The present invention relates to the field of antenna structure technologies of mobile terminals, and in particular, to a millimeter wave array antenna module and a mobile terminal.
With 5G being the focus of research and development in the global industry, developing 5G technologies and formulating 5G standards have become the industry consensus. The ITU-RWP5D 22nd meeting held in June 2015 by International Telecommunication Union (ITU) identified three main application scenarios for 5G: enhance mobile broadband, large-scale machine communication, and highly reliable low-latency communication. These three application scenarios respectively correspond to different key indicators, and in the enhance mobile broadband scenario, the user peak speed is 20 Gbps and the minimum user experience rate is 100 Mbps. 3GPP is working on standardization of 5G technology. The first 5G Non-Stand Alone (NSA) international standard was officially completed and frozen in December 2017, and the 5G Stand Alone standard was scheduled to be completed in June 2018. Research work on many key technologies and system architectures during the 3GPP conference was quickly focused, including the millimeter wave technology. The high carrier frequency and large bandwidth unique to the millimeter wave are the main means to achieve 5G ultra-high data transmission rates.
The rich bandwidth resources of the millimeter wave band provide a guarantee for high-speed transmission rates. However, due to the severe spatial loss of electromagnetic waves in this frequency band, wireless communication systems using the millimeter wave band need to adopt an architecture of a phased array. The phases of respective array elements are distribute with a regularity through a phase shifter, so that a high gain beam is formed and the beam scans over a certain spatial range through a change in phase shift.
With an antenna being an indispensable component in a radio frequency (RF) front-end system, it is an inevitable trend in the future to system-integrate and package the antenna with a RF front-end circuit while developing the RF circuit towards the direction of integration and miniaturization. The antenna-in-package (AiP) technology integrates, through package material and process, the antenna into a package carrying a chip, which fully balances the antenna performance, cost and volume and is widely favored by broad chip and package manufacturers. Companies including Qualcomm, Intel, IBM and the like have adopted the antenna-in-package technology. Undoubtedly, the AiP technology will also provide a good antenna solution for mobile communication systems using 5G millimeter wave.
When the millimeter wave phased array antenna scans to a relatively large angle, influence of surface waves, to which it is subjected, will become more prominent, which will cause a relatively large attenuation of a gain in a maximum radiation direction of the antenna, thus affecting an overall performance of the millimeter wave phased array antenna.
Many aspects of the exemplary embodiment can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The present invention will be further illustrated with reference to the accompanying drawings and the embodiments.
A first aspect of the present invention relates to a millimeter wave array antenna module 100 applied in a mobile terminal. The mobile terminal can be, for example, a mobile phone, a computer, or a tablet. As shown in
In the millimeter wave array antenna module 100 in this embodiment, each antenna unit 130 thereof is electrically connected to the radio frequency integrated circuit chip 120 through the feeding network 140, and each antenna unit 130 includes the substrate integrated waveguide 131 having a back cavity and the patch antenna 132 attached to the back cavity. Employing a structure in which the patch antenna is arranged in the back cavity of the substrate integrated waveguide, can effectively reduce a surface wave because the back cavity of the substrate integrated waveguide 131 can effectively suppress a propagation of the surface wave. Therefore, when the millimeter wave array antenna module 100 scans to a large angle, attenuation of an antenna gain can be significantly suppressed, so that the phased array antenna can obtain a larger scanning angle, and thus the antenna performance in the case of large angle scanning can be improved.
It should be understood that the specific number of the antenna units 130 included in the millimeter wave array antenna module 100 is not limited. For example, as shown in
As shown in
As shown in
As shown in
It should be noted that there is no limitation on a specific structure of the phase shifter. For example, the phase shifter can be a five-bit digit phase shifter. In addition, the phase shifter can also be other types of phase shifters, which can be determined according to actual needs.
Optionally, the phase shifter has a phase shift accuracy of 11.25°. However, the present invention is not limited thereto, and those skilled in the art can, according to actual needs, determine the specific phase shift accuracy range required.
The millimeter wave array antenna module 100 of the present invention is a linear array instead of a planar array. Thus, one the one hand, a space occupied by the millimeter wave array module 100 in the mobile phone can be narrowed, and only one angle is scanned to, which simplifies design difficulty, test difficulty, and beam management complexity. On the another hand, due to a symmetry structure of the antenna unit 130, it is easy to satisfy a dual polarization requirement. In addition, employing the structure in which patch antenna is arranged in the back cavity of the substrate integrated waveguide, can effectively suppress the gain attenuation in the case of large angle scanning, so that the millimeter wave array antenna 100 can obtain a larger scanning angle. For the case of 50% coverage, compared with a peak gain, it is dropped by 9.5 dB, which is superior to the case of adopting a common patch antenna in which it is dropped by 11 dB, and the requirement that the drop does not exceed 12.98 dB in the 3GPP discussion is also satisfied.
It should be noted that a form and a type of the patch antenna arranged in the back cavity of the substrate integrated waveguide are not limited and are not limited to an antenna arranged in the back cavity of the substrate integrated waveguide in the present invention, the antenna employing probe feeding and in a rectangular patch form. Adopting other forms of patches, such as square, circular, and cross-shaped ones, and adopting other forms of feeding, such as microstrip feeding and slot coupling, can all be used as antenna forms of the present invention.
A second aspect of the present invention provides a mobile terminal, and the mobile terminal includes the millimeter wave array antenna module 100 described above.
The mobile terminal in this embodiment has the millimeter wave array antenna module 100 described above, and each antenna unit 130 is electrically connected to the radio frequency integrated circuit chip 120 through the feeding network 140, and each antenna unit 130 includes the substrate integrated waveguide 131 having a back cavity and the patch antenna 132 attached to the back cavity. Adopting the structure of the patch antenna arranged in the back cavity of the substrate integrated waveguide can effectively reduce the surface wave because the back cavity on the substrate integrated waveguide 131 can effectively suppress the propagation of the surface wave. Therefore, when the millimeter wave array antenna module 100 scans to a large angle, attenuation of an antenna gain can be significantly suppressed, so that the phased array antenna can obtain a larger scanning angle, and thus the antenna performance in the case of large angle scanning can be improved.
What has been described above is only some embodiments of the present invention, and it should be noted herein that one ordinary person skilled in the art can make modifications without departing from the inventive concept of the present invention, and modifications are all within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201811641112.X | Dec 2018 | CN | national |