This invention relates to a device for controlling a damper, and more particularly to a damper control device for a fireplace.
Many homes today have fireplaces where a flue in a chimney connects the outside air to the fireplace. Such a connection can result in leakage of air into the home. A damper can be positioned in the flue and used to keep the air out. The damper is movable between a closed position which prevents air from leaking into or out of the home, to an open position which allows air to flow and exhaust products of combustion to flow out of the home. Such known dampers are controlled by a chain, handle, lever or the like. An operator has to remember to open the damper prior to starting a fire in the fireplace, or else the products of combustion would become trapped in the home.
The products of wood fireplaces can include soot and smoke. Soot and smoke are visible, and if a wood fireplace had a damper which was closed, it would become immediately apparent that the damper was closed upon combustion of the wood. However, the products of incomplete gas combustion can be invisible and toxic (CO2, CO, for example). Because of this potentially hazardous situation, ventilation of air has been required for gas fireplaces where dampers have been used. That is, the damper had to be permanently blocked open. Further, in some places dampers were not allowed to be used in combination with gas fireplaces.
U.S. Pat. No. 6,257,871 B1 to Weiss et al discloses a highly efficient damper control device particularly useful for gas appliances which regulates air flow in a furnace using the power of generated by a thermopile in a pilot light. However, fireplace dampers may be subjected to significantly higher load requirements than dampers in furnaces. Further, for fireplace dampers, resistive losses increase with the increased distance between the pilot light and the damper. It would be desirable to provide a damper control device for a fireplace with a thermopile providing power to the damper and to the gas valve without relying on power from a utility or land based power source.
In accordance with a first aspect, a millivolt damper control device comprises a damper positioned in a flue, wherein the damper is movable between a closed position where the flue is blocked and an open position, a thermoelectric device having an input voltage, a battery having a voltage, and a controller comprising a comparator circuit which compares the input voltage with a reference voltage based upon the voltage of the battery. When the input voltage is greater than or equal to the reference voltage, the comparator circuit transmits a damper signal to move the damper to the open position.
From the foregoing disclosure and the following more detailed description of various preferred embodiments it will be apparent to those skilled in the art that the present invention provides a significant advance in the technology and art of damper control devices. Particularly significant in this regard is the potential the invention affords for providing a high quality damper control device for fireplaces and other outside and remote applications. Additional features and advantages of various preferred embodiments will be better understood in view of the detailed description provided below.
It should be understood that the appended drawings are not necessarily to scale, presenting a somewhat simplified representation of various preferred features illustrative of the basic principles of the invention. The specific design features of the damper control device as disclosed here will be determined in part by the particular intended application and use environment. Certain features of the illustrated embodiments have been enlarged or distorted relative to others to facilitate visualization and clear understanding. In particular, thin features may be thickened, for example, for clarity of illustration. All references to direction and position, unless otherwise indicated, refer to the orientation illustrated in the drawings.
It will be apparent to those skilled in the art, that is, to those who have knowledge or experience in this area of technology, that many uses and design variations are possible for the damper control device disclosed here. The following detailed discussion of various alternative and preferred features and embodiments will illustrate the general principles of the invention with reference to a damper control device for a gas fireplace. Other embodiments suitable for other applications, such as wood burning fireplaces, will be apparent to those skilled in the art given the benefit of this disclosure.
Turning now to the drawings,
The damper 20 is installed in the flue 14.
Any one of several control devices may be used to turn the fireplace fire on and off. For example, an on/off switch 25 may be provided (shown in
In accordance with a highly advantageous feature, power to control the position of gas valve 28 is derived from the thermoelectric device, and typically is in the millivolt (less than 1 volt) range. Preferably the battery 24 (and not the thermopile) provides electrical power to run the damper motor and to the circuit board 46.
The controller 41 has a comparator circuit 40 which is used to open or close the blade(s) of the damper based on an electric signal from the external control (thermostat, manual switch, etc.).
Controller 41 allows the damper to be controlled by the typically low millivolt power (e.g. 500-600 mV) supplied by the fireplace thermopile 31, while relying on voltage from the battery for operation.
Contact 2 is electrically connected with contact 1 in the comparator circuit 40, but since S2's common contact 70 is not electrically connected to 72 the circuit is open. In this condition the comparator circuit 40 is awaiting a call for a fire, and no voltage is applied across the motor 44 or across solenoid actuated gas valve 28.
The motor 44 rotates, rotating the cam 52 with it until the switches are tripped and the contacts S2, S3 and S4 thrown as shown in
In
In accordance with a highly advantageous feature, the comparator circuit 40 may ignore the input voltage for a period of time between the end of the time delay and the time when S4 has reconnected between 73 and 74. This prevents the damper from getting stuck during the period of time when it is returning to the closed position if the input signal is reintroduced.
From the foregoing disclosure and detailed description of certain preferred embodiments, it will be apparent that various modifications, additions and other alternative embodiments are possible without departing from the true scope and spirit of the invention. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to use the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.
This application claims priority benefit of U.S. provisional patent application No. 60/568,003 filed on May 4, 2004.
Number | Date | Country | |
---|---|---|---|
60568003 | May 2004 | US |