The invention relates to a hearing device. The hearing device can be a hearing aid, worn in or near the ear or (partially) implanted, a headphone, an earphone, a hearing protection device, a communication device or the like. The invention relates furthermore to a method of operating a hearing device and the use of MIDI—i.e., Musical Instrument Digital Interface—compliant data in a hearing device.
Today, many hearing devices, e.g., hearing aids, are capable of generating some simple acoustic acknowledge signals, e.g., a beep or double-beep signalling that a first or a second hearing program has been chosen by the user of the hearing device.
In WO 01/30127 A2 a hearing aid is disclosed, which allows to feed user-defined audio-signals into the hearing device, which user-defined audio-signals can then be used as acknowledge signals.
U.S. Pat. No. 6,816,599 discloses an ear-level electronic device within a hearing aid, capable of generating electrical signals representing music. By means of a pseudo-random generator extremely long sequences of music can be created which can produce a sensation of relief to persons suffering tinnitus.
In the world of electronic music, where music synthesizers, electronic keyboards, drum machines and the like are used, the Musical Instrument Digital Interface (MIDI) protocol has been introduced in 1983 by the MIDI Manufacturers Association (MMA) as a new standard for digitally representing musical performance information. A number of specifications of MIDI-related data formats have been issued by the MMA within the last 10 to 20 years. Within the last couple of years, MIDI-compliant data (MIDI data) have found application in mobile phones, where MIDI data, in particular data compliant with the Scalable Polyphony MIDI (SP-MIDI) specification, introduced in February 2002, are used for defining telephone ring tones.
One object of the invention is to create a hearing device that provides for an alternative way of defining sound information to be perceived by a user of the hearing device.
Another object of the invention is to provide for a hearing device with an enhanced compatibilty to other equipment.
Another object of the invention is to provide for a hearing device which can easily be individualized and adapted to a user's taste and preferences.
These objects are achieved by a hearing device according to patent claim 1.
In addition, the respective method for operating a hearing device and the use of MIDI compliant data in a hearing device shall be provided.
The hearing device according to the invention is MIDI compatible, i.e., Musical Instrument Digital Interface compatible.
MIDI specifications are defined by the MIDI Manufacturers Association (MMA). In 1983 the Musical Instrument Digital Interface (MIDI) protocol was introduced by the MMA.
In the MMA various companies from the fields of electronic music and music production are joined together to create MIDI standards and specifications assuring compatibility among MIDI-compatible products. Since 1985 the MMA has issued about 11 new specifications and adopted about 38 sets of enhancements to MIDI.
Unlike MP3, WAV, AIFF and other digital audio formats, MIDI data do not (or at least not only) contain recorded sound or recorded music. Instead, music is described in a set of instructions (parameters) to a sound generator, like a music synthesizer. Therefore, playing music via MIDI (i.e., using MIDI data) implies the presence of a MIDI-compatible sound generator or synthesizer. MIDI data usually comprise messages, which can instruct the synthesizer, which notes to play, how loud to play each note, which sounds to use, and the like. This way, MIDI files can usually be very much smaller than recorded digital audio files.
The current MIDI specification is MIDI 1.0, v96.1 (second edition). It is available in form of a book: ISBN 0-9728831-0-X. Originally, the MIDI specification defined a physical connector and, in what can be referred to as the MIDI Message Specification, also named MIDI protocol, a message format, i.e., a format of MIDI messages. Some years later, a file format (storage format) called Standard MIDI File (SMF) was added. An SMF file contains MIDI messages (i.e., data compliant with the MIDI protocol), to which a time stamp is added, in order to allow for a playback in a properly timed sequence.
MIDI specifications or MIDI-related specifications (companion specifications), issued by the MMA, of (potential) interest for the invention comprise at least the following ones:
MIDI specifications, definitions, recommendations and further information about MIDI can be obtained from the MMA, in particular from via the internet at http://www.midi.org.
Through providing the hearing device with MIDI compatibility, a new way of defining sound in a the hearing device is provided, in particular a new way of defining sound information to be perceived by a user of the hearing device. The hearing device is provided with an enhanced compatibilty to other equipment, in particular other MIDI compatible equipment. The hearing device can easily be individualized and adapted to the user's taste and preferences. A well-tested and efficient way of representing sound is implemented into the hearing device, which can be advantageous, in particular when the sound is complex, e.g., due to polyphony or length and number of notes to be played, respectively.
The term MIDI data shall, at least within the present patent application, be understood as data compliant with at least one MIDI specification (or MIDI-related specification), in particular with one of those listed above.
More specifically, the term MIDI data can be interpreted as data compliant with the (current) MIDI protocol, i.e., MIDI messages (including data of SMF files).
The hearing device according to the invention can be adapted to comprising MIDI data.
The hearing device can be adapted to
The hearing device can comprise a MIDI interface. The MIDI interface allows for a simple communication of MIDI data with other devices.
The hearing device can comprise a sound generator adapted to interpreting MIDI data. An efficient control of the sound generation can thus be achieved, which, in addition, is compatible with a wide range of other sound generators.
The hearing device can comprise a unit for interpreting MIDI data. That unit may be realized in form of a processor or a controller or in form of software. MIDI data can be transformed into other information, e.g., information to be given to a sound generator within the hearing device so as to have a desired sound or piece of music played.
One way of using MIDI data in a hearing device is in conjunction with the generation of sound to be perceived by the hearing device user. E.g., acknowledge sounds, also called feedback sounds, which are played to the user upon a change in the hearing device's function, e.g., when the user changes the loudness (volume) or another setting or program, or when some other user's manipulation shall be acknowledged, or when the hearing device by itself takes an action, e.g., by making a change, e.g., if, in the case of a hearing aid, the hearing aid chooses, in dependence of the acoustical environment, a different hearing program (frequency-volume settings and the like), or when the hearing device user shall be informed that a hearing device's battery is low.
It is also possible to use MIDI in a hearing device in conjunction with musical signals to be played to the user of the hearing aid. And it is also possible to use MIDI in a hearing device in conjunction with guiding signals, which help to guide the user, e.g., during a fitting procedure, during which the hearing device is adapted to the user's hearing preferences.
Furthermore, according to today's trend to individualization, it is possible to personalize a hearing device by aid of MIDI. E.g., said acknowledge sounds could be loaded into the hearing device in form of MIDI data. From the hearing device manufacturer or from a third party, the hearing device user could receive, possibly against payment, MIDI data for such sounds, chosen according to the user's taste.
It is possible to load such MIDI data to the hearing device, which define the sound to be played to the hearing device user when the user's (possibly mobile) telephone rings. And even, a number of ring sounds can be loaded into the hearing device, wherein the sound to be played to the hearing device user when the user's telephone rings, is chosen in dependence of the person who calls the hearing device user, or, more precisely, depending on the telephone number of the telephone apparatus from which the hearing device user is called.
This may be accomplished, e.g., by either sending MIDI data to the hearing device upon an incoming call in the telephone, or by having MIDI data stored in the hearing device, which describe ring tones, and upon an incoming call in the telephone, the hearing device receives not the actual MIDI data, but a link instructing the hearing device, which of the MIDI-based ring tones stored in the hearing device to play to the hearing device user.
In addition, it is possible to use MIDI data in a hearing device in conjunction with speech synthesis. E.g., speech signals stored in the hearing device could be addressed or controlled by MIDI data. Or speech signals, be it synthesized or sampled, could be encoded in MIDI, e.g., using the DownLoadable Sounds Format (DLS) of MIDI.
Furthermore, it is possible to listen to music (pop, classic or others) encoded in MIDI with the hearing device. A hearing device comprising a sound generator could interpret MIDI data loaded into the hearing device and generate the corresponding music thereupon. Various musical pieces and works are today already available in form of MIDI data. Music could thus be generated within the hearing device and played to the hearing device user without the need for external sound generators like Hifi consoles or music synthesizers plus amplifiers. The MIDI DLS standard could be used here to achieve a particularly good and realistic audio reproduction.
In several of the above-described embodiments, the hearing device can be considered to comprise a converter for converting MIDI data into audio signals to be perceived (usually after an electro-mechanical conversion) by the hearing device user. Such a converter can be or comprise a signal processor, e.g., a digital signal processor (DSP), the converter can be or comprise a controller plus a sound generator or a controller plus a DSP. Also a sound memory may be comprised in the converter.
The hearing device is typically an ear level device. It may be worn partially or in full in or near the user's ear, or it may fully or in part be implemented, e.g., like a cochlea implant.
A hearing system according to the invention comprises a hearing device according to the invention. It may comprise one or more external microphones, a remote control or other parts.
According to the invention, the method of operating a hearing device, comprises at least one of the following steps:
In one embodiment, the method comprises the step of generating sound in said hearing device based on said interpretation of said MIDI data.
The advantages of the methods correspond to the advantages of corresponding hearing devices.
Further preferred embodiments and advantages emerge from the dependent claims and the figures.
Below, the invention is illustrated in more detail by means of embodiments of the invention and the included drawings. The figures show:
The reference symbols used in the figures and their meaning are summarized in the list of reference symbols. Generally, alike or alike-functioning parts are given the same reference symbols. The described embodiments are meant as examples and shall not confine the invention.
The device 1 of
The embodiment of
The hearing device 1 can receive MIDI data 20, as indicated in
Of course, besides wireless connections, the hearing device 1 may also have the possibility to have a wire-bound connection for communicating with external or added-on devices.
The controller 18 not only gives instructions to the DSP 4, but has associated a MIDI data memory 16 for storing MIDI data 20, and a sound memory 17, in which sound data like digitally sampled sounds can be stored. A sound generator 8 is provided, which is controlled by controller 18 and can access said sound memory 17. In the DSP 4, sound generated by the sound generator 8 can be processed and, after amplification, fed to the output transducer 2.
The MIDI data memory 16 may store externally-loaded MIDI data or MIDI data generated in the hearing device 1. The sound memory 17 may store externally-loaded sounds, e.g., loaded via MIDI DownLoadable Sounds (DLS) data, or may store pre-programmed sounds (pre-stored sounds). The memories 16 and 17 can, of course be realized in one single memory and/or be integrated, e.g., in the controller 18.
The arrows indicating the interconnection of the various parts of the hearing devices in
One of many ways to make use of MIDI data 20 in the hearing device 1 may be to load via one of the interfaces 10,11 MIDI data describing a telephone ring tone and store the MIDI data in the MIDI data memory 16 and recall said MIDI data when the mobile phone 30 informs the hearing device 1 that a telephone call is arriving. The ring tone (music and possibly also sound) encoded in the MIDI data is thereupon played to the hearing device user by the sound generator 8 via the DSP 4 and the transducer 2.
Another use of MIDI data 20 in the hearing device 20 is to receive via one of the interfaces 10,11 from, e.g., the computer 40, MIDI data, which describe a piece of music the user wants to listen to. The sound memory 17 may contain (pre-stored) sounds according to the General MIDI standard (GM). The controller 18 instructs the sound generator to generate notes according to the MIDI data 20 with sounds from the sound memory 17 having the General MIDI sound number given in the MIDI data 20. This way, musical pieces can be generated, according to loaded MIDI instructions, fully within the hearing device 1. Of course, it is also possible to load all MIDI data for the piece of music first, store them in the MIDI data memory 16, and play them later, e.g., upon a start signal provided by the user through a user interface, like the user interface 12 in
Another use of MIDI data 20 in the hearing device 20 is to load via one of the interfaces 10,11 MIDI data 20, which contain speech sounds, e.g., when the MIDI data 20 are MIDI DLS data. For example, to different (musical) keys (C4, C#4, . . . ) a sampled sound of different vowels and consonants can be assigned, or even syllables, full words or sentences. By means of sounds of such a sound set, the user could be informed about the status of a hearing device's battery or about some user manipulation of a user interface or the like in form of speech messages like “battery is low, please insert a new battery soon” or “volume is adjusted to 8”. The text would be encoded in sequences of musical keys, with durations, loudness volumes and so on, just like a piece of music, in MIDI data.
Many further useful uses of MIDI data in a hearing device are possible.
Number | Name | Date | Kind |
---|---|---|---|
5606143 | Young | Feb 1997 | A |
6084516 | Yasushi et al. | Jul 2000 | A |
6816599 | Thiede et al. | Nov 2004 | B2 |
7206429 | Vossler | Apr 2007 | B1 |
20040014459 | Shanahan | Jan 2004 | A1 |
20040267541 | Hamalainen et al. | Dec 2004 | A1 |
20070049788 | Kalinowski et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
1 168 296 | Jan 2002 | EP |
10-228288 | Aug 1998 | JP |
2000-224269 | Aug 2000 | JP |
WO 0130127 | May 2001 | WO |
2005059891 | Jun 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070079692 A1 | Apr 2007 | US |