The disclosure belongs to the technical field of millimeter wave imaging, and particularly relates to a millimeter wave imaging apparatus.
Millimeter waves are an electromagnetic wave with a wavelength of 1-10 mm, which have good penetrability, reflectivity, and high spatial resolution. Millimeter waves can easily penetrate fabrics, non-metal cartons, various bags, to name but a few, have strong reflectivity for knives, daggers, iron bars, umbrella poles and the like made of metal materials such as iron, steel and aluminum alloy, and are easily absorbed by liquids. Therefore, millimeter wave imaging technology is widely used in the fields of personnel security inspection, landing navigation of aircrafts and so on.
The existing millimeter wave imaging apparatus comprises a millimeter wave transceiver module and an image processing module, wherein the millimeter wave transceiver module comprises a crystal oscillator, a millimeter wave transceiver unit, a local-oscillation signal source and a frequency mixer, as shown in
However, the existing millimeter wave imaging apparatus uses the crystal oscillator and the additional local-oscillation signal source to provide the clock trigger signal and the local-oscillation signal respectively, while the crystal oscillator could have been used as an oscillation signal source to provide an oscillation signal, but is not fully utilized, resulting in complexity of the whole system and high cost.
The disclosure aims to provide a millimeter wave imaging apparatus to solve the problem of the existing millimeter wave imaging apparatus using a crystal oscillator and an additional local-oscillation signal source to provide a clock trigger signal and a local-oscillation signal respectively, while the crystal oscillator could have been used as an oscillation signal source but is not fully utilized, resulting in complexity of the whole system and high cost.
The disclosure is realized in such a way that a millimeter wave imaging apparatus comprises a millimeter wave transceiver module and an image processing module, wherein the millimeter wave transceiver module comprises a crystal oscillator, a millimeter wave transceiver unit and a second frequency mixer, the crystal oscillator generates an oscillation signal, a radio frequency input end and an intermediate-frequency output end of the second frequency mixer are connected with an output end of the millimeter wave transceiver unit and an input end of the image processing module respectively, and the millimeter wave transceiver module also comprises a power divider and a local-oscillation signal processing unit;
a signal input end of the power divider is connected with an output end of the crystal oscillator, a first signal output end and a second signal output end of the power divider are connected with a clock end of the millimeter wave transceiver unit and an input end of the local-oscillation signal processing unit respectively, and an output end of the local-oscillation signal processing unit is connected with a local-oscillation input end of the second frequency mixer;
the power divider performs power distribution on the oscillation signal and outputs a clock trigger signal and a local-oscillation signal; the local-oscillation signal processing unit processes the local-oscillation signal and outputs a second local-oscillation signal; the millimeter wave transceiver unit transmits a millimeter wave signal to an object to be detected and receives an echo signal reflected by the object to be detected under the trigger of the clock trigger signal, and mixes the echo signal and a first local-oscillation signal to output a first intermediate-frequency signal; the second frequency mixer mixes the second local-oscillation signal and the first intermediate-frequency signal, and outputs a second intermediate-frequency signal; and the image processing module processes the second intermediate-frequency signal and forms an image corresponding to the object to be detected.
According to a millimeter wave imaging apparatus of the disclosure comprising a crystal oscillator, a power divider, a millimeter wave transceiver unit, a local-oscillation signal processing unit, a second frequency mixer and an image processing module, the power divider performs power distribution on an oscillation signal generated by the crystal oscillator, and outputs a clock trigger signal and a local-oscillation signal; the local-oscillation signal processing unit processes the local-oscillation signal and outputs a second local-oscillation signal; the millimeter wave transceiver unit processes an echo signal reflected by an object to be detected and outputs a first intermediate-frequency signal; the second frequency mixer mixes the second local-oscillation signal and the first intermediate-frequency signal, and outputs a second intermediate-frequency signal; and the image processing module processes the second intermediate-frequency signal, and forms an image corresponding to the object to be detected. As the crystal oscillator is used as both a clock trigger source of the millimeter wave transceiver unit and a local-oscillation signal source of the second frequency mixer, the apparatus does not need additional local-oscillation signal sources, thus simplifying a circuit structure and reducing the costs.
In order to make the objects, technical solutions and advantages of the disclosure clearer, the disclosure is further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to illustrate the present disclosure and are not configured to limit the present disclosure.
According to a millimeter wave imaging apparatus in an embodiment of the disclosure comprising a crystal oscillator, a power divider, a millimeter wave transceiver unit, a local-oscillation signal processing unit, a second frequency mixer and an image processing module, the power divider performs power distribution on an oscillation signal generated by the crystal oscillator, and outputs a clock trigger signal and a local-oscillation signal; the local-oscillation signal processing unit processes the local-oscillation signal and outputs a second local-oscillation signal; the millimeter wave transceiver unit processes an echo signal reflected by an object to be detected and outputs a first intermediate-frequency signal; the second frequency mixer mixes the second local-oscillation signal and the first intermediate-frequency signal, and outputs a second intermediate-frequency signal; and the image processing module processes the second intermediate-frequency signal, and forms an image corresponding to the object to be detected. As the crystal oscillator is used as both a clock trigger source of the millimeter wave transceiver unit and a local-oscillation signal source of the second frequency mixer, the apparatus does not need additional local-oscillation signal sources, thus simplifying a circuit structure and reducing the costs.
a millimeter wave imaging apparatus comprises a millimeter wave transceiver module 10 and an image processing module 6, wherein the millimeter wave transceiver module 10 comprises a crystal oscillator 1, a millimeter wave transceiver unit 3 and a second frequency mixer 5, a radio frequency input end and an intermediate-frequency output end of the second frequency mixer 5 are connected with an output end of the millimeter wave transceiver unit 3 and an input end of the image processing module 6 respectively, and the millimeter wave transceiver module 10 also comprises a power divider 2 and a local-oscillation signal processing unit 4.
A signal input end of the power divider 2 is connected with an output end of the crystal oscillator 1, a first signal output end and a second signal output end of the power divider 2 are connected with a clock end of the millimeter wave transceiver unit 3 and an input end of the local-oscillation signal processing unit 4 respectively, and an output end of the local-oscillation signal processing unit 4 is connected with a local-oscillation input end of the second frequency mixer 5.
The power divider 2 performs power distribution on the oscillation signal and outputs a clock trigger signal and a local-oscillation signal; the local-oscillation signal processing unit 4 processes the local-oscillation signal and outputs a second local-oscillation signal; the millimeter wave transceiver unit 3 transmits a millimeter wave signal to an object to be detected and receives an echo signal reflected by the object to be detected under the trigger of the clock trigger signal, and mixes the echo signal and a first local-oscillation signal to output a first intermediate-frequency signal; the second frequency mixer 5 mixes the second local-oscillation signal and the first intermediate-frequency signal, and outputs a second intermediate-frequency signal; and the image processing module 6 processes the second intermediate-frequency signal and forms an image corresponding to the object to be detected.
In the embodiment of the present disclosure, the oscillation frequency of the crystal oscillator 1 is a fixed frequency and equal to the frequency of the first intermediate-frequency signal, for example, the oscillation frequency of the crystal oscillator 1 and the frequency of the first intermediate-frequency signal are both 200 MHz.
In the embodiment of the present disclosure, the power divider 2 is a division multi-way power divider. In practical application, the power divider 2 can be a passive multi-way power divider, a multi-way coupler, or an active multi-way power divider, a multi-way coupler, a multi-way switch, etc.
In the embodiment of the present disclosure, the crystal oscillator 1 serves as both the clock trigger source of the millimeter wave transceiver unit 3 and the local-oscillation signal source of the second frequency mixer 5, so the utilization rate of the crystal oscillator 1 is high, an additional local-oscillation signal source can be saved, circuit wiring can be simplified, integration and miniaturization of the millimeter wave imaging apparatus are made easier, and the costs are reduced.
as an embodiment of the present disclosure, the millimeter wave transceiver unit 3 comprises a first signal source 30, a second signal source 31, a first signal processing unit 32, a second signal processing unit 33, a transmitting antenna 36, a receiving antenna 37, an echo signal processing unit 34, and a first frequency mixer 35.
A clock end of the first signal source 30 and a clock end of the second signal source 31 are connected to serve as a clock end of the millimeter wave transceiver unit 3, an output end of the first signal source 30 and an output end of the second signal source 31 are connected with an input end of the first signal processing unit 32 and an input end of the second signal processing unit 33 respectively, and an output end of the first signal processing unit 32 is connected with the transmitting antenna 36. An input end of the echo signal processing unit 34 is connected with the receiving antenna 37, a local-oscillation signal input end and a radio frequency signal input end of the first frequency mixer 35 are connected with an output end of the second signal processing unit 33 and an output end of the echo signal processing unit 34 respectively, and an intermediate-frequency output end of the first frequency mixer 35 is an output end of the millimeter wave transceiver unit 3.
The first signal source 30 and the second signal source 31 output a first signal and a second signal simultaneously and respectively under the trigger of the clock trigger signal. The first signal processing unit 32 performs frequency doubling processing on the first signal and outputs a millimeter wave signal, and the transmitting antenna 36 transmits the millimeter wave signal to the object to be detected. The second signal processing unit 33 performs frequency doubling processing on the second signal and outputs the first local-oscillation signal. The receiving antenna 37 receives the echo signal reflected by the object to be detected. The echo signal processing unit 34 filters and amplifies the echo signal and outputs a first echo signal. The first frequency mixer 35 mixes the first local-oscillation signal and the first echo signal and outputs the first intermediate-frequency signal.
In the embodiment of the present disclosure, the phase of the first local-oscillation signal is the same as that of the first echo signal.
In the embodiment of the present disclosure, both the first signal source 30 and the second signal source 31 are sweep signal sources, that is, the frequency of sine wave signals output by the first signal source 30 and the second signal source 31 is repeatedly scanned within a certain range over time, and the sweep signal source is composed of a phase locked loop which can input an external reference signal. The sweep frequency range and sweep bandwidth of the first signal source 30 and the second signal source 31 can be set according to actual requirements.
In the embodiment of the present disclosure, the millimeter wave signal transmitted by the transmitting antenna 36 is a sweep signal with a certain bandwidth, and the frequency range of the echo signal received by the receiving antenna 37 is the same as the frequency range of the millimeter wave signal transmitted by the transmitting antenna.
In the embodiment of the present disclosure, the first frequency mixer 35 is a difference frequency mixer.
As an embodiment of the present disclosure, the first signal processing unit 32 comprises a first band-pass filter 321, a first amplifier 322, a first frequency multiplier 323, a second amplifier 324, a second band-pass filter 325, an attenuator 326 and a circulator 327 connected in sequence. An input end of the first band-pass filter 321 and an output end of the circulator 327 are an input end and an output end of the first signal processing unit 32 respectively.
As an embodiment of the present disclosure, the second signal processing unit 33 comprises a third band-pass filter 331, a third amplifier 332, a second frequency multiplier 333, a fourth amplifier 334, and a fourth band-pass filter 335 connected in sequence. An input end of the third band-pass filter 331 and an output end of the fourth band-pass filter 335 are an input end and an output end of the second signal processing unit 33 respectively.
In the embodiment of the present disclosure, the first frequency multiplier 323 and the second frequency multiplier 333 are both frequency doublers.
As an embodiment of the present disclosure, the echo signal processing unit 34 comprises a fifth amplifier 342 and a fifth band-pass filter 341 connected in sequence. An input end of the fifth amplifier 342 and an output end of the fifth band-pass filter 341 are an input end and an output end of the echo signal processing unit 34 respectively.
As an embodiment of the present disclosure, the local-oscillation signal processing unit 4 comprises a sixth band-pass filter 40 and a sixth amplifier 41 connected in sequence. An input end of the sixth band-pass filter 40 and an output end of the sixth amplifier 41 are an input end and an output end of the local-oscillation signal processing unit 4 respectively.
As an embodiment of the present disclosure, the second frequency mixer 5 is an in-phase/quadrature frequency mixer (I/Q frequency mixer). The in-phase/quadrature frequency mixer consists of two frequency mixers, a 90-degree bridge and an in-phase power divider.
In practical application, the frequency range of the first signal output by the first signal source 30 is 16.1-20.1 GHz. The first signal is subjected to clutter filtration, amplification and frequency doubling processing by the first band-pass filter 321, the first amplifier 322 and the first frequency multiplier 323 in sequence to generate a millimeter wave signal with a frequency range of 32.2-40.2 GHz. Since the attenuation of the first frequency multiplier 323 is large, the millimeter wave signal output by the first frequency multiplier 323 can be transmitted by the transmitting antenna 36 only after being subjected to amplification, fundamental harmonic and third harmonic filtration and power adjustment by the second amplifier 324, the second band-pass filter 325, and the attenuator 326 in sequence. The role of the circulator 327 is to prevent the influence of clutter signals received by the transmitting antenna 36 on the front-end devices. The frequency range of the second signal output by the second signal source 31 is 16-20 GHz. The second signal source is subjected to clutter filtration, amplification and frequency doubling processing by the third band-pass filter 331, the third amplifier 332 and the second frequency multiplier 333 in sequence to generate a first local-oscillation signal with a frequency range of 32-40 GHz. The first local-oscillation signal is subjected to amplification and fundamental harmonic and third harmonic filtration by the fourth amplifier 334 and the fourth band-pass filter 335 in sequence, and then output to a local-oscillation signal input end of the first frequency mixer 35. The initial sweep frequency of the first signal source 30 is not fixed at 16.1 GHz, and the sweep bandwidth is not fixed at 4 GHz; the initial sweep frequency of the second signal source 31 is not fixed at 16 GHz, and the sweep bandwidth is not fixed at 4 GHz; it is only necessary to ensure that there is a fixed frequency difference between the initial sweep frequency of the first signal source 30 and the initial sweep frequency of the second signal source 31, which is equal to the frequency of the first intermediate-frequency signal. The frequency range of the echo signal received by the receiving antenna 37 is 32.2-40.2 GHz. The echo signal processing unit 34 sequentially performs amplification and clutter filtration on the echo signal through the fifth amplifier 342 and the fifth band-pass filter 341 respectively to generate a first echo signal, and outputs the first echo signal to a radio frequency signal input end of the first frequency mixer 35.
In practical application, the first signal source 30 and the second signal source 31 output the first signal and the second signal simultaneously and respectively, that is, the first band-pass filter 30 and the second band-pass filter 31 receive the first signal and the second signal simultaneously and respectively. By setting the transmission path (length of transmission line) of the first signal and the second signal accordingly, the phases of the first local-oscillation signal and the first echo signal input to the first frequency mixer 35 are always kept absolutely equal, so that the frequency of the first intermediate-frequency signal output by the first frequency mixer 35 is always a fixed value (e.g., 200 MHz). Since the oscillation frequency of the crystal oscillator 1 is equal to the frequency of the first intermediate-frequency signal, the frequency of the local-oscillation signal is 200 MHz, the local-oscillation signal is filtered by the sixth band-pass filter 40 and amplified by the sixth amplifier 41 to form a second local-oscillation signal (frequency is 200 MHz), the second frequency mixer 5 demodulates the second local-oscillation signal and the first intermediate-frequency signal and then outputs two DC signals, an in-phase signal and a quadrature signal, and the image processing module 6 collects and processes the in-phase signal and the quadrature signal and images the object to be detected according to a processing result. In practical application, the millimeter wave imaging apparatus also comprises a display module 8, an input end of which is connected with a first output end of the image processing module 6, and the display module 8 is used to display the image corresponding to the object to be detected.
As an embodiment of the present disclosure, the millimeter wave imaging apparatus further comprises a feedback module 7, wherein a first input end, a second input end and a feedback output end of the feedback module 7 are connected with a second output end of the image processing module 6, a third output end of the power divider and a feedback input end of the power divider respectively; meanwhile, a feedback output end of the power divider 2 is connected with a feedback input end of the crystal oscillator 1, and the feedback module 7 is used for adjusting the oscillation frequency of the crystal oscillator 1 according to the imaging of the image processing module 6. In practical application, the feedback module 7 is specifically an FPGA (Field-Programmable Gate Array) control board.
As an embodiment of the present disclosure, the millimeter wave imaging apparatus also comprises a power module which supplies power to the entire apparatus.
According to the millimeter wave imaging apparatus in the embodiment of the disclosure comprising the crystal oscillator, the power divider, the millimeter wave transceiver unit, the local-oscillation signal processing unit, the second frequency mixer and the image processing module, the power divider performs power distribution on the oscillation signal generated by the crystal oscillator, and outputs the clock trigger signal and a local-oscillation signal; the local-oscillation signal processing unit processes the local-oscillation signal and outputs the second local-oscillation signal; the millimeter wave transceiver unit processes the echo signal reflected by the object to be detected and outputs the first intermediate-frequency signal; the second frequency mixer mixes the second local-oscillation signal and the first intermediate-frequency signal, and outputs the second intermediate-frequency signal; and the image processing module processes the second intermediate-frequency signal, and forms the image corresponding to the object to be detected. As the crystal oscillator is used as both the clock trigger source of the millimeter wave transceiver unit and the local-oscillation signal source of the second frequency mixer, the apparatus does not need additional local-oscillation signal sources, thus simplifying a circuit structure and reducing the costs.
The above is an example embodiment of the present disclosure and is not intended to limit the present disclosure. Any modifications, equivalent substitutions, improvements, etc., made within the spirit and principles of the present disclosure should be included within the scope of protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201610628931.5 | Aug 2016 | CN | national |
This application is a national stage entry application under 35 U.S.C. 371 of PCT Patent Application No. PCT/CN2016/094110, filed Aug. 9, 2016, which claims priority to Chinese Patent Application No. 201610628931.5, filed Aug. 3, 2016, the entire contents of each of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/094110 | 8/9/2016 | WO | 00 |