanical bond. The second microactuator 32 can be mounted similarly over or within the second pocket 82.
The head suspension 52 of
A third lead 102 can branch from the flexure 44 to contact the second microactuator 32, where an electrical connection can be made to power the second microactuator 32 through the third lead 102. For example, a conductive trace of the third lead 102 can be soldered or adhered with conductive adhesive to a terminal of the second microactuator 32. A fourth lead 106 can also branch from the flexure 44 to extend over the second through-hole 67 in the load beam 18, the second through-hole 67 connecting with the top side of the load beam 18. The fourth lead 106 can include a conductive trace that electrically connects with a conductor that extends through the second through-hole 67 to the top side of the load beam 18. A second bridge 110 can be connected to the proximal portion 42. The second bridge 110 can be formed from an electrically conductive material (e.g., an electrically conductive adhesive, solder) or can contain an electrical conductor. The second bridge 110 can extend to the second microactuator 32 to make an electrical connection with a terminal of the second microactuator 32 (e.g., by electrically conductive adhesive, solder). In the particular embodiment illustrated, a mass of electrically conductive adhesive can fill the second through-hole 67 to electrically connect with the third lead 102 and can further extend to make a mechanical and electrical connection with the second microactuator 32. As such, the third lead 102 and the fourth lead 106 can facilitate electrical connections to respective anode and cathode terminals of the second microactuator 32 to power the second microactuator 32. Other arrangements for electrically powering the second microactuator 32 from the flexure 44 or other source are alternatively possible.
While
The load beam 218 is shown to include stiffener members 254. The load beam 218 can be manufactured initially with stiffener members 254 on a base structure (e.g., stainless steel) of the load beam 218. The stiffener members 254 can extend from the proximal portion 242 to the distal portion 238 of the load beam 218. The stiffener members 254 can stiffen the structure of the load beam 218, which is generally relatively thin. The stiffener members 254 can thereby enhance the ability of the load beam 218 to be handled during manufacturing steps such as forming of the first rail 234, the second rail 236, or a radius region and/or in processes for attaching the first microactuator 230 and the second microactuator 232. The crossbeam cutout 270 can include a de-tabbed void 252, which is shown to include stubs. The de-tabbed void 252 can allow the crossbeam cutout 270 to change orientations such that the crossbeam cutout 270 is symmetrical between left and right sides while not extending straight across the load beam 218. It is noted that a tooling hole, as presented in other embodiments, can provide the same function. In some embodiments, the stiffener members 254 can be removed after one, multiple, or all of the above referenced assembly steps are complete.
The load beam 318 can include tabs for supporting the first microactuator 330 and the second microactuator 332. Specifically, the load beam 318 includes a first proximal tab 396 and a first distal tab 394. The first proximal tab 396 and/or the first distal tab 394 can be formed from the same base structure as the first rail 334 and the major planar section of the load beam 318. For example, the first proximal tab 396 and/or the first distal tab 394 can be left in place as a metal sheet is etched and bent to form the base structure of the load beam 318. Alternatively, the first proximal tab 396 and/or the first distal tab 394 can separately attached to the base structure of the load beam 318.
The first proximal tab 396 can be continuous with the base structure of the major planar section of the load beam 318 such that the first proximal tab 396 is formed from the same unitary body as the base structure of the major planar section of the load beam 318. Alternatively, the first proximal tab 396 can be formed separately and attached to the base structure of the major planar section of the load beam 318. For example, the first proximal tab 396 can be formed separately and adhered to a proximal edge of the first pocket 380. The first proximal tab 396 can be bent or attached to the load beam 318 so as to extend over or underneath the first pocket 380 and therefore not extend within the first pocket 380. The first distal tab 394 can extend from the first rail 334 over or below the first pocket 380. As shown, the first distal tab 394 can extend from the top of the first rail 334 as a cantilever. The first distal tab 394 can be continuous with the first rail 334 such that the first distal tab 394 is formed from the same unitary body as the first rail 334. Alternatively, the first distal tab 394 can be formed separately and attached to the first rail 334. Adhesive layers 386 and 388 can be provided to couple the first microactuator 330 to the first distal tab 394 and the first proximal tab 396, respectively. The first distal tab 394 and the first proximal tab 396 can be aligned over or underneath the first pocket 380 such that the first actuator 330 can be placed within the first pocket 380 such that one side of the first actuator 330 contacts both of the first distal tab 394 and the first proximal tab 396 while the first microactuator 330 remains coplanar or parallel with the major planar surface of the load beam 318. Such alignment can isolate the expansion of the first actuator 330 to increase or decrease the separation between the proximal portion 342 and the distal portion 338 while minimizing torsion between the proximal portion 342 and the distal portion 338. Also, displacement of the first distal tab 394 and the first proximal tab 396 above or below the first pocket 380 allows the first actuator 330 to be directly placed into the first pocket 380 and onto the first distal tab 394 and the first proximal tab 396 from the bottom or top of the load beam 318. The second microactuator 332 can be mounted within the second pocket 382 and supported by the second proximal tab 392 and the second distal tap 398 in the same manner as described herein for the first microactuator 330, the first distal tab 394, and the first proximal tab 396 to have a mirrored structure and function.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/611,962 filed on Mar. 16, 2012 and entitled Mid-Loadbeam Dual Stage Actuated (DSA) Disk Drive Head Suspension, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3320556 | Schneider | May 1967 | A |
4299130 | Koneval | Nov 1981 | A |
4418239 | Larson et al. | Nov 1983 | A |
4422906 | Kobayashi | Dec 1983 | A |
4659438 | Kuhn et al. | Apr 1987 | A |
5140288 | Grunwell | Aug 1992 | A |
5320272 | Melton et al. | Jun 1994 | A |
5321568 | Hatam-Tabrizi | Jun 1994 | A |
5333085 | Prentice et al. | Jul 1994 | A |
5427848 | Baer et al. | Jun 1995 | A |
5459921 | Hudson et al. | Oct 1995 | A |
5485053 | Baz | Jan 1996 | A |
5491597 | Bennin et al. | Feb 1996 | A |
5521778 | Boutaghou et al. | May 1996 | A |
5526208 | Hatch et al. | Jun 1996 | A |
5598307 | Bennin | Jan 1997 | A |
5608590 | Ziegler et al. | Mar 1997 | A |
5608591 | Klaassen | Mar 1997 | A |
5631786 | Erpelding | May 1997 | A |
5636089 | Jurgenson et al. | Jun 1997 | A |
5657186 | Kudo et al. | Aug 1997 | A |
5657188 | Jurgenson et al. | Aug 1997 | A |
5666241 | Summers | Sep 1997 | A |
5666717 | Matsumoto et al. | Sep 1997 | A |
5694270 | Sone et al. | Dec 1997 | A |
5717547 | Young | Feb 1998 | A |
5734526 | Symons | Mar 1998 | A |
5737152 | Balakrishnan | Apr 1998 | A |
5754368 | Shiraishi et al. | May 1998 | A |
5764444 | Imamura et al. | Jun 1998 | A |
5773889 | Love et al. | Jun 1998 | A |
5790347 | Girard | Aug 1998 | A |
5796552 | Akin, Jr. et al. | Aug 1998 | A |
5805382 | Lee et al. | Sep 1998 | A |
5812344 | Balakrishnan | Sep 1998 | A |
5818662 | Shum | Oct 1998 | A |
5862010 | Simmons et al. | Jan 1999 | A |
5862015 | Evans et al. | Jan 1999 | A |
5892637 | Brooks, Jr. et al. | Apr 1999 | A |
5898544 | Krinke et al. | Apr 1999 | A |
5914834 | Gustafson | Jun 1999 | A |
5921131 | Stange | Jul 1999 | A |
5924187 | Matz | Jul 1999 | A |
5929390 | Naito et al. | Jul 1999 | A |
5973882 | Tangren | Oct 1999 | A |
5973884 | Hagen | Oct 1999 | A |
5986853 | Simmons et al. | Nov 1999 | A |
5995328 | Balakrishnan | Nov 1999 | A |
6011671 | Masse et al. | Jan 2000 | A |
6038102 | Balakrishnan et al. | Mar 2000 | A |
6046887 | Uozumi et al. | Apr 2000 | A |
6055132 | Arya et al. | Apr 2000 | A |
6075676 | Hiraoka et al. | Jun 2000 | A |
6078470 | Danielson et al. | Jun 2000 | A |
6108175 | Hawwa et al. | Aug 2000 | A |
6118637 | Wright et al. | Sep 2000 | A |
6144531 | Sawai | Nov 2000 | A |
6146813 | Girard et al. | Nov 2000 | A |
6156982 | Dawson | Dec 2000 | A |
6157522 | Murphy et al. | Dec 2000 | A |
6172853 | Davis et al. | Jan 2001 | B1 |
6181520 | Fukuda | Jan 2001 | B1 |
6195227 | Fan et al. | Feb 2001 | B1 |
6215622 | Ruiz et al. | Apr 2001 | B1 |
6229673 | Shinohara et al. | May 2001 | B1 |
6233124 | Budde et al. | May 2001 | B1 |
6239953 | Mei | May 2001 | B1 |
6246546 | Tangren | Jun 2001 | B1 |
6246552 | Soeno et al. | Jun 2001 | B1 |
6249404 | Doundakov et al. | Jun 2001 | B1 |
6262868 | Arya et al. | Jul 2001 | B1 |
6275358 | Balakrishnan et al. | Aug 2001 | B1 |
6278587 | Mei | Aug 2001 | B1 |
6282062 | Shiraishi | Aug 2001 | B1 |
6295185 | Stefansky | Sep 2001 | B1 |
6297936 | Kant et al. | Oct 2001 | B1 |
6300846 | Brunker | Oct 2001 | B1 |
6307715 | Berding et al. | Oct 2001 | B1 |
6320730 | Stefansky et al. | Nov 2001 | B1 |
6330132 | Honda | Dec 2001 | B1 |
6349017 | Schott | Feb 2002 | B1 |
6376964 | Young et al. | Apr 2002 | B1 |
6396667 | Zhang et al. | May 2002 | B1 |
6399899 | Ohkawa et al. | Jun 2002 | B1 |
6400532 | Mei | Jun 2002 | B1 |
6404594 | Maruyama et al. | Jun 2002 | B1 |
6424500 | Coon et al. | Jul 2002 | B1 |
6445546 | Coon | Sep 2002 | B1 |
6459549 | Tsuchiya et al. | Oct 2002 | B1 |
6490228 | Killam | Dec 2002 | B2 |
6493190 | Coon | Dec 2002 | B1 |
6493192 | Crane et al. | Dec 2002 | B2 |
6539609 | Palmer et al. | Apr 2003 | B2 |
6549376 | Scura et al. | Apr 2003 | B1 |
6549736 | Miyabe et al. | Apr 2003 | B2 |
6563676 | Chew et al. | May 2003 | B1 |
6596184 | Shum et al. | Jul 2003 | B1 |
6597541 | Nishida et al. | Jul 2003 | B2 |
6600631 | Berding et al. | Jul 2003 | B1 |
6621653 | Schirle | Sep 2003 | B1 |
6621658 | Nashif | Sep 2003 | B1 |
6636388 | Stefansaky | Oct 2003 | B2 |
6639761 | Boutaghou et al. | Oct 2003 | B1 |
6647621 | Roen et al. | Nov 2003 | B1 |
6661617 | Hipwell, Jr. et al. | Dec 2003 | B1 |
6661618 | Fujiwara et al. | Dec 2003 | B2 |
6704157 | Himes et al. | Mar 2004 | B2 |
6704158 | Hawwa et al. | Mar 2004 | B2 |
6714384 | Himes et al. | Mar 2004 | B2 |
6714385 | Even et al. | Mar 2004 | B1 |
6724580 | Irie et al. | Apr 2004 | B2 |
6728057 | Putnam | Apr 2004 | B2 |
6728077 | Murphy | Apr 2004 | B1 |
6731472 | Okamoto et al. | May 2004 | B2 |
6735052 | Dunn et al. | May 2004 | B2 |
6735055 | Crane et al. | May 2004 | B1 |
6737931 | Amparan et al. | May 2004 | B2 |
6738225 | Summers et al. | May 2004 | B1 |
6741424 | Danielson et al. | May 2004 | B1 |
6751062 | Kasajima et al. | Jun 2004 | B2 |
6760182 | Bement et al. | Jul 2004 | B2 |
6760194 | Shiraishi et al. | Jul 2004 | B2 |
6760196 | Niu et al. | Jul 2004 | B1 |
6762913 | Even et al. | Jul 2004 | B1 |
6765761 | Arya | Jul 2004 | B2 |
6771466 | Kasajima et al. | Aug 2004 | B2 |
6771467 | Kasajima et al. | Aug 2004 | B2 |
6791802 | Watanabe et al. | Sep 2004 | B2 |
6796018 | Thornton | Sep 2004 | B1 |
6798597 | Aram et al. | Sep 2004 | B1 |
6801402 | Subrahmanyam et al. | Oct 2004 | B1 |
6831539 | Hipwell, Jr. et al. | Dec 2004 | B1 |
6833978 | Shum et al. | Dec 2004 | B2 |
6839204 | Shiraishi et al. | Jan 2005 | B2 |
6841737 | Komatsubara et al. | Jan 2005 | B2 |
6856075 | Houk et al. | Feb 2005 | B1 |
6898042 | Subrahmanyan | May 2005 | B2 |
6900967 | Coon et al. | May 2005 | B1 |
6922305 | Price | Jul 2005 | B2 |
6934127 | Yao et al. | Aug 2005 | B2 |
6942817 | Yagi et al. | Sep 2005 | B2 |
6943991 | Yao et al. | Sep 2005 | B2 |
6950288 | Yao et al. | Sep 2005 | B2 |
6963471 | Arai et al. | Nov 2005 | B2 |
6975488 | Kulangara et al. | Dec 2005 | B1 |
6977790 | Chen et al. | Dec 2005 | B1 |
7006333 | Summers | Feb 2006 | B1 |
7016159 | Bjorstrom et al. | Mar 2006 | B1 |
7020949 | Muramatsu et al. | Apr 2006 | B2 |
7023667 | Shum | Apr 2006 | B2 |
7050267 | Koh et al. | May 2006 | B2 |
7057857 | Niu et al. | Jun 2006 | B1 |
7064928 | Fu et al. | Jun 2006 | B2 |
7079357 | Kulangara et al. | Jul 2006 | B1 |
7082670 | Boismier et al. | Aug 2006 | B2 |
7092215 | Someya et al. | Aug 2006 | B2 |
7130159 | Shimizu et al. | Oct 2006 | B2 |
7132607 | Yoshimi et al. | Nov 2006 | B2 |
7142395 | Swanson et al. | Nov 2006 | B2 |
7144687 | Fujisaki et al. | Dec 2006 | B2 |
7159300 | Yao et al. | Jan 2007 | B2 |
7161765 | Ichikawa et al. | Jan 2007 | B2 |
7161767 | Hernandez et al. | Jan 2007 | B2 |
7177119 | Bennin et al. | Feb 2007 | B1 |
7218481 | Bennin et al. | May 2007 | B1 |
7256968 | Krinke | Aug 2007 | B1 |
7271958 | Yoon et al. | Sep 2007 | B2 |
7292413 | Coon | Nov 2007 | B1 |
7307817 | Mei | Dec 2007 | B1 |
7322241 | Kai | Jan 2008 | B2 |
7336436 | Sharma et al. | Feb 2008 | B2 |
7342750 | Yang et al. | Mar 2008 | B2 |
7345851 | Hirano et al. | Mar 2008 | B2 |
7375930 | Yang et al. | May 2008 | B2 |
7379274 | Yao et al. | May 2008 | B2 |
7382582 | Cuevas | Jun 2008 | B1 |
7385788 | Kubota et al. | Jun 2008 | B2 |
7391594 | Fu et al. | Jun 2008 | B2 |
7403357 | Williams | Jul 2008 | B1 |
7408745 | Yao et al. | Aug 2008 | B2 |
7417830 | Kulangara | Aug 2008 | B1 |
7420778 | Sassine et al. | Sep 2008 | B2 |
7459835 | Mei et al. | Dec 2008 | B1 |
7460337 | Mei | Dec 2008 | B1 |
7466520 | White et al. | Dec 2008 | B2 |
7499246 | Nakagawa | Mar 2009 | B2 |
7509859 | Kai | Mar 2009 | B2 |
7518830 | Panchal et al. | Apr 2009 | B1 |
7567410 | Zhang et al. | Jul 2009 | B1 |
7595965 | Kulangara et al. | Sep 2009 | B1 |
RE40975 | Evans et al. | Nov 2009 | E |
7625654 | Vyas et al. | Dec 2009 | B2 |
7643252 | Arai et al. | Jan 2010 | B2 |
7649254 | Graydon et al. | Jan 2010 | B2 |
7663841 | Budde et al. | Feb 2010 | B2 |
7667921 | Satoh et al. | Feb 2010 | B2 |
7675713 | Ogawa et al. | Mar 2010 | B2 |
7688552 | Yao et al. | Mar 2010 | B2 |
7692899 | Arai et al. | Apr 2010 | B2 |
7701673 | Wang et al. | Apr 2010 | B2 |
7701674 | Arai | Apr 2010 | B2 |
7719798 | Yao | May 2010 | B2 |
7724478 | Deguchi et al. | May 2010 | B2 |
7751153 | Kulangara et al. | Jul 2010 | B1 |
7768746 | Yao et al. | Aug 2010 | B2 |
7782572 | Pro | Aug 2010 | B2 |
7813083 | Guo et al. | Oct 2010 | B2 |
7821742 | Mei | Oct 2010 | B1 |
7832082 | Hentges et al. | Nov 2010 | B1 |
7835113 | Douglas | Nov 2010 | B1 |
7872344 | Fjelstad et al. | Jan 2011 | B2 |
7875804 | Tronnes et al. | Jan 2011 | B1 |
7902639 | Garrou et al. | Mar 2011 | B2 |
7914926 | Kimura et al. | Mar 2011 | B2 |
7923644 | Ishii et al. | Apr 2011 | B2 |
7924530 | Chocholaty | Apr 2011 | B1 |
7929252 | Hentges et al. | Apr 2011 | B1 |
7983008 | Liao et al. | Jul 2011 | B2 |
7986494 | Pro | Jul 2011 | B2 |
8004798 | Dunn | Aug 2011 | B1 |
8085508 | Hatch | Dec 2011 | B2 |
8089728 | Yao et al. | Jan 2012 | B2 |
8120878 | Drape et al. | Feb 2012 | B1 |
8125736 | Nojima et al. | Feb 2012 | B2 |
8125741 | Shelor | Feb 2012 | B2 |
8144436 | Iriuchijima et al. | Mar 2012 | B2 |
8149542 | Ando | Apr 2012 | B2 |
8161626 | Ikeji | Apr 2012 | B2 |
8169746 | Rice et al. | May 2012 | B1 |
8174797 | Iriuchijima | May 2012 | B2 |
8189301 | Schreiber | May 2012 | B2 |
8194359 | Yao et al. | Jun 2012 | B2 |
8199441 | Nojima | Jun 2012 | B2 |
8228642 | Hahn et al. | Jul 2012 | B1 |
8248731 | Fuchino | Aug 2012 | B2 |
8248734 | Fuchino | Aug 2012 | B2 |
8248735 | Fujimoto et al. | Aug 2012 | B2 |
8248736 | Hanya et al. | Aug 2012 | B2 |
8254062 | Greminger | Aug 2012 | B2 |
8259416 | Davis et al. | Sep 2012 | B1 |
8264797 | Emley | Sep 2012 | B2 |
8289652 | Zambri et al. | Oct 2012 | B2 |
8289656 | Huber | Oct 2012 | B1 |
8295012 | Tian et al. | Oct 2012 | B1 |
8300362 | Virmani et al. | Oct 2012 | B2 |
8310790 | Fanslau, Jr. | Nov 2012 | B1 |
8331061 | Hanya et al. | Dec 2012 | B2 |
8339748 | Shum et al. | Dec 2012 | B2 |
8351160 | Fujimoto | Jan 2013 | B2 |
8363361 | Hanya et al. | Jan 2013 | B2 |
8379349 | Pro et al. | Feb 2013 | B1 |
8446694 | Tian et al. | May 2013 | B1 |
8456780 | Ruiz | Jun 2013 | B1 |
8498082 | Padeski et al. | Jul 2013 | B1 |
8526142 | Dejkoonmak et al. | Sep 2013 | B1 |
8542465 | Liu et al. | Sep 2013 | B2 |
8559137 | Imuta | Oct 2013 | B2 |
8665565 | Pro et al. | Mar 2014 | B2 |
8675314 | Bjorstrom et al. | Mar 2014 | B1 |
20010012181 | Inoue et al. | Aug 2001 | A1 |
20010013993 | Coon | Aug 2001 | A1 |
20010030838 | Takadera et al. | Oct 2001 | A1 |
20010043443 | Okamoto et al. | Nov 2001 | A1 |
20020075606 | Nishida et al. | Jun 2002 | A1 |
20020118492 | Watanabe et al. | Aug 2002 | A1 |
20020149888 | Motonishi et al. | Oct 2002 | A1 |
20020176209 | Schulz et al. | Nov 2002 | A1 |
20030011118 | Kasajima et al. | Jan 2003 | A1 |
20030011936 | Himes et al. | Jan 2003 | A1 |
20030053258 | Dunn et al. | Mar 2003 | A1 |
20030135985 | Yao et al. | Jul 2003 | A1 |
20030174445 | Luo | Sep 2003 | A1 |
20030202293 | Nakamura et al. | Oct 2003 | A1 |
20030210499 | Arya | Nov 2003 | A1 |
20040027727 | Shimizu et al. | Feb 2004 | A1 |
20040027728 | Coffey et al. | Feb 2004 | A1 |
20040070884 | Someya et al. | Apr 2004 | A1 |
20040125508 | Yang et al. | Jul 2004 | A1 |
20040181932 | Yao et al. | Sep 2004 | A1 |
20040207957 | Kasajima et al. | Oct 2004 | A1 |
20050061542 | Aonuma et al. | Mar 2005 | A1 |
20050063097 | Maruyama et al. | Mar 2005 | A1 |
20050105217 | Kwon et al. | May 2005 | A1 |
20050254175 | Swanson et al. | Nov 2005 | A1 |
20050280944 | Yang et al. | Dec 2005 | A1 |
20060044698 | Hirano et al. | Mar 2006 | A1 |
20060077594 | White et al. | Apr 2006 | A1 |
20060181812 | Kwon et al. | Aug 2006 | A1 |
20060193086 | Zhu et al. | Aug 2006 | A1 |
20060209465 | Takikawa et al. | Sep 2006 | A1 |
20060238924 | Gatzen | Oct 2006 | A1 |
20060274452 | Arya | Dec 2006 | A1 |
20060274453 | Arya | Dec 2006 | A1 |
20060279880 | Boutaghou et al. | Dec 2006 | A1 |
20070133128 | Arai | Jun 2007 | A1 |
20070153430 | Park et al. | Jul 2007 | A1 |
20070223146 | Yao et al. | Sep 2007 | A1 |
20070227769 | Brodsky et al. | Oct 2007 | A1 |
20070253176 | Ishii et al. | Nov 2007 | A1 |
20080084638 | Bonin | Apr 2008 | A1 |
20080144225 | Yao et al. | Jun 2008 | A1 |
20080192384 | Danielson et al. | Aug 2008 | A1 |
20080198511 | Hirano et al. | Aug 2008 | A1 |
20080229842 | Ohtsuka et al. | Sep 2008 | A1 |
20080273266 | Pro | Nov 2008 | A1 |
20080273269 | Pro | Nov 2008 | A1 |
20090027807 | Yao et al. | Jan 2009 | A1 |
20090080117 | Shimizu et al. | Mar 2009 | A1 |
20090135523 | Nishiyama et al. | May 2009 | A1 |
20090147407 | Huang et al. | Jun 2009 | A1 |
20090168249 | McCaslin et al. | Jul 2009 | A1 |
20090176120 | Wang | Jul 2009 | A1 |
20090190263 | Miura et al. | Jul 2009 | A1 |
20090244786 | Hatch | Oct 2009 | A1 |
20090294740 | Kurtz et al. | Dec 2009 | A1 |
20100067151 | Okawara et al. | Mar 2010 | A1 |
20100073825 | Okawara | Mar 2010 | A1 |
20100097726 | Greminger et al. | Apr 2010 | A1 |
20100143743 | Yamasaki et al. | Jun 2010 | A1 |
20100165515 | Ando | Jul 2010 | A1 |
20100165516 | Fuchino | Jul 2010 | A1 |
20100177445 | Fuchino | Jul 2010 | A1 |
20100195252 | Kashima | Aug 2010 | A1 |
20100208390 | Hanya et al. | Aug 2010 | A1 |
20100220414 | Klarqvist et al. | Sep 2010 | A1 |
20100246071 | Nojima et al. | Sep 2010 | A1 |
20100271735 | Schreiber | Oct 2010 | A1 |
20100290158 | Hanya et al. | Nov 2010 | A1 |
20110013319 | Soga et al. | Jan 2011 | A1 |
20110058282 | Fujimoto et al. | Mar 2011 | A1 |
20110096438 | Takada et al. | Apr 2011 | A1 |
20110096440 | Greminger | Apr 2011 | A1 |
20110123145 | Nishio | May 2011 | A1 |
20110141624 | Fuchino et al. | Jun 2011 | A1 |
20110228425 | Liu et al. | Sep 2011 | A1 |
20110242708 | Fuchino | Oct 2011 | A1 |
20110279929 | Kin | Nov 2011 | A1 |
20110299197 | Eguchi | Dec 2011 | A1 |
20120002329 | Shum et al. | Jan 2012 | A1 |
20120087041 | Ohsawa | Apr 2012 | A1 |
20120113547 | Sugimoto | May 2012 | A1 |
20120281316 | Fujimoto et al. | Nov 2012 | A1 |
20130242436 | Yonekura et al. | Sep 2013 | A1 |
20130265674 | Fanslau | Oct 2013 | A1 |
20140022670 | Takikawa et al. | Jan 2014 | A1 |
20140022671 | Takikawa et al. | Jan 2014 | A1 |
20140022674 | Takikawa et al. | Jan 2014 | A1 |
20140022675 | Hanya et al. | Jan 2014 | A1 |
20140063660 | Bjorstrom et al. | Mar 2014 | A1 |
20140078621 | Miller et al. | Mar 2014 | A1 |
20140098440 | Miller et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
0591954 | Apr 1994 | EP |
0834867 | May 2007 | EP |
9198825 | Jul 1997 | JP |
10003632 | Jan 1998 | JP |
2001057039 | Feb 2001 | JP |
2001202731 | Jul 2001 | JP |
2001307442 | Nov 2001 | JP |
2002050140 | Feb 2002 | JP |
2002170607 | Jun 2002 | JP |
2003223771 | Aug 2003 | JP |
2004039056 | Feb 2004 | JP |
2004300489 | Oct 2004 | JP |
2005209336 | Aug 2005 | JP |
WO9820485 | May 1998 | WO |
Entry |
---|
U.S. Appl. No. 13/690,883 entitled Microstructure Patterned Surpaces for Integrated Lead Head Suspensions, filed Nov. 30, 2012. |
International Search Report and Written Opinion issued in PCT/US2013/031484, mailed May 30, 2013, 13 pages. |
U.S. Appl. No. 13/365,443 entitled Elongated Trace Tethers for Disk Drive Head Suspension Flexures, filed Feb. 3, 2012. |
U.S. Appl. No. 14/141,617 entitled Disk Drive Suspension Assembly Having a Partially Flangeless Load Point Dimple, filed Dec. 27, 2013, 53 pages. |
U.S. Appl. No. 14/145,515 entitled Balanced Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspensions, filed Dec. 31, 2013, 39 pages. |
International Search Report and Written Opinion issued in PCT/US2013/059702, dated Mar. 28, 2014, 9 pages. |
Cheng, Yang-Tse, “Vapor deposited thin gold coatings for high temperature electrical contacts”, Electrical Contacts, 1996, Joint with the 18th International Conference on Electrical Contacts, Proceedings of the Forty-Second IEEE Holm Conference, Sep. 16-20, 1996 (abstract only). |
Fu, Yao, “Design of a Hybrid Magnetic and Piezoelectric Polymer Microactuator”, a thesis submitted to Industrial Research Institute Swinburne (IRIS), Swinburne University of Technology, Hawthorn, Victoria , Australia, Dec. 2005. |
Harris, N.R. et al., “A Multilayer Thick-film PZT Actuator for MEMs Applications”, Sensors and Actuators A: Physical, vol. 132, No. 1, Nov. 8, 2006, pp. 311-316. |
International Search Report and Written Opinion issued in PCT/US2013/052885, mailed Feb. 7, 2014, 13 pages. |
International Search Report and Written Opinion issued in PCT/US2013/064314, dated Apr. 18, 2014, 10 pages. |
Jing, Yang, “Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives”, Ultrasonics, Ferroelectrics and Frequency Control, IEEE, vol. 51, No. 11, Nov. 2004, pp. 1470-1476 (abstract only). |
Kon, Stanley et al., “Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007, Proc. of SPIE vol. 6529. |
Lengert, David et al., “Design of suspension-based and collocated dual stage actuated suspensions”, Microsyst Technol (2012) 18:1615-1622. |
Li, Longqiu et al., “An experimental study of the dimple-gimbal interface in a hard disk drive”, Microsyst Technol (2011) 17:863-868. |
Pichonat, Tristan et al., “Recent developments in MEMS-based miniature fuel cells”, Microsyst Technol (2007) 13:1671-1678. |
Raeymaekers, B. et al., “Investigation of fretting wear at the dimple/gimbal interface in a hard disk drive suspension”, Wear, vol. 268, Issues 11-12, May 12, 2010, pp. 1347-1353. |
Raeymaekers, Bart et al., “Fretting Wear Between a Hollow Sphere and Flat Surface”, Proceedings of the STLE/ASME International Joint Tribology Conference, Oct. 19-21, 2009, Memphis, TN USA, 4 pages. |
Rajagopal, Indira et al., “Gold Plating of Critical Components for Space Applications: Challenges and Solutions”, Gold Bull., 1992, 25(2), pp. 55-66. |
U.S. Appl. No. 14/216,288 entitled Co-Located Gimbal-Based Dual Stage Actuation Disk Drive Suspension, filed Mar. 17, 2014, 84 pages. |
U.S. Appl. No. 61/396,239 entitled Low Resistance Ground Joints for Dual Stage Actuation Disk Drive Suspensions, filed May 24, 2010, 16 pages. |
Yoon, Wonseok et al., “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells”, The Journal of Power Sources, vol. 179, No. 1, Apr. 15, 2008, pp. 265-273. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued on Mar. 24, 2014, 7 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued on Oct. 29, 2013, 9 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on Jan. 7, 2014, 6 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on May 6, 2014, 5 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Response filed Apr. 18, 2014 to Non-Final Office Action issued on Mar. 24, 2014, 9 pages. |
U.S. Appl. No. 13/955,204, to Bjorstrom, Jacob D. et al., Response filed Nov. 19, 2013 to Non-Final Office Action issued on Oct. 29, 2013, 11 pages. |
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Non-Final Office Action issued Nov. 5, 2013. |
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Notice of Allowance issued on Jan. 17, 2014, 5 pages. |
U.S. Appl. No. 13/972,137, to Bjorstrom, Jacob D. et al., Response filed Dec. 2, 2013 to Non-Final Office Action issued Nov. 5, 2013, 12 pages. |
U.S. Appl. No. 14/044,238 to Miller, Mark A., Non-Final Office Action issued on Feb. 6, 2014, 9 pages. |
U.S. Appl. No. 14/044,238, to Miller, Mark A., Response filed Apr. 22, 2014 to Non-Final Office Action issued on Feb. 6, 2014, 11 pages. |
U.S. Appl. No. 14/050,660, to Miller, Mark A. et al., Non-Final Office Action issued on Mar. 31, 2014, 9 pages. |
International Search Report and Written Opinion issued in PCT/US13/75320, mailed May 20, 2014, 10 pages. |
Pozar, David M. Microwave Engineering, 4th Edition, copyright 2012 by John Wiley & Sons, Inc., pp. 422-426. |
Number | Date | Country | |
---|---|---|---|
20130242434 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61611962 | Mar 2012 | US |