The present invention relates to a composite milling cone for a compression crusher in the field of crushing rocks in extractive industries such as mines, quarries, cement works, etc., but also in the industry of recycling, etc., as well as to a method for manufacturing such cones.
In this document, by compression crusher, we mean cone crushers or gyratory crushers equipped with milling cones forming the main wear part of these machines.
Cone crushers or gyratory crushers have a wear part in the shape of a cone, called a milling cone. This is the type of cone that the present patent application is about. The cone has the function of being in direct contact with the rock or the material to be milled during the phase of the process where very large compressive stresses are applied to the material to be crushed.
Compression crushers are used in the first steps of the manufacturing line intended to drastically reduce the size of the rock, in extractive industries (mines, quarries, cement works, . . . ) and recycling industries.
Few means are known for modifying the hardness and compression resistance of a foundry alloy in depth <<in the mass>>. Known means generally concern surface modifications at a small depth (a few millimeters). For parts which are made in foundries, the reinforcing elements have to be present in depth in order to withstand significant and simultaneous localized stresses in terms of mechanical stresses (wear, compression, impact) in order to limit wear and therefore consumption of the part during its lifetime.
Document U.S. Pat. No. 5,516,053 (Hannu) describes a method for improving the performances of milling cones for cone crushers, based on a reloading technique using hard particles such as tungsten carbide; this technique only produces its effects at the surface and over a relatively limited thickness.
Document JP 53 17731 proposes a solution which consists in alternating areas that are more resistant and less resistant to wear, in the direction of the generatrix of a milling cone. This technique has the effect of generating at the surface of the cone a relief which would be favorable to extending the lifetime of the part.
Document U.S. Pat. No. 6,123,279 (Stafford) proposes to reinforce the surfaces of the cones and jaws in manganese steel by means of tungsten carbide inserts which are introduced and mechanically set in housings provided for this purpose; this solution has the result of a discontinuous reinforcement of the surface of the part.
Document WO 2007/138162 (Hellman) describes a method for manufacturing a cone which resorts to composite materials.
Document US 2008/041995 (Hall) intends to reinforce the working surface of the cone with inserts in hard materials.
The present invention discloses a composite milling cone for compression crushers having an improved resistance to wear while maintaining a good resistance to impacts. This property is obtained by a composite reinforcement structure specifically designed for this application, a material which at a millimetric scale alternates areas which are dense with fine micrometric globular particles of metal carbides with areas which are practically free of them within the metal matrix of the milling cone.
The present invention also proposes a method for obtaining said reinforcement structure.
The present invention discloses a composite milling cone for compression crushers, said milling cone comprising a ferrous alloy reinforced at least partially with titanium carbide according to a defined geometry, in which said reinforced portion comprises an alternating macro-microstructure of millimetric areas concentrated with micrometric globular particles of titanium carbide separated by millimetric areas essentially free of micrometric globular particles of titanium carbide, said areas concentrated with micrometric globular particles of titanium carbide forming a microstructure in which the micrometric interstices between said globular particles are also filled by said ferrous alloy.
According to particular embodiments of the invention, the composite milling cone comprises at least one or one suitable combination of the following features:
The present invention also discloses a method for manufacturing the composite milling cone according to any of claims 1 to 9 comprising the following steps:
According to particular embodiments of the invention, the method comprises at least one or one suitable combination of the following features:
The present invention also discloses a composite milling cone obtained according to the method of any of claims 11 to 13.
a-4h schematically illustrate the method for manufacturing a cone according to the invention.
step 4a shows the device for mixing the titanium and carbon powders;
step 4b shows the compaction of the powders between two rolls followed by crushing and sifting with recycling of the too fine particles;
c shows a sand mold in which a barrier is placed for containing the granules of powder compacted at the location of the reinforcement of the lining bar for the jaw crusher;
d shows an enlargement of the reinforcement area in which the compacted granules comprising the reagents precursor of TiC are located;
step 4e shows the casting of the ferrous alloy into the mold;
f schematically shows a milling cone which is the result of the casting;
g shows an enlargement of the areas with a high concentration of TiC nodules;
h shows an enlargement within a same area with a high concentration of TiC nodules. The micrometric nodules are individually surrounded by the cast metal.
In materials science, a SHS reaction or <<Self-propagating High temperature Synthesis>> is a self-propagating high temperature synthesis where reaction temperatures generally above 1,500° C., or even 2,000° C. are reached. For example, the reaction between titanium powder and carbon powder in order to obtain titanium carbide TiC is strongly exothermic. Only a little energy is needed for locally initiating the reaction. Then, the reaction will spontaneously propagate to the totality of the mixture of the reagents by means of the high temperatures reached. After initiation of the reaction, a reaction front develops which thus propagates spontaneously (self-propagating) and which allows titanium carbide to be obtained from titanium and carbon. The thereby obtained titanium carbide is said to be <<obtained in situ>> because it does not stem from the cast ferrous alloy.
The mixtures of reagent powders comprise carbon powder and titanium powder and are compressed into plates and then crushed in order to obtain granules, the size of which varies from 1 to 12 mm, preferably from 1 to 6 mm, and more preferably from 1.4 to 4 mm. These granules are not 100% compacted. They are generally compressed to between 55 and 95% of the theoretical density. These granules allow an easy use/handling (see
These millimetric granules of mixed carbon and titanium powders obtained according to the diagrams of
The composite milling cone according to the present invention has a reinforcement macro-microstructure which may further be called an alternating structure of areas concentrated with globular micrometric particles of titanium carbide separated by areas which are practically free of them. Such a structure is obtained by a reaction in the mold 15 of the granules comprising a mixture of carbon and titanium powders. This reaction is initiated by the casting heat of the cast iron or the steel used for casting the whole part and therefore both the non-reinforced portion and the reinforced portion (see
This high temperature synthesis (SHS) allows an easy infiltration of all the millimetric and micrometric interstices by the cast iron or cast steel (
Once these granules have reacted according to an SHS reaction, the reinforcement areas where these granules were located show a concentrated dispersion of micrometric globular particles 4 of TiC carbide (globules), the micrometric interstices 3 of which have also been infiltrated by the cast metal which here is cast iron or steel. It is important to note that the millimetric and micrometric interstices are infiltrated by the same metal matrix as the one which forms the non-reinforced portion of the milling cone; this allows total freedom in the selection of the cast metal. In the finally obtained milling cone, the reinforcement areas with a high concentration of titanium carbide consist of micrometric globular TiC particles in a significant percentage (between about 35 and about 70% by volume) and of the infiltration ferrous alloy.
By micrometric globular particles it is meant globally spheroidal particles which have a size ranging from 1 μm to a few tens of μm at the very most, the large majority of these particles having a size of less than 50 μm, and even less than 20 μm, or even 10 μm. We also call them TiC globules. This globular shape is characteristic of a method for obtaining titanium carbide by self-propagating synthesis SHS (see
Obtaining Granules (Ti+C Version) for Reinforcing the Milling Cone
The method for obtaining the granules is illustrated in
The compaction level of the strips depends on the applied pressure (in Pa) on the rolls (diameter 200 mm, width 30 mm). For a low compaction level, of the order of 106 Pa, a density on the strips of the order of 55% of the theoretical density is obtained. After passing through the rolls 10 in order to compress this material, the apparent density of the granules is 3.75×0.55, i.e. 2.06 g/cm3.
For a high compaction level, of the order of 25.106 Pa, a density on the strips of 90% of the theoretical density is obtained, i.e. an apparent density of 3.38 g/cm3. In practice, it is possible to attain up to 95% of the theoretical density.
Therefore, the granules obtained from the raw material Ti+C are porous. This porosity varies from 5% for very highly compressed granules to 45% for slightly compressed granules.
In addition to the compaction level, it is also possible to adjust the grain size distribution of the granules as well as their shape during the operation of crushing the strips and sifting the Ti+C granules. The non-desired grain size fractions are recycled at will (see
Making of the Reinforcement Area in the Composite Milling Cone According to the Invention
The granules are made as described above. In order to obtain a three-dimensional structure or a superstructure/macro-microstructure with these granules, they are positioned in the areas of the mold where it is desired to reinforce the part. This is achieved by agglomerating the granules either by means of an adhesive, or by confining them in a container or by any other means (barrier 16).
The bulk density of the stack of the Ti+C granules is measured according to the ISO 697 standard and depends on the compaction level of the strips, on the grain size distribution of the granules and on the method for crushing the strips, which influences the shape of the granules. The bulk density of these Ti+C granules is generally of the order of 0.9 g/cm3 to 2.5 g/cm3 depending on the compaction level of these granules and on the density of the stack.
Before reaction, there is therefore a stack of porous granules consisting of a mixture of titanium powder and carbon powder.
During the reaction Ti+C→TiC, a volume contraction of the order of 24% occurs, upon passing from the reagents to the product (a contraction originating from the density difference between the reagents and the products). Thus, the theoretical density of the Ti+C mixture is 3.75 g/cm3 and the theoretical density of TiC is 4.93 g/cm3. In the final product, after the reaction for obtaining TiC, the cast metal will infiltrate:
In the examples which follow, the following raw materials were used:
In this example, the aim is to make a milling cone, the reinforced areas of which comprise a global volume percentage of TiC of about 42%. For this purpose, a strip is made by compaction to 85% of the theoretical density of a mixture of C and of Ti. After crushing, the granules are sifted so as to obtain a dimension of granules located between 1.4 and 4 mm. A bulk density of the order of 2.1 g/cm3 is obtained (35% of space between the granules+15% of porosity in the granules).
The granules are positioned in the mold at the location of the portion to be reinforced which thus comprises 65% by volume of porous granules. A cast iron with chromium (3% C, 25% Cr) is then cast at about 1500° C. in a non-preheated sand mold. The reaction between the Ti and the C is initiated by the heat of the cast iron. This casting is carried out without any protective atmosphere. After reaction, in the reinforced portion, 65% by volume of areas with a high concentration of about 65% of globular titanium carbide are obtained, i.e. 42% by the global volume of TiC in the reinforced portion of the milling cone.
In this example, the aim is to make a milling cone, the reinforced areas of which comprise a global volume percentage of TiC of about 30%. For this purpose, a strip is made by compaction to 70% of the theoretical density of a mixture of C and of Ti. After crushing, the granules are sifted so as to obtain a dimension of granules located between 1.4 and 4 mm. A bulk density of the order of 1.4 g/cm3 is obtained (45% of space between the granules+30% of porosity in the granules). The granules are positioned in the portion to be reinforced which thus comprises 55% by volume of porous granules. After reaction, in the reinforced portion, 55% by volume of areas with a high concentration of about 53% of globular titanium carbide are obtained, i.e. about 30% by the global volume of TiC in the reinforced portion of the milling cone.
In this example, the aim is to make a milling cone, the reinforced areas of which comprise a global volume percentage of TiC of about 20%. For this purpose, a strip is made by compaction to 60% of the theoretical density of a mixture of C and of Ti. After crushing, the granules are sifted so as to obtain a dimension of granules located between and 6 mm. A bulk density of the order of 1.0 g/cm3 is obtained (55% of space between the granules +40% of porosity in the granules). The granules are positioned in the portion to be reinforced which thus comprises 45% by volume of porous granules. After reaction, in the reinforced portion, 45% by volume of areas concentrated to about 45% of globular titanium carbide are obtained, i.e. 20% by the global volume of TiC in the reinforced portion of the milling cone.
In this example, it was sought to attenuate the intensity of the reaction between the carbon and the titanium by adding a ferrous alloy as a powder therein. Like in Example 2, the aim is to make a milling cone, the reinforced areas of which comprise a global volume percentage of TiC of about 30%. For this purpose, a strip is made by compaction to 85% of the theoretical density of a mixture of 15% C, 63% Ti and 22% Fe by weight. After crushing, the granules are sifted so as to attain a dimension of granules located between 1.4 and 4 mm. A bulk density of the order of 2 g/cm3 is obtained (45% of space between the granules +15% of porosity in the granules). The granules are positioned in the portion to be reinforced which thus comprises 55% by volume of porous granules. After reaction, in the reinforced portion, 55% by volume of areas with a high concentration of about 55% of globular titanium carbide are obtained, i.e. 30% by volume of the global titanium carbide in the reinforced macro-microstructure of the milling cone.
The following tables show the numerous possible combinations.
70
65
29.6
55
29.3
45
29.1
This table shows that with a compaction level ranging from 55 to 95% for the strips and therefore the granules, it is possible to perform granule filling levels in the reinforced portion of the milling cone ranging from 45% to 70% by volume (ratio between the total volume of the granules and the volume of their confinement). Thus, in order to obtain a global TiC concentration in the reinforced portion of about 29% by volume (in bold characters in the table), it is possible to proceed with different combinations such as for example 60% compaction and 65% filling, or 70% compaction and 55% filling, or further 85% compaction and 45% filling. In order to obtain granule filling levels in the reinforced portion ranging up to 70% by volume, it is mandatory to apply a vibration in order to pack the granules. In this case, the ISO 697 standard for measuring the filling level is no longer applicable and the amount of material in a given volume is measured.
Here, we have represented the density of the granules according to their compaction level and the volume percent of TiC obtained after reaction and therefore contraction of about 24% by volume was inferred therefrom. Granules compacted to 95% of their theoretical density therefore allow to obtain after reaction a concentration of 72.2% by volume of TiC.
In practice, these tables are used as abacuses by the user of this technology, who sets a global TiC percentage to be obtained in the reinforced portion of the milling cone and who, depending on this, determines the filling level and the compaction of the granules which he/she will use. The same tables were produced for a mixture of Ti+C+Fe powders.
Ti+0.98 C+Fe
Here, the inventor aimed at a mixture allowing to obtain 15% by volume of iron after reaction. The mixture proportion which was used is:
100 g Ti+24.5 g C+35.2 g Fe
70
25.9
65
26.2
55
25.9
45
25.7
Again, in order to obtain a global TiC concentration in the reinforced portion of about 26% by volume (in bold characters in the table), it is possible to proceed with different combinations such as for example 55% compaction and 70% filling, or 60% compaction and 65% filling, or 70% compaction and 55% filling, or further 85% compaction and 45% filling.
Advantages
The present invention has the following advantages in comparison with the state of the art in general:
Better Resistance to Impacts
With the present method, porous millimetric granules are obtained which are embedded into the infiltration metal alloy. These millimetric granules themselves consist of microscopic particles of TiC with a globular tendency also embedded into the infiltration metal alloy. This system allows to obtain a milling cone with a reinforcement area comprising a macrostructure within which there is an identical microstructure at a scale which is about a thousand times smaller.
The fact that the reinforcement area of the milling cone comprises small hard globular particles of titanium carbide finely dispersed in a metal matrix surrounding them allows to avoid the formation and propagation of cracks (see
The cracks generally originate at the most brittle locations, which in this case are the TiC particle or the interface between this particle and the infiltration metal alloy. If a crack originates at the interface or in the micrometric TiC particle, the propagation of this crack is then hindered by the infiltration alloy which surrounds this particle. The toughness of the infiltration alloy is greater than that of the ceramic TiC particle. The crack needs more energy for passing from one particle to another, for crossing the micrometric spaces which exist between the particles.
Maximum Flexibility for the Application Parameters
In addition to the compaction level of the granules, two parameters may be varied, which are the grain size fraction and the shape of the granules, and therefore their bulk density. On the other hand, in a reinforcement technique with inserts, only the compaction level of the latter can be varied within a limited range. As regards the desired shape to be given to the reinforcement, taking into account the design of the milling cone and the location where reinforcement is desired, the use of granules allows further possibilities and adaptation. (see
Advantages as Regards Manufacturing
The use of a stack of porous granules as a reinforcement has certain advantages as regards manufacturing:
The expansion coefficient of the TiC reinforcement is lower than that of the ferrous alloy matrix (expansion coefficient of TiC: 7.5 10−6/K and of the ferrous alloy: about 12.0 10−6/K). This difference in expansion coefficients has the consequence of generating stresses in the material during the solidification phase and also during the heat treatment. If these stresses are too significant, cracks may appear in the part and lead to its reject. In the present invention a small proportion of TiC reinforcement is used (less than 50% by volume), which causes less stresses in the part. Further, the presence of a more ductile matrix between the micrometric globular TiC particles in the alternating areas of low and high concentration allows to better handle possible local stresses.
Excellent Maintenance of the Reinforcement in the Milling Cone
In the present invention, the frontier between the reinforced portion and the non-reinforced portion of the milling cone is not abrupt since there is a continuity of the metal matrix between the reinforced portion and the non-reinforced portion, which allows to protect it against a complete detachment of the reinforcement.
Test Results
Three tests were carried out with cones of the type of the one illustrated in
Test 1
Number | Date | Country | Kind |
---|---|---|---|
2008/0519 | Sep 2008 | BE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/060979 | 8/26/2009 | WO | 00 | 5/31/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/031661 | 3/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5081774 | Kuwano | Jan 1992 | A |
5337801 | Materkowski | Aug 1994 | A |
5516053 | Hannu | May 1996 | A |
5720830 | Wragg et al. | Feb 1998 | A |
6123279 | Stafford et al. | Sep 2000 | A |
20080041995 | Hall et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
1 450 973 | Apr 2006 | EP |
05317751 | Mar 1993 | JP |
WO 2007138162 | Dec 2007 | WO |
Entry |
---|
K. Das, A Review on the various synthesis routes of TiC reinforced ferrous based composites, online publication, 2002, 11 pages, pp. 3881-3892 , Journal of Materials Science 37 (2002) 3881-3892. |
Number | Date | Country | |
---|---|---|---|
20110303778 A1 | Dec 2011 | US |