This disclosure relates to machinery used to work on roadways, and more particularly, to milling machinery used to work on roadways.
Asphalt-surfaced roadways are built to facilitate vehicular travel. Depending upon usage density, base conditions, temperature variation, moisture variation, and/or physical age, the surface of the roadways eventually become misshapen, non-planar, unable to support wheel loads, or otherwise unsuitable for vehicular traffic. In order to rehabilitate the roadways for continued vehicular use, spent asphalt is removed in preparation for resurfacing.
Cold planers, sometimes also referred to as road mills or scarifiers, are machines that typically include a frame propelled by tracked drive units. The frame supports an engine, an operator's station, and a milling rotor. The milling rotor, fitted with cutting tools, is rotated through a suitable interface by the engine to break up the surface of the roadway. The broken-up roadway material is deposited by the milling rotor onto a conveyor, or series of conveyors, that transport the material away from the machine and to a nearby haul vehicle for transportation away from the job site.
Control modules are provided in machines such as cold planers to operate the milling rotor and to control certain mechanisms associated with the machine. However, it is common for the operation of cold planers to require at least one operator on the road level to spot potential hazards and to adjust the milling parameters of the cold planer to navigate past those potential hazards.
U.S. Pat. No. 10,776,638 to Engelmann et al., assigned to Caterpillar Paving Products, and issued on Sep. 15, 2020 discloses an example cold planer system includes a machine frame, a milling rotor disposed in a milling chamber, a first sensor, a second sensor and a control module. The control module comprises a processor and a controller. The processor is configured to receive a first signal indicative of a direction of motion of the machine, and a second signal indicative of whether an object is present in an object detection zone. The processor processes the first signal and the second signal to generate a control signal. The controller is configured to receive the control signal from the processor and to initiate a rotor collision avoidance mode if an object is present in an object detection zone.
In one example, a machine for roadwork can include a frame, a power source, and a milling rotor. The milling rotor can be operatively connected to the power source and the frame. The machine can also include at least one obstacle-detection sensor configured to detect obstacles around an exterior the machine. The machine can also include a controller configured to, in response to a signal received by the at least one obstacle-detection sensor, activate an obstacle-detection response. The obstacle-detection response can adjust at least one milling parameter, change at least one sensor that the machine uses to control at least one milling parameter, or override at least one system on the machine to prevent the machine from automatically adjusting any milling parameters.
In another example, a method of controlling a machine, the machine can include a frame, a power source, a milling rotor operatively connected to the power source and the frame, at least one obstacle-detection sensor, and a controller. The method can include milling with the machine, by inputting into a human-machine interface at least one mil ling parameter and detecting with the at least one obstacle-detection sensor, any possible obstacles around the exterior of the machine. The method can also include analyzing, via the controller, signal from the at least one obstacle-detection sensor to predict when an obstacle around an exterior of the machine could cause issues with the machine or effect the milling of the machine, and activating, via the controller, an obstacle-detection response The obstacle-detection response can adjust at least one milling parameter, change at least one sensor that the machine uses to control at least one milling parameter, or override at least one system on the machine to prevent the machine from automatically adjusting any milling parameters.
In another example, a machine for roadwork can include a frame, a power source; and a milling rotor operatively connected to the power source and the frame. The machine can also include means for detecting obstacles around an exterior of the machine; and means for activating an obstacle-detection response. The obstacle-detection response can adjust at least one milling parameter, change at least one sensor that the machine uses to control at least one milling parameter, or override at least one system on the machine to prevent the machine from automatically adjusting any milling parameters.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
During the operation of a cold planer, or a roadway milling machine, it is typical for a first operator to be operating the machine from an operator seat, while at least one other operator assists from the ground level. The ground-level operator watches for obstacles around an exterior of the machine. If the ground-level operator observes an obstacle around an exterior of the machine they will interact with the machine to manually override the operations and avoid the obstacle. For example, the ground-level operator may physically reconfigure components of the machine, like raising the side plates, raising the milling depth, or adjust any other milling parameter. An automated operation that allows just a single operator to operate the machine can include an obstacle-detection system configured to generate an obstacle-detection response when an object is detected around an exterior of the machine that will interfere with the operation of the machine.
The frame 102 can longitudinally extend between a first end 102A and a second end 102B. The power source 104 can be provided in any number of different forms including, but not limited to, internal combustion engines, electric motors, hybrid engines, or any power source used to power construction equipment. Power from the power source 104 can be transmitted to various components and systems of the machine 100, such as the ground-engaging units 106 or a milling assembly 110.
The frame 102 can be supported by the ground-engaging units 106 via the vertically-movable legs 108. The ground-engaging units 106 can be any kind of ground-engaging device that allows the machine 100 to move over a ground surface such as a paved road or a ground already processed by the machine 100. For example, as shown in
The ground-engaging units 106 can be configured to move the machine 100 in forward and backward directions along the ground surface. The vertically-movable legs 108 can be configured to raise and lower the frame 102 relative to the ground-engaging units 106 and the ground. One or more of the vertically-movable legs 108 can be configured to rotate about their central axis to provide steering for the machine 100.
The machine 100 can include multiple of the ground-engaging units 106, for example, four: a front left ground-engaging unit, a front right ground-engaging unit, a rear left ground-engaging unit, and a rear right ground-engaging unit, each of which can be connected to vertically-movable legs 108, respectively. As shown ire
The vertically-movable legs 108 can be provided to raise and lower the frame 102 to, for example, control a cutting depth of a milling rotor 112 and to accommodate the machine 100 engaging obstacles on the ground.
The machine 100 can include the milling assembly 110 connected to the frame 102. The milling assembly 110 can include a milling rotor 112. The milling rotor 112 can be operatively connected to the power source 104. The frame 102 can include a plurality of cutting tools (not shown), such as chisels, disposed thereon. The milling rotor 112 can be rotated about its center axis. As the milling rotor 112 rotates, the cutting tools can engage a work surface 114. The work surface 114 can be asphalt, concrete, or any other material used to make existing roadways, bridges, or parking lots. Moreover, as the milling rotor 112 engages the work surface 114, the cutting tools can remove layers of materials forming the work surface 114, such as hardened dirt, rock, or pavement. The spinning action of the milling rotor 112 and the cutting tools can transfer the material of the work surface 114 onto a conveyor system 116. The conveyor system 116 can remove the material from near the milling rotor 112 and carries the material away from the milling rotor 112 to be deposited in a receptacle. For example, the receptacle can be a box of a dump truck.
The machine 100 can also include a pair of side plates (hereinafter referred to as “side plates 118”). The side plates 118 can act as lateral covers to the milling assembly 110 and the milling rotor 112. Thus, the milling rotor 112 can be located between the side plates 118.
The machine 100 can include sensors that communicate to a control system 200 (
In another example, the machine 100 can include a vertical motion sensor 140 to detect vertical movement of the machine 100. The vertical motion sensor 140 can be mounted on the frame 102, either of the side plates 118, or the inboard ski 113. The vertical motion sensor 140 can be a position sensing hydraulic cylinder, linear variable differential transformer, a piezoelectric transducer, a laser doppler vibrometer, an eddy-current sensor, or any other sensor used to detect vertical motion.
In another example, at least one of the side plates 118 can include a sensor 150 that is configured to measure the cutting depth of the machine 100. The sensor 150 can be position-sensing hydraulic cylinders, contact sensors, or any other sensor to determine cutting depth.
In another example, the milling assembly 110 can include an inboard ski 113. The inboard ski 113 can be connected to the milling rotor 112 and can optionally include the sensor 150. The sensor 150 can be a slope sensor, a contact sensor, position-sensing hydraulic cylinders, or any other sensor that can be used to detect the cutting depth.
In another example, the machine 100 can include at least one obstacle-detection sensor 160 configured to detect obstacles around an exterior of the machine 100. As discussed above, the ground-engaging units 106 of the machine 100 can be configured to move in a forward or a backward direction, and ground-engaging units 106 and vertically-movable legs 108 can be configured to steer the machine 100. Thus, the at least one obstacle-detection sensor 160 can be configured to detect objects around an exterior of the machine 100 to detect objects that may come into contact with the machine 100 or detect objects that could affect the travel or work-product of the machine 100. Because the obstacle-detection sensor 160 is configured to detect obstacles around an exterior of the machine 100, the obstacle-detection sensor 160 is not solely looking for objects that are within a milling window or objects that will come into contact with the milling rotor 112.
The at least one obstacle-detection sensor 160 can be a camera, radar, or a combination thereof including any other perception sensors. The at least one obstacle-detection sensor 160 can be attached to the frame 102 of the machine 100. The above-mentioned sensors are solely examples of sensors that the machine 100 can include and is not in any way an exhaustive list of sensors that the machine 100 can include.
The machine 100 can further include operator station or a platform 120 including a control panel or a human-machine interface (hereinafter referred to as “control panel 122”) for inputting commands to the control system 200 for controlling the machine 100, and for outputting information related to an operation of the machine 100. As such, an operator of the machine 100 can perform control and monitoring functions of the machine 100 from the platform 120, such as by observing various data output by various sensors located on the machine 100. Furthermore, the control panel 122 can include controls for operating the ground-engaging units 106 and the vertically-movable legs 108.
The machine 100, as well as other exemplary road construction machines such as rotary mixers, can include further components not shown in the drawings, which are not described in further detail herein. For example, the machine 100 can further include a fuel tank, a cooling system, a milling fluid spray system, various kinds of circuitry and computer-related hardware, or any combination thereof.
The Controller 202 can be configured to operate according to a predetermined algorithm or set of instructions for controlling the machine 100 based on various operating conditions of the machine 100, such as can be determined from output of any of the various sensors. Such an algorithm or set of instructions can be stored in a database 204, can be read into an on-board memory of the controller 202, or preprogrammed onto a storage medium or memory accessible by the controller 202, for example, in the form of a floppy disk, hard drive, optical medium, random access memory (RAM), read-only memory (ROM), or any other suitable computer-readable storage medium commonly used in the art (each referred to as a “database”), which can be in the form of a physical, non-transitory storage medium.
The controller 202 can be in electrical communication or connected to a drive assembly 206, or the like, and various other components, systems or sub-systems of the machine 100. The drive assembly 206 can comprise an engine, a hydraulic motor, a hydraulic system including various pumps, reservoirs, actuators, or combinations thereof, among other elements (such as the power source 104 of
The controller 202, including a human-machine interface or an operator interface (hereinafter referred to as “operator interface 208”), can include various output devices, such as screens, video displays, monitors and the like that can be used to display information, warnings, data, such as text, numbers, graphics, icons, and the like, regarding the status of the machine 100. The controller 202, including the operator interface 208, can additionally include a plurality of input interfaces for receiving information and command signals from various switches and sensors associated with the machine 100 and a plurality of output interfaces for sending control signals to various actuators associated with the machine 100. Suitably programmed, the controller 202 can serve many additional similar or wholly disparate functions as is well-known in the art.
With regard to input, the controller 202 can receive signals or data from the operator interface 208 (such as at the control panel 122 of
The controller 202 can also receive position or length data from each of the vertical motion sensor 140. As noted before, such data can include, but is not limited to, information as to the lengths of the vertically-movable legs 108 or the amount of extension or retraction of the vertically-movable legs 108. Such information can be used to determine an orientation of the frame 102 relative to the sensor 130 of the ground-engaging units 106.
The controller 202 can also receive data from one or more of the sensor 150 on either of the side plates 118 (
The controller 202 can also receive data from other controllers, for example, a grade and slope system 220 for the machine 100, the operator interface 208, and the like. In examples, another controller can provide information to the controller 202 regarding the operational status of the machine 100.
In other examples, such information can be provided by the grade and slope system 220, a hydraulic system controller or the like, to the controller 202. The operation status received can include whether the machine 100 is in non-milling operational status or milling operational status (e.g., the milling rotor 112 is not spinning or the milling rotor 112 is spinning).
In examples, the grade and slope system 220 can receive and process data from the operator interface 208 related to the operator's desired depth of the cut, the slope of the cut, and the like. The grade and slope system 220 can receive a signal from one or more of the sensor 150. In examples, as discussed above, the sensor 150 can be connected to either, or both, of the side plates 118, connected to the inboard ski 113, or to any other component of the machine 100. The grade and slope system 220 can also receive milling parameters, for example, machine speed, machine direction, machine grade, machine slope, milling speed, milling depth, milling angle, or any other parameter used in milling operations.
In examples, the grade and slope system 220 can use the received milling parameters, and the signals received from various other sensors (e.g., the sensor 130, the vertical motion sensor 140, the sensor 150, or the like), to maintain a grade and slope received from the operator interface 208. The grade and slope system 220 can maintain the grade and slope received from the operator interface 208 gives the operator of the machine 100 one less milling parameter to control while operating the machine 100. However, even with the grade and slope system 220, ground operators can be necessary.
An automated operation that allows just a single operator to operate the machine can include an obstacle-detection system configured to generate an obstacle-detection response when an object is detected around an exterior of the machine that will interfere with the operation of the machine will be discussed below with references to
The obstacle detection and response system 300 can include a control module 310. The control module 310 can include a database 312 and a controller (which can be interchangeably referenced herein as controller 304 or controller 314). Like the controller 202, the controller 314 can be configured to operate according to a predetermined algorithm or set of instructions for controlling the machine 100 based on various operating conditions of the machine 100, such as can be determined from the output of any of the various sensors. Such an algorithm or set of instructions can be stored in the database 312, can be read into an on-board memory of the controller 314, or preprogrammed onto a storage medium or memory accessible by the controller 304, for example, in the form of a floppy disk, hard drive, optical medium, random access memory (RAM), read-only memory (ROM), or any other suitable computer-readable storage medium commonly used in the art (each referred to as a “database”), which can be in the form of a physical, non-transitory storage medium.
As shown in
In examples shown in
In examples, the control module 310 can process all of the signals received from sensors (the sensor 130, the vertical motion sensor 140, at least one of the at least one obstacle-detection sensor 160) and can use those signals to determine if an object will interfere with the operation of the machine 100. If the control module 310 determines that an object will interact with the machine 100, the control module 310 can send a signal to the milling assembly 110 or the drive assembly 206 to hold or change at least one of the milling parameters. The control module 310 can also send a signal to the operator interface 208 (
As discussed above, the milling parameters can be, for example, machine speed, machine direction, machine grade, machine slope, milling speed, milling depth, milling angle, or any other parameter used in milling operations. In examples, in response to pre-determined conditions, the control module 310 of the obstacle detection and response system 300 can output an obstacle-detection response 350. The obstacle-detection response 350 can override at least one parameter of the machine 100. For example, for some of the obstacle-detection response 350, the control module 310 can send a signal to the drive assembly 206 to adjust machine speed, machine direction, machine grade, machine slope, or any other parameter controlled by the drive assembly 206 of the machine 100. Moreover, for other examples, for some of the obstacle-detection response 350, the control module 310 can send a signal to the milling assembly 110 to adjust milling speed, milling depth, milling angle, or any other parameter controlled by the milling assembly 110 of the machine 100. In yet another example, for some of the obstacle-detection response 350, the control module 310 can send a signal to the drive assembly 206 and the milling assembly 110.
At step 362, the controller 304 can receive a signal from any of the sensor 130, the vertical motion sensor 140, or at least one of the at least one obstacle-detection sensor 160. At step 364, the controller 304 can analyze the received signals from step 362, and using programs installed on the database 204 (
At step 382, the controller 304 can receive a signal from any of the sensor 130, the vertical motion sensor 140, or at least one of the at least one obstacle-detection sensor 160. At step 384, the controller 304 can analyze the received signals from step 382, and using programs installed on the database 204 (
As shown in examples of
In an operating example of a machine according to this disclosure, the machine can be moving toward an obstacle that could cause damage to either the machine or the roadway that the machine is working on without intervention. An operator can control the machine with the help of one or more systems that automate components of the operation of the machine.
In an example, the machine can be equipped with a grade and slope system. The grade and slope system can automatically maintain a grade and slope selected by the operator.
In an example, the machine can be equipped with an obstacle detection and response system. The obstacle detection response system can automatically respond to obstacles that are detected around an exterior of the machine and can signal the operator with a signal on a control panel.
In an example, the obstacle detection response system can detect an obstacle around the exterior of the machine that could collide with a milling rotor of the machine, the obstacle detection response system can output a jump obstacle response signal. The jump obstacle response signal can raise the milling rotor so that the milling rotor does not contact the obstacle as the machine traverses over the obstacle.
In another example, the obstacle detection response system can detect an obstacle around the exterior of the machine that could collide with either of a pair of side plates, the obstacle detection response system can output a switch sensor obstacle response signal. The switch sensor obstacle response signal can send a message to a grade and slope system to switch the slope sensor that the grade and slope system uses from the slope sensor installed on at least one of the side plates, to the slope sensor installed on an inboard ski connected to the milling rotor. The switch sensor obstacle response can raise either of the side plates so that neither of the side plates contacts the obstacle around the exterior of the machine as the machine travels past the obstacle.
In another example, the obstacle detection response system can detect an obstacle around an exterior of the machine that is a dip or a hole, the obstacle detection response system can output a hold obstacle response signal. The hold obstacle response system can override the controllers of the grade and slope system and hold the milling rotor at the current milling parameters so that the machine will not automatically adjust for the dip or the hole, causing damage to the roadway.
In examples including the grade and slope system and the obstacle detection and response system, the machine can be operated with a single operator because the obstacle detection and response system automatically adjusts the machine if an obstacle that will negatively affect the machine or the road is detected around an exterior of the machine.
The above detailed description is intended to be illustrative, and not restrictive. The scope of the disclosure should, therefore, be determined with references to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
4270801 | Swisher, Jr. et al. | Jun 1981 | A |
5607205 | Burdick | Mar 1997 | A |
6152648 | Gfroerer | Nov 2000 | A |
8944517 | Franzmann et al. | Feb 2015 | B2 |
10704213 | Gerhardy et al. | Jul 2020 | B2 |
10776638 | Engelmann | Sep 2020 | B2 |
20130162003 | Killion | Jun 2013 | A1 |
20160265174 | Engelmann | Sep 2016 | A1 |
20160340842 | Adams | Nov 2016 | A1 |
20190024328 | Stahl | Jan 2019 | A1 |
20200193179 | Engelmann | Jun 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20230265621 A1 | Aug 2023 | US |