1. Field of Invention
The invention relates to a milling apparatus for comminuting soil, rock or other material.
2. Description of the Related Art
For excavating soil, suitable digging devices such as excavators are known. However, these are not readily capable of breaking through solid top layers, such as concrete or asphalt, or picking up rock at depth, or mixing the excavated material. Combined digging, mixing and milling equipment has therefore been developed. One such system is known for instance from German Patent Disclosure DE 199 07 430 A1. This system has an excavator bucket that is provided with a miller on its back side. The miller is accommodated in a milling chamber and protrudes from it. Between the milling chamber and the receiving chamber of the excavator bucket, there is an opening, embodied for instance in the form of a sieve. Thus granular material that occurs in the milling process can be collected in the excavator bucket, making rational and versatile work possible. The excavator bucket can be used both like a conventional excavator bucket and additionally as a rock miller.
From German Patent Disclosure DE 42 13 523 A1, a mobile milling loading system is known that is formed by a rock miller in the vicinity of which a pivotable bucket is located. The pivotable bucket serves to receive the material detached by and spun away from the rock miller.
So-called bucket separators are also known, which are capable of receiving a loose mixture of material and separating it into a coarse fraction and a fine fraction. A bucket separator of this kind has a bucket whose bottom is formed by a grate provided with a plurality of rollers. The rollers carry disk elements and rotate in the same or opposite directions. They separate out the fine material, which can fall through between the rollers, while coarse material remains in the bucket.
In practical operation, all the individual tasks named occur to a greater or lesser extent. Sometimes, ditches or trenches have to be excavated, and existing rock can be expected. If the extracted material is to be reincorporated, then often coarse fractions have to be separated out. If other materials, such as material from a demolished building, construction trash or the like that is to be incorporated on site is present, then these materials must sometimes be comminuted and classified. For each of these individual operations, special tools are required.
It is an object of the invention to create an apparatus that can be used in as versatile a way as possible.
The milling apparatus of the invention has a bucket with a receiving chamber and a milling chamber, in which a milling rotor is disposed. Thus the milling apparatus is suitable both for normal digging and for cutting loose solid material. A first beating arm is disposed adjacent to the milling rotor, and the chisels of the milling rotor move past it. This beating arm is disposed such that material cut loose by the milling rotor is fed past the beating arm into the receiving chamber, through the through opening between the milling chamber and the receiving chamber.
According to the invention, the milling apparatus is provided with a further beating arm, which is spaced apart from the first beating arm in terms of the direction of rotation. With this provision, the essential additional possibility is created of comminuting material received by the bucket, using the milling rotor. Thus the milling apparatus makes a first mode of operation possible, in which the milling rotor feeds material through the through opening into the receiving chamber, and a second mode of operation, in which material located in the receiving chamber is milled and ejected from the receiving chamber by the milling rotor. It is thus possible for extracted material, for instance, containing such coarse components as stones, pieces of rock or the like, to be processed. Coarse ingredients are comminuted in the process. Moreover, construction trash, asphalt or the like in material that occurs at a construction site can be comminuted.
Preferably the first beating arm is disposed upstream of the through opening, in terms of the direction of rotation of the milling rotor. It is then operative in the mode of operation in which the material is fed into the receiving chamber of the bucket by the milling rotor. The first beating arm is preferably located on the outside, preferably on an underside of the bucket. It can act as a holding-down device if layers of concrete or asphalt, for instance, are being milled. In that case, the milling apparatus, by means of the beating arm, weighs down on the concrete or asphalt surface while the milling rotor mills off the material that is held down.
The second beating arm is preferably disposed downstream of the through opening, in terms of the direction of rotation of the milling rotor. The beating arm is operative particularly in the mode of operation in which material that through the through opening reaches the milling rotor from the receiving chamber is comminuted by the milling rotor. The beating arm can for instance be disposed in the milling chamber. The beating arms may be embodied as straight, with one straight edge on their side toward the milling rotor. The edge can also be shaped such that it follows the contour of the miller, in order to attain a uniform cutting gap.
In an advantageous embodiment, the first and/or second beating arm can be supported adjustably. For instance, they can be supported adjustably in a radial direction to the milling rotor, in order to enable adjusting the particle size of the milled material produced. With an adjustment of the first beating arm in the circumferential direction of the milling rotor, the milling depth can be adjusted, if the beating arm is disposed outside the milling chamber. An adjustment of the second beating arm in the circumferential direction of the milling rotor can serve to adapt the position of the milling strip to different through openings. The through openings can be embodied adjustably, for instance by means of an optional slide.
It is furthermore possible to support the milling rotor adjustably. For instance, it can be adjustable in a direction perpendicular to the first beating arm, so as to adjust the milling depth.
The two modes of operation can also be achieved with a milling apparatus that has only a single beating arm, but in which the milling rotor is reversible in its direction of rotation. To attain this, the milling rotor is connected for instance to a reversible drive mechanism. In that case, the milling rotor is interchangeable or reversible. In a first operating position, it mills forwards; when it is turned around, it mills backwards, with the drive mechanism moving backward. Two separate milling rotors may be provided and exchanged for one another as needed, instead.
In a more sophisticated embodiment, the milling rotor and the drive mechanism form a structural unit, which is provided with a turner. Thus the milling apparatus works into the receiving chamber in a first operating position and out of the receiving chamber in a second operating position.
Whether by means of additional beating arms or by turning the milling rotor around, in every case a milling apparatus is obtained that has two milling directions, namely into the bucket and out of it.
If needed, a further beating arm can be provided on the back side of the bucket, in order to improve the comminution of material. The beating arm can be provided on a covering hood, which at least in some portions covers the milling rotor protruding out of the milling chamber.
A conveyor device can be disposed in the receiving chamber, serving to reinforce the filling of the receiving chamber when the milling rotor spins material into the receiving chamber. The conveyor device can also serve to deliver material from the receiving chamber to the milling rotor, when the milling rotor is cutting material emerging from the receiving chamber. To that end, the conveyor device can have one or more rollers that are driven to rotate. The rollers can be driven to rotate in the same or opposite directions and can have either a profiled or a smooth surface. Moreover, it can be provided if needed that the positions of the feed rollers are adjustable in the receiving chamber. The roller drives can be derived individually or from a common drive mechanism. Moreover, the drives can be embodied reversibly. Preferably, the rollers extend over the full width of the receiving chamber, and their axes of rotation are preferably oriented parallel to the axis of rotation of the milling rotor.
The through opening can be embodied as a slot, a larger opening, or a sieve. The embodiment as a slot or as a sieve has the advantage that the material is classified on entering the receiving chamber. To assure unhindered operation when material is milled out of the receiving chamber, the through opening can be provided with a removable sieve. A closure device that regulates the size of the through opening can also be provided.
Regardless of whether one, two or three beating arms are provided and how the reversal of the working direction is concretely achieved (with multiple beating arms or by turning the rotor around), a dispenser device can be provided in the milling apparatus. It can in addition or as an alternative discharge into the milling chamber. Thus an additional substance can be added to the material to be processed. This additional substance can for instance be a liquid or a solid (powder). A scattering device that strews the desired additional substance into the receiving chamber or into the milling chamber can be provided. The supply hopper can be disposed on either the milling apparatus or the carrier vehicle, or it can be set up separately.
It is also possible for the receiving opening of the bucket to be provided with a closure device, to prevent granulated material from being ejected from the receiving chamber when the milling rotor feeds material into the receiving chamber. The closure device can be formed by a pivotably supported lid.
It is also possible to connect the milling chamber to an suction extractor. It is furthermore possible to connect the receiving chamber to an suction extractor. The suction extractor can serve to aspirate and separately engage material that has been comminuted by the milling rotor, and/or to minimize dust production.
The suction extractor can also be connected to a hood that optionally covers the rotor. The hood can furthermore be provided with a reamer, which is adjustable in height as needed.
Other advantageous details of embodiments of the invention will become apparent from the drawing, the ensuing description, or the dependent claims. Exemplary embodiments of the invention are shown in the drawing.
In
In the bucket 2, a milling chamber 12 in which a milling rotor 14 is rotatably supported is partitioned off via a partition 11. The milling rotor is equipped with tools 15, such as hard metal chisels, which serve to comminute the material and mix it and are inclined in the direction of rotation D. The milling rotor 14 is driven to rotate via a drive mechanism not otherwise shown. The milling rotor 14 can extend over the full width of the bucket or occupy only part of it. It is furthermore possible to provide two milling rotors, which are seated on the same shaft that is supported approximately centrally. In that case, the milling rotors protrude to the right and/or left (in one or both directions) out of the bucket 2 and thus create a milling cut that is wider than the bucket 2. The milling rotor or milling rotors 14 are preferably approximately cylindrical. However, conical, rounded or otherwise-shaped milling rotors can also be used. A beating arm 16 is assigned to the milling rotor 14, preferably located on the underside of the bucket 2, in the immediate vicinity of the milling rotor 14. The beating arm 16 extends over the full width of the milling rotor 14 and is radially spaced apart from it. A cutting gap 17 is formed, which defines the particle size of fragments 18 produced. The beating arm 16 can be supported on the milling rotor 14 so as to be adjustable toward and away from it, to enable adjusting the cutting gap 17. The arrangement can also be made such that the height of the beating arm 16 is adjustable. In this way, the milling depth of the milling rotor 14 can be adjusted.
A through opening 19 is located in the partition 11, downstream of the beating arm 16, in terms of the direction of rotation D of the rotor 14. The through opening 19 for instance serves to feed the fragments 18, produced by the milling process, into the receiving chamber 3. The through opening 19 can have an adjustable slide 21 assigned to it that defines the size of the through opening in accordance with the adjustment performed by an adjusting device 22. Alternatively, a fixed or interchangeable screen, rod sieve or the like may be provided. As
In the milling chamber 12, there can be a second beating arm 24, downstream of the through opening 19 in terms of the direction of rotation D, that together with the milling rotor 14 defines a gap 25. The beating arm 24 can be fixed or alternatively adjustable. For instance, it can be connected to the slide 21 and supported by it. Alternatively, it can be provided with a separate retaining device and can be supported adjustably in terms of the direction of rotation D or toward and away from the milling rotor 14 as well.
On the back side of the bucket 2, the milling rotor 14 that protrudes there out of the milling chamber can be covered by a hood 26, which serves to prevent the milling rotor 14 from ejecting material from its work region. The hood extends to about the same height as the beating arm 16. On its lower end, it can be provided as needed with a third beating arm 27, which serves to comminute material further.
The hood 26 can also carry a reamer 28, which is formed for instance by a shield which is adjustable in height. It can be supported displaceably in a vertical guide 29 and adjustable by means of an adjusting device 31. The reamer serves to push material, milled away in the continuous milling operation, away from the developing trench bottom 32, so that it can be picked up easily as needed. If no reamer is required, then instead of the hood some other kind of splash protector, for instance in the form of a broom, a rake with steel bristles, or a curtain made up of segments of chain, steel cables, or the like may be used. The splash protector can also be formed by flexible elements, such as plastic elements, rubber elements or the like, such as pieces of old automobile tires.
The suction line 9 can alternatively be connected to the milling chamber 12 or the hood 26.
If needed, a conveyor device 33 to which at least one rotatably disposed roller 34 belongs may be disposed in the receiving chamber 3. The roller 34 for instance extends parallel to the milling rotor 14, parallel to a side wall of the receiving chamber 3, or obliquely across the full width of the receiving chamber 3. It is profiled (that is, provided with spikes or cleats or ribs or other protrusions), or is smooth. It can be connected to a drive mechanism, with which it can be set into rotation (forward or backward) as needed. The roller 34 can also be supported displaceably, as indicated by an arrow 35, in order to shift it into whichever is the appropriate working position. It serves to reinforce the filling and evacuation of the receiving chamber 3. If needed, further rollers may be provided, to move the material located in the receiving chamber 3.
The bucket 2 can moreover be provided with a supply chamber 36, which contains additional materials such as lime, cement, fibrous material, sawdust, or even liquids. The supply chamber 36 is connected to a dispenser device 37, which for example is embodied as a scattering device. The dispenser device 37, in the exemplary embodiment presented here, discharges into the milling chamber 12 above the milling rotor 14, that is, downstream of the through opening 19 in terms of the direction of rotation D. The dispenser device can also be connected to the roller 34 (or 42) and can have outlet openings on its jacket. Alternatively or in addition, a dispenser device discharging into the receiving chamber 3 may be provided. It is furthermore possible to provide a dispenser device that discharges in the vicinity of the lower beating arm 16, that is, upstream of the through opening 19 in terms of the direction of rotation D. To avoid dust, one or more water-spraying devices can also be provided, which create a water curtain or water mist in the surroundings of the milling apparatus 1.
As
The milling apparatus 1 described thus far functions as follows:
The milling apparatus 1 shown in
If there is no suction line 8, the receiving chamber 3 fills gradually. Once it is sufficiently full, the bucket can be emptied, by being moved away from the work site by the carrier 39 and emptied onto the bed of a truck, for instance. The bucket 2 can also be used for normal digging work. For instance, loose material left on the bottom 32 of the trench can be picked up with the bucket 2. If softer ground layers are located under the ground layer 38, they can be picked up directly with the bucket 2.
If the suction device is powerful enough to extract the fragments 18 from the receiving chamber 3 by suction via the suction line 9, then work can be done continuously. The fragments 18 produced are extracted by suction from the receiving chamber 3 and engaged separately. Only larger pieces, if they are to reach the inside of the receiving chamber 3, remain in it.
The milling apparatus presented can thus be used not only for digging work but also for pure material processing, such as breaking, comminuting, mixing, adding binder, and adding water to bind dust.
The milling apparatus 1 of
Together with the rotor 14, the drive mechanism 51 forms a milling unit 54, which is linearly adjustable in its entirety in a direction 55 extending transversely (approximately perpendicularly) to the beating arm 16. The direction 55 is approximately perpendicular to one of the flat sides of the beating arm 16. In terms of the working direction shown in
The milling apparatus 1 shown in
If the milling apparatus 1 is to be used to comminute material picked up by the bucket 2, then the hydraulic adjusting device 57 is triggered in such a way that the milling rotor 14 is moved out of the milling chamber 12 in the direction 55. It is then turned around, by rotation of 180° about a vertical axis 58 and is retracted into the milling chamber 12 again. It is then in the position shown in
Rollers of the conveyor device 33 that are provided in the receiving chamber 3 can reinforce the feeding of material, if necessary. Moreover, if the through opening 19 is large enough, they can mesh with the milling rotor 14 as they work.
The rollers 34, 42 and the milling rotor 14 can be embodied of different sizes. They can also rotate at different rotary speeds, either in meshing or nonmeshing fashion. Furthermore, as needed they can operate in the same direction or in contrary directions. Furthermore, a turner can be provided between the carrier 39 and the holder 7, in order to pivot the milling apparatus 1 on the carrier 39. The pivot axis is indicated by a dot-dashed line 59 in
A versatile milling apparatus 1 has a bucket 2 with a receiving chamber 3 and has a milling unit 54 with a milling rotor 14. The receiving chamber 3 has a receiving opening 4 and is embodied as a bucket 2. On the bottom of the bucket 2, a through opening 19 is provided, which leads into a milling chamber 12. The milling rotor 14 disposed in it can move material 44 both into the receiving chamber 3 and out of it again. To achieve both modes of operation, in a first embodiment a drive mechanism 51 rotating in a predetermined direction D is provided; a beating arm 16 is associated with the first mode of operation, and a further beating arm 24 is associated with the second mode of operation. In another embodiment, which makes do with a single beating arm 16, the milling unit 54 can be operated in two different working positions via a turner. The positions differ from one another by a 180° rotation about a vertical axis 58 that is perpendicular to the axis of rotation of the milling rotor 14. Alternatively, it is possible to turn only the milling rotor 14 around, or to replace it with a milling rotor mirror-symmetrical to it. In that case, the drive mechanism 51 is embodied reversibly.
The invention has been described in detail with respect to preferred embodiments, and it will now be apparent from the foregoing to those skilled in the art, that changes and modifications may be made without departing from the invention in its broader aspects, and the invention, therefore, as defined in the appended claims, is intended to cover all such changes and modifications that fall within the true spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
102 02 536 | Jan 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE02/04476 | 12/6/2002 | WO | 00 | 9/24/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/062531 | 7/31/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
540092 | Farish | May 1895 | A |
3122398 | Tucker | Feb 1964 | A |
3891342 | Roe | Jun 1975 | A |
4113023 | Baskett | Sep 1978 | A |
4259795 | Verboom | Apr 1981 | A |
4607799 | Currie | Aug 1986 | A |
4637753 | Swisher, Jr. | Jan 1987 | A |
4785560 | Hanson | Nov 1988 | A |
4793732 | Jordon | Dec 1988 | A |
4803789 | Hackmack | Feb 1989 | A |
5154363 | Eddy | Oct 1992 | A |
5423137 | Cochran | Jun 1995 | A |
5485689 | Jonninen | Jan 1996 | A |
5491914 | Negishi | Feb 1996 | A |
5619811 | Yrjola | Apr 1997 | A |
5887810 | Maruyama | Mar 1999 | A |
5992483 | Bohnke | Nov 1999 | A |
6237865 | Luttermann et al. | May 2001 | B1 |
6270136 | Dagenais | Aug 2001 | B1 |
6312194 | Simons | Nov 2001 | B1 |
6626499 | Schenk et al. | Sep 2003 | B1 |
20040050984 | Rossi, Jr. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
33 11 173 | Sep 1984 | DE |
0294 796 | Dec 1988 | DE |
42 13 523 | Oct 1993 | DE |
197 27 549 | Feb 1999 | DE |
19727549 | Feb 1999 | DE |
19852583 | May 2000 | DE |
199 07 430 | Sep 2000 | DE |
0 348 510 | Jan 1990 | EP |
0 408 183 | Jan 1991 | EP |
09088355 | Mar 1997 | JP |
10331185 | Dec 1998 | JP |
11010016 | Jan 1999 | JP |
WO94 06965 | Mar 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20040148823 A1 | Aug 2004 | US |