This application is a National Stage Application of, and claims priority to, under 35 U.S.C. §371, International Application No. PCT/FI2010/050926, filed Nov. 16, 2010, which claims the benefit of priority to Finnish Patent Application Serial No. 20096251 filed 27 Nov. 2009, the priority benefit of which is also herein claimed, each of the foregoing being incorporated herein by reference in its entirety.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
1. Field of Invention
The invention relates generally to an antenna of a radio device, such as small-sized mobile wireless stations, and particularly in one exemplary aspect to spatial multiplexing.
2. Description of Related Technology
The spatial multiplexing means a technique, by which the digital signal to be transmitted to a radio path is divided to at least two signals with lower rate, which signals are provided with a signature. The signals are then transmitted in the same frequency channel, each by means of an antenna of its own. The receiver, which also has more than one antenna, constructs different transmitting signals on grounds of the signatures and then combines them into the original signal. In this way the transfer capacity of the frequency channel can be increased. Optionally, the principle can be used for improving the transfer reliability by transmitting the one and the same signal with the antennas (space diversity). Spatial multiplexing will be used, for example, in the systems congruent to the LTE standard (Long Term Evolution), produced in the 3GPP (3rd Generation Partnership Project).
An antenna structure required in spatial multiplexing is called a MIMO antenna (Multiple-In Multiple-Out). The MIMO antenna to be described here comprises multiple (e.g., two) partial antennas inside the covers of a small-sized radio device. This kind of antenna structures are not new as such. For example,
The first antenna component 110 constitutes together with the ground plane GND the first partial antenna of monopole type, which includes the first radiator 112. The feed point of the first partial antenna, or the first feed point FP1, is located at an end of the antenna component 110 on the circuit board PCB close to its one long side. The first radiator 112 rises from the first feed point via the inner side surface of the first substrate 111 to the upper surface of the substrate, where it branches to a part on the upper surface and a part on the outer side surface of the substrate. The former part is for implementing the higher operating band of the antenna, and the latter, which includes a relatively dense meander portion to lower the resonance frequency, is for implementing the lower operating band of the antenna. Also a parasitic radiator is on the surface of the first substrate for shaping the higher operating band. The ground plane GND extends on the circuit board close to the first antenna component 110 so that its edge is beside the antenna component and has the same direction as the component.
The second antenna component 120 constitutes together with the ground plane GND the second partial antenna, which includes the second radiator 122. The feed point of the second partial antenna, or the second feed point FP2, is located at an end of the antenna component 120 on the circuit board PCB close to its same long side as also the first feed point. The second radiator 122 rises from the second feed point via the outer side surface of the second substrate 121 to the upper surface of the substrate, where it branches to two parts. One of these is plate-like and is for implementing the lower operating band of the antenna, and the other is for implementing the higher operating band. The second radiator is connected to the ground plane GND at the short-circuit point SP next to the second feed point FP2. The ground plane GND extends on the circuit board under the second radiator, the second partial thus antenna being of PIFA type (Planar Inverted-F Antenna). Also the second partial antenna includes a parasitic radiator for shaping the higher operating band.
A MIMO antenna naturally functions the better the less the partial antennas influence each other, or the lower the correlation between them is. The correlation again is in principle the higher the closer the partial antennas are to each other. This means a problem in small radio devices, because in them the antennas are inevitably relatively close to each other. In the multiband antennas the problem concerns particularly the lowest operating band, because at its frequencies the distance between the partial antennas in proportion to the wavelength is the shortest.
For the above-mentioned reasons also in the antenna according to
An object of the invention is to implement a MIMO antenna in a new and advantageous way.
In one aspect of the invention, an antenna comprises two antenna components with a substrate and a radiator, the components being located on the opposite sides of the circuit board of a radio device. In one embodiment, each antenna component constitutes, with the ground plane of the radio device, a partial antenna, the operating band of which is below the frequency of 1 GHz. The ground plane and the feed points of the partial antennas are arranged so that the ‘dipole axes’ of the partial antennas have clearly different directions at the frequencies of said operating band. Namely, at these frequencies the partial antennas are dipole-like, the ground plane representing the other arm of the ‘dipole’.
One salient advantage of the invention relates to the capability of a MIMO antenna for a small-sized radio device at frequencies below 1 GHz which is higher than that of corresponding known antennas. This is due to the fact that the correlation between the signals of the partial antennas is quite low because of the difference between the directions of their ‘dipole axes’.
In another aspect of the invention, an antenna for use in a radio device is disclosed. In one embodiment, the antenna includes: a first antenna element comprising a first feed point, a first substrate portion and a first radiator; a second antenna element comprising a second feed point, a second substrate portion and a second radiator; and a ground plane disposed substantially between the first and second antennas. In one variant, the first and second antenna elements are located on opposing sides of an antenna substrate of the radio device, with the first and second feed points of the first and second antennas being located proximate on a same edge of the antenna substrate.
In another embodiment, the antenna includes: a substantially planar substrate; a first antenna component disposed in a first region of the substrate; and a second antenna component disposed in a second region of the substrate. The first and second antenna components are further disposed such that a dipole axis of the first antenna component is substantially different in orientation from a dipole axis of the second antenna component.
In another embodiment, the antenna includes a first antenna component with a first substrate and a first radiator; a second antenna component with a second substrate and a second radiator; and a ground plane between the first and second antenna components. The first antenna component constitutes with the ground plane a first partial antenna which has a first feed point, and the second antenna component constitutes with the ground plane a second partial antenna which has a second feed point, and both the first and second partial antennas have an operating band below the frequency of 1 GHz, with the first and second antenna components located on different sides of a circuit board of the radio device in order to lower the correlation between the signals of the partial antennas. The feed points are located on the same side of the circuit board, the first feed point at an end of the first antenna component and the second feed point at an end of the second antenna component so as to further lower the correlation between the signals of the partial antennas in the operating band.
In yet another embodiment, the antenna is a multiple input multiple output (MIMO) antenna, and includes: a substantially planar substrate; a first antenna component disposed in a first region of the substrate; and a second antenna component disposed in a second region of the substrate. The first and second antenna components are further disposed relative the substrate and each other such that a radio frequency correlation of the first antenna component with the second antenna component in at least a first frequency band is minimized.
In another aspect of the invention, a compact form-factor radio device is disclosed. In one embodiment, the device is a smartphone or tablet computer, and includes: at least one wireless transceiver; a multiple input multiple output (MIMO) antenna in signal communication with the at least one transceiver, the antenna including: a substantially planar substrate; a first antenna component disposed in a first region of the substrate; and a second antenna component disposed in a second region of the substrate. The first and second antenna components are further disposed such that a dipole axis of the first antenna component when operating at a frequency below 1 GHz is substantially different in orientation from a dipole axis of the second antenna component when operating at a frequency below 1 GHz. The device further includes a compact form factor housing substantially enclosing the at least one transceiver and the antenna.
These and other features, objectives, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
The first antenna component 210 comprises the first substrate 211 and the first radiator 212, which is of conductive coating of the first substrate. The first antenna component 210 constitutes together with the ground plane the first partial antenna. The feed point of the first partial antenna, or the first feed point FP1, is located at an end of the antenna component 210 on the circuit board PCB on its one longer side, in other words, compared to the width of the circuit board, relatively close to the edge of the circuit board which corresponds to said longer side. The first radiator 212 rises from the first feed point via the inner side surface of the first substrate to the upper surface of the substrate, where it forms a certain pattern. The radiator may extend also to the outer side surface and head surfaces of the substrate.
The second antenna component 220 comprises the second substrate 221 and the second radiator 222, which is of conductive coating of the second substrate. The second antenna component constitutes together with the ground plane the second partial antenna. The feed point of the second partial antenna, or the second feed point FP2, is located at an end of the antenna component 220 on the circuit board PCB on its same longer side as also the first feed point. The second radiator rises from the second feed point via the inner side surface of the second substrate to the upper surface of the substrate, where it forms a certain pattern, extending also to the outer side surface of the substrate. The first and second radiator is designed to resonate in the same band below the frequency of 1 GHz. By shape, the radiators may be mirror images of each other in respect of the middle line between the antenna components. On the other hand, if the location of the feed points is not quite optimal, the correlation between the signals of the partial antennas can be improved, or lowered, by making their radiators to have a suitably different shape. In the example of
Above, the ‘end’ of an antenna component (and substrate) means its part, which is bounded by the head surface and is relatively short compared with the length of the component. The ‘inner’ side surface of a substrate means its side surface, which is on the side of the middle part of the circuit board PCB.
The first partial antenna and the power amplifier PA1 feeding it are shown also as a simple circuit diagram in
It is substantial in various embodiments of the invention that the ‘dipole axes’ of the partial antennas are arranged to have clearly different directions at the frequencies of the lower operating band of the antenna, or the band below 1 GHz. In this case quite a low correlation between the signals of the partial antennas is achieved, although the distance between the partial antennas is short compared with the wavelength. The direction of a dipole axis means here the direction, where the strength of the electric field in the radiation of the dipole as if formed by the antenna radiator and ground plane is at its minimum. On the circuit board in
In
For comparison there is the curve 32 in
In the ranges of the higher operating band the envelope correlation is very low in both antennas.
An intermediate conductor 415 branches from the first radiator 412 about halfway along it, which conductor is intended to be connected to the adjusting circuit of the antenna. By means of the adjusting circuit the lower operating band of the antenna can be shifted so that it covers the frequency band currently needed.
Both radiation patterns have one relatively deep minimum, −13 . . . −14 dB, and another minimum in the opposite direction. The angle between the ‘dipole axes’ drawn through the minimums is 162°-23°, or about 140° (or its complement 40°). Thus, the directions deviate clearly from each other, which is a benefit when minimizing the correlation.
The first antenna component 710 comprises a substrate and the first radiator 712, which is of its conductive coating. The first antenna component constitutes together with the ground plane GND the first partial antenna. Its feed point, or the first feed point FP1, is located at an end of the antenna component 710 on the circuit board PCB, on the side of the inner side surface of the antenna component. Correspondingly the second antenna component 720 comprises a substrate and the second radiator 722, which is of its conductive coating. The second antenna component constitutes together with the ground plane the second partial antenna.
Its feed point, or the second feed point FP2, is located at an end of the antenna component 720 on the circuit board PCB, on the side of the inner side surface of the antenna component. In
The radiators are here mirror images of each other so that the first radiator 712 is by shape a mirror image of the second radiator 722 in respect of the plane, which has the direction of the longitudinal direction of the second antenna component 720 and is perpendicular to the circuit board. This feature is preferable especially in this case, when the antenna components are located considerably closer to each other than in the example of
A MIMO antenna according to the invention has been described above. In details, its structure can naturally differ from what is presented. The shapes of the radiating elements can vary greatly. A radiator can also be connected to the ground so that, instead of a monopole antenna, an IFA (Inverted-F Antenna) or a loop antenna is formed. The antenna components do not have to be exactly parallel and located precisely at the edge of the circuit board. The circuit board does not have to be precisely rectangular. The invention does not limit the way of manufacturing of the antenna. The inventive idea can be applied in different ways within the scope set by the independent claim 1.
Number | Date | Country | Kind |
---|---|---|---|
20096251 | Nov 2009 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2010/050926 | 11/16/2010 | WO | 00 | 9/25/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/064444 | 6/3/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2745102 | Norgorden | May 1956 | A |
3938161 | Sanford | Feb 1976 | A |
4004228 | Mullett | Jan 1977 | A |
4028652 | Wakino et al. | Jun 1977 | A |
4031468 | Ziebell et al. | Jun 1977 | A |
4054874 | Oltman | Oct 1977 | A |
4069483 | Kaloi | Jan 1978 | A |
4123756 | Nagata et al. | Oct 1978 | A |
4123758 | Shibano et al. | Oct 1978 | A |
4131893 | Munson et al. | Dec 1978 | A |
4201960 | Skutta et al. | May 1980 | A |
4255729 | Fukasawa et al. | Mar 1981 | A |
4313121 | Campbell et al. | Jan 1982 | A |
4356492 | Kaloi | Oct 1982 | A |
4370657 | Kaloi | Jan 1983 | A |
4423396 | Makimoto et al. | Dec 1983 | A |
4431977 | Sokola et al. | Feb 1984 | A |
4546357 | Laughon et al. | Oct 1985 | A |
4559508 | Nishikawa et al. | Dec 1985 | A |
4625212 | Oda et al. | Nov 1986 | A |
4652889 | Bizouard et al. | Mar 1987 | A |
4661992 | Garay et al. | Apr 1987 | A |
4692726 | Green et al. | Sep 1987 | A |
4703291 | Nishikawa et al. | Oct 1987 | A |
4706050 | Andrews | Nov 1987 | A |
4716391 | Moutrie et al. | Dec 1987 | A |
4740765 | Ishikawa et al. | Apr 1988 | A |
4742562 | Kommrusch | May 1988 | A |
4761624 | Igarashi et al. | Aug 1988 | A |
4800348 | Rosar et al. | Jan 1989 | A |
4800392 | Garay et al. | Jan 1989 | A |
4821006 | Ishikawa et al. | Apr 1989 | A |
4823098 | DeMuro et al. | Apr 1989 | A |
4827266 | Sato et al. | May 1989 | A |
4829274 | Green et al. | May 1989 | A |
4835538 | McKenna et al. | May 1989 | A |
4835541 | Johnson et al. | May 1989 | A |
4862181 | PonceDeLeon et al. | Aug 1989 | A |
4879533 | De Muro et al. | Nov 1989 | A |
4896124 | Schwent | Jan 1990 | A |
4907006 | Nishikawa et al. | Mar 1990 | A |
4954796 | Green et al. | Sep 1990 | A |
4965537 | Kommrusch | Oct 1990 | A |
4977383 | Niiranen | Dec 1990 | A |
4980694 | Hines | Dec 1990 | A |
5016020 | Simpson | May 1991 | A |
5017932 | Ushiyama et al. | May 1991 | A |
5043738 | Shapiro et al. | Aug 1991 | A |
5047739 | Kuokkanene | Sep 1991 | A |
5053786 | Silverman et al. | Oct 1991 | A |
5057847 | Vaeisaenen | Oct 1991 | A |
5061939 | Nakase | Oct 1991 | A |
5097236 | Wakino et al. | Mar 1992 | A |
5103197 | Turunen | Apr 1992 | A |
5109536 | Kommrusch | Apr 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5157363 | Puurunen | Oct 1992 | A |
5159303 | Flink | Oct 1992 | A |
5166697 | Viladevall et al. | Nov 1992 | A |
5170173 | Krenz et al. | Dec 1992 | A |
5203021 | Repplinger et al. | Apr 1993 | A |
5210510 | Karsikas | May 1993 | A |
5210542 | Pett et al. | May 1993 | A |
5220335 | Huang | Jun 1993 | A |
5229777 | Doyle | Jul 1993 | A |
5239279 | Turunen | Aug 1993 | A |
5278528 | Turunen | Jan 1994 | A |
5281326 | Galla | Jan 1994 | A |
5298873 | Ala-Kojola | Mar 1994 | A |
5302924 | Jantunen | Apr 1994 | A |
5304968 | Ohtonen | Apr 1994 | A |
5307036 | Turunen | Apr 1994 | A |
5319328 | Turunen | Jun 1994 | A |
5349315 | Ala-Kojola | Sep 1994 | A |
5349700 | Parker | Sep 1994 | A |
5351023 | Niiranen | Sep 1994 | A |
5354463 | Turunen | Oct 1994 | A |
5355142 | Marshall et al. | Oct 1994 | A |
5357262 | Blaese | Oct 1994 | A |
5363114 | Shoemaker | Nov 1994 | A |
5369782 | Kawano et al. | Nov 1994 | A |
5382959 | Pett et al. | Jan 1995 | A |
5386214 | Sugawara | Jan 1995 | A |
5387886 | Takalo | Feb 1995 | A |
5394162 | Korovesis et al. | Feb 1995 | A |
RE34898 | Turunen | Apr 1995 | E |
5408206 | Turunen | Apr 1995 | A |
5418508 | Puurunen | May 1995 | A |
5432489 | Yrjola | Jul 1995 | A |
5438697 | Fowler et al. | Aug 1995 | A |
5440315 | Wright et al. | Aug 1995 | A |
5442280 | Baudart | Aug 1995 | A |
5442366 | Sanford | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5467065 | Turunen | Nov 1995 | A |
5473295 | Turunen | Dec 1995 | A |
5506554 | Ala-Kojola | Apr 1996 | A |
5508668 | Prokkola | Apr 1996 | A |
5510802 | Tsuru et al. | Apr 1996 | A |
5517683 | Collett et al. | May 1996 | A |
5521561 | Yrjola | May 1996 | A |
5526003 | Ogawa et al. | Jun 1996 | A |
5532703 | Stephens et al. | Jul 1996 | A |
5541560 | Turunen | Jul 1996 | A |
5541617 | Connolly et al. | Jul 1996 | A |
5543764 | Turunen | Aug 1996 | A |
5550519 | Korpela | Aug 1996 | A |
5557287 | Pottala et al. | Sep 1996 | A |
5557292 | Nygren et al. | Sep 1996 | A |
5566441 | Marsh et al. | Oct 1996 | A |
5570071 | Ervasti | Oct 1996 | A |
5585771 | Ervasti | Dec 1996 | A |
5585810 | Tsuru et al. | Dec 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5594395 | Niiranen | Jan 1997 | A |
5604471 | Rattila | Feb 1997 | A |
5627502 | Ervasti | May 1997 | A |
5649316 | Prodhomme et al. | Jul 1997 | A |
5668561 | Perrotta et al. | Sep 1997 | A |
5675301 | Nappa | Oct 1997 | A |
5689221 | Niiranen | Nov 1997 | A |
5694135 | Dikun et al. | Dec 1997 | A |
5696517 | Kawahata et al. | Dec 1997 | A |
5703600 | Burrell et al. | Dec 1997 | A |
5709832 | Hayes et al. | Jan 1998 | A |
5711014 | Crowley et al. | Jan 1998 | A |
5717368 | Niiranen | Feb 1998 | A |
5731749 | Yrjola | Mar 1998 | A |
5734305 | Ervasti | Mar 1998 | A |
5734350 | Deming et al. | Mar 1998 | A |
5734351 | Ojantakanen | Mar 1998 | A |
5739735 | Pyykko | Apr 1998 | A |
5742259 | Annamaa | Apr 1998 | A |
5757327 | Yajima et al. | May 1998 | A |
5760746 | Kawahata | Jun 1998 | A |
5764190 | Murch et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5768217 | Sonoda et al. | Jun 1998 | A |
5777581 | Lilly et al. | Jul 1998 | A |
5777585 | Tsuda et al. | Jul 1998 | A |
5793269 | Ervasti | Aug 1998 | A |
5797084 | Tsuru et al. | Aug 1998 | A |
5812094 | Maldonado | Sep 1998 | A |
5815048 | Ala-Kojola | Sep 1998 | A |
5822705 | Lehtola | Oct 1998 | A |
5852421 | Maldonado | Dec 1998 | A |
5861854 | Kawahata et al. | Jan 1999 | A |
5874926 | Tsuru et al. | Feb 1999 | A |
5880697 | McCarrick et al. | Mar 1999 | A |
5886668 | Pedersen et al. | Mar 1999 | A |
5892490 | Asakura et al. | Apr 1999 | A |
5903820 | Hagstrom | May 1999 | A |
5905475 | Annamaa | May 1999 | A |
5920290 | McDonough et al. | Jul 1999 | A |
5926139 | Korisch | Jul 1999 | A |
5929813 | Eggleston | Jul 1999 | A |
5936583 | Tadahiko et al. | Aug 1999 | A |
5943016 | Snyder, Jr. et al. | Aug 1999 | A |
5952975 | Pedersen et al. | Sep 1999 | A |
5959583 | Funk | Sep 1999 | A |
5963180 | Leisten | Oct 1999 | A |
5966097 | Fukasawa et al. | Oct 1999 | A |
5970393 | Khorrami et al. | Oct 1999 | A |
5977710 | Kuramoto et al. | Nov 1999 | A |
5986606 | Kossiavas et al. | Nov 1999 | A |
5986608 | Korisch et al. | Nov 1999 | A |
5990848 | Annamaa | Nov 1999 | A |
5999132 | Kitchener et al. | Dec 1999 | A |
6005529 | Hutchinson | Dec 1999 | A |
6006419 | Vandendolder et al. | Dec 1999 | A |
6008764 | Ollikainen | Dec 1999 | A |
6009311 | Killion et al. | Dec 1999 | A |
6014106 | Annamaa | Jan 2000 | A |
6016130 | Annamaa | Jan 2000 | A |
6023608 | Yrjola | Feb 2000 | A |
6031496 | Kuittinen et al. | Feb 2000 | A |
6034637 | McCoy et al. | Mar 2000 | A |
6037848 | Alila | Mar 2000 | A |
6043780 | Funk et al. | Mar 2000 | A |
6052096 | Tsuru et al. | Apr 2000 | A |
6072434 | Papatheodorou | Jun 2000 | A |
6078231 | Pelkonen | Jun 2000 | A |
6091363 | Komatsu et al. | Jul 2000 | A |
6091365 | Anders et al. | Jul 2000 | A |
6097345 | Walton | Aug 2000 | A |
6100849 | Tsubaki et al. | Aug 2000 | A |
6112108 | Crowley et al. | Aug 2000 | A |
6121931 | Levi et al. | Sep 2000 | A |
6133879 | Grangeat et al. | Oct 2000 | A |
6134421 | Lee et al. | Oct 2000 | A |
6140966 | Pankinaho | Oct 2000 | A |
6140973 | Annamaa | Oct 2000 | A |
6147650 | Kawahata et al. | Nov 2000 | A |
6157819 | Vuokko | Dec 2000 | A |
6177908 | Kawahata | Jan 2001 | B1 |
6185434 | Hagstrom | Feb 2001 | B1 |
6190942 | Wilm et al. | Feb 2001 | B1 |
6195049 | Kim et al. | Feb 2001 | B1 |
6204826 | Rutkowski et al. | Mar 2001 | B1 |
6215376 | Hagstrom | Apr 2001 | B1 |
6218989 | Schneider et al. | Apr 2001 | B1 |
6246368 | Deming et al. | Jun 2001 | B1 |
6252552 | Tarvas et al. | Jun 2001 | B1 |
6252554 | Isohatala | Jun 2001 | B1 |
6255994 | Saito | Jul 2001 | B1 |
6268831 | Sanford | Jul 2001 | B1 |
6281848 | Nagumo et al. | Aug 2001 | B1 |
6295029 | Chen et al. | Sep 2001 | B1 |
6297776 | Pankinaho | Oct 2001 | B1 |
6304220 | Herve et al. | Oct 2001 | B1 |
6308720 | Modi | Oct 2001 | B1 |
6316975 | O'Toole et al. | Nov 2001 | B1 |
6323811 | Tsubaki | Nov 2001 | B1 |
6326921 | Egorov et al. | Dec 2001 | B1 |
6337663 | Chi-Minh | Jan 2002 | B1 |
6340954 | Annamaa et al. | Jan 2002 | B1 |
6342859 | Kurz et al. | Jan 2002 | B1 |
6343208 | Ying | Jan 2002 | B1 |
6346914 | Annamaa | Feb 2002 | B1 |
6348892 | Annamaa | Feb 2002 | B1 |
6353443 | Ying | Mar 2002 | B1 |
6366243 | Isohatala | Apr 2002 | B1 |
6377827 | Rydbeck | Apr 2002 | B1 |
6380905 | Annamaa | Apr 2002 | B1 |
6396444 | Goward | May 2002 | B1 |
6404394 | Hill | Jun 2002 | B1 |
6417813 | Durham et al. | Jul 2002 | B1 |
6421014 | Sanad | Jul 2002 | B1 |
6423915 | Winter | Jul 2002 | B1 |
6429818 | Johnson et al. | Aug 2002 | B1 |
6452551 | Chen | Sep 2002 | B1 |
6452558 | Saitou et al. | Sep 2002 | B1 |
6456249 | Johnson et al. | Sep 2002 | B1 |
6459413 | Tseng et al. | Oct 2002 | B1 |
6462716 | Kushihi | Oct 2002 | B1 |
6469673 | Kaiponen | Oct 2002 | B2 |
6473056 | Annamaa | Oct 2002 | B2 |
6476767 | Aoyama et al. | Nov 2002 | B2 |
6476769 | Lehtola | Nov 2002 | B1 |
6480155 | Eggleston | Nov 2002 | B1 |
6483462 | Weinberger | Nov 2002 | B2 |
6498586 | Pankinaho | Dec 2002 | B2 |
6501425 | Nagumo | Dec 2002 | B1 |
6515625 | Johnson | Feb 2003 | B1 |
6518925 | Annamaa | Feb 2003 | B1 |
6529168 | Mikkola | Mar 2003 | B2 |
6529749 | Hayes et al. | Mar 2003 | B1 |
6535170 | Sawamura et al. | Mar 2003 | B2 |
6538604 | Isohatala | Mar 2003 | B1 |
6538607 | Barna | Mar 2003 | B2 |
6542050 | Arai et al. | Apr 2003 | B1 |
6549167 | Yoon | Apr 2003 | B1 |
6552686 | Ollikainen et al. | Apr 2003 | B2 |
6556812 | Pennanen et al. | Apr 2003 | B1 |
6566944 | Pehlke | May 2003 | B1 |
6580396 | Lin | Jun 2003 | B2 |
6580397 | Lindell | Jun 2003 | B2 |
6600449 | Onaka | Jul 2003 | B2 |
6603430 | Hill et al. | Aug 2003 | B1 |
6606016 | Takamine et al. | Aug 2003 | B2 |
6611235 | Barna et al. | Aug 2003 | B2 |
6614400 | Egorov | Sep 2003 | B2 |
6614401 | Onaka et al. | Sep 2003 | B2 |
6614405 | Mikkonen | Sep 2003 | B1 |
6634564 | Kuramochi | Oct 2003 | B2 |
6636181 | Asano | Oct 2003 | B2 |
6639564 | Johnson | Oct 2003 | B2 |
6646606 | Mikkola | Nov 2003 | B2 |
6650295 | Ollikainen et al. | Nov 2003 | B2 |
6657593 | Nagumo et al. | Dec 2003 | B2 |
6657595 | Phillips et al. | Dec 2003 | B1 |
6670926 | Miyasaka | Dec 2003 | B2 |
6677903 | Wang | Jan 2004 | B2 |
6680705 | Tan et al. | Jan 2004 | B2 |
6683573 | Park | Jan 2004 | B2 |
6693594 | Pankinaho et al. | Feb 2004 | B2 |
6717551 | Desclos et al. | Apr 2004 | B1 |
6727857 | Mikkola | Apr 2004 | B2 |
6734825 | Guo et al. | May 2004 | B1 |
6734826 | Dai et al. | May 2004 | B1 |
6738022 | Klaavo et al. | May 2004 | B2 |
6741214 | Kadambi et al. | May 2004 | B1 |
6753813 | Kushihi | Jun 2004 | B2 |
6759989 | Tarvas et al. | Jul 2004 | B2 |
6765536 | Phillips et al. | Jul 2004 | B2 |
6774853 | Wong et al. | Aug 2004 | B2 |
6781545 | Sung | Aug 2004 | B2 |
6801166 | Mikkola | Oct 2004 | B2 |
6801169 | Chang et al. | Oct 2004 | B1 |
6806835 | Iwai | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6819293 | De Graauw | Nov 2004 | B2 |
6825818 | Toncich | Nov 2004 | B2 |
6836249 | Kenoun et al. | Dec 2004 | B2 |
6847329 | Ikegaya et al. | Jan 2005 | B2 |
6856293 | Bordi | Feb 2005 | B2 |
6862437 | McNamara | Mar 2005 | B1 |
6862441 | Ella | Mar 2005 | B2 |
6873291 | Aoyama | Mar 2005 | B2 |
6876329 | Milosavljevic | Apr 2005 | B2 |
6882317 | Koskiniemi | Apr 2005 | B2 |
6891507 | Kushihi et al. | May 2005 | B2 |
6897810 | Dai et al. | May 2005 | B2 |
6900768 | Iguchi et al. | May 2005 | B2 |
6903692 | Kivekas | Jun 2005 | B2 |
6911945 | Korva | Jun 2005 | B2 |
6922171 | Annamaa | Jul 2005 | B2 |
6925689 | Folkmar | Aug 2005 | B2 |
6927729 | Legay | Aug 2005 | B2 |
6937196 | Korva | Aug 2005 | B2 |
6950065 | Ying et al. | Sep 2005 | B2 |
6950066 | Hendler et al. | Sep 2005 | B2 |
6950068 | Bordi | Sep 2005 | B2 |
6950072 | Miyata et al. | Sep 2005 | B2 |
6952144 | Javor | Oct 2005 | B2 |
6952187 | Annamaa | Oct 2005 | B2 |
6958730 | Nagumo et al. | Oct 2005 | B2 |
6961544 | Hagstrom | Nov 2005 | B1 |
6963308 | Korva | Nov 2005 | B2 |
6963310 | Horita et al. | Nov 2005 | B2 |
6967618 | Ojantakanen | Nov 2005 | B2 |
6975278 | Song et al. | Dec 2005 | B2 |
6980158 | Iguchi et al. | Dec 2005 | B2 |
6985108 | Mikkola | Jan 2006 | B2 |
6992543 | Luetzelschwab et al. | Jan 2006 | B2 |
6995710 | Sugimoto et al. | Feb 2006 | B2 |
7023341 | Stilp | Apr 2006 | B2 |
7031744 | Kuriyama et al. | Apr 2006 | B2 |
7034752 | Sekiguchi et al. | Apr 2006 | B2 |
7042403 | Colburn et al. | May 2006 | B2 |
7053841 | Ponce De Leon et al. | May 2006 | B2 |
7054671 | Kaiponen et al. | May 2006 | B2 |
7057560 | Erkocevic | Jun 2006 | B2 |
7061430 | Zheng et al. | Jun 2006 | B2 |
7081857 | Kinnunen et al. | Jul 2006 | B2 |
7084831 | Takagi et al. | Aug 2006 | B2 |
7099690 | Milosavljevic | Aug 2006 | B2 |
7113133 | Chen et al. | Sep 2006 | B2 |
7119749 | Miyata et al. | Oct 2006 | B2 |
7126546 | Annamaa | Oct 2006 | B2 |
7129893 | Otaka et al. | Oct 2006 | B2 |
7136019 | Mikkola | Nov 2006 | B2 |
7136020 | Yamaki | Nov 2006 | B2 |
7142824 | Kojima et al. | Nov 2006 | B2 |
7148847 | Yuanzhu | Dec 2006 | B2 |
7148849 | Lin | Dec 2006 | B2 |
7148851 | Takaki et al. | Dec 2006 | B2 |
7170464 | Tang et al. | Jan 2007 | B2 |
7176838 | Kinezos | Feb 2007 | B1 |
7180455 | Oh et al. | Feb 2007 | B2 |
7193574 | Chiang et al. | Mar 2007 | B2 |
7205942 | Wang et al. | Apr 2007 | B2 |
7215283 | Boyle | May 2007 | B2 |
7218280 | Annamaa | May 2007 | B2 |
7218282 | Humpfer et al. | May 2007 | B2 |
7224313 | McKinzie, III et al. | May 2007 | B2 |
7230574 | Johnson | Jun 2007 | B2 |
7233775 | De Graauw | Jun 2007 | B2 |
7237318 | Annamaa | Jul 2007 | B2 |
7256743 | Korva | Aug 2007 | B2 |
7274334 | O'Riordan et al. | Sep 2007 | B2 |
7283097 | Wen et al. | Oct 2007 | B2 |
7289064 | Cheng | Oct 2007 | B2 |
7292200 | Posluszny et al. | Nov 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7330153 | Rentz | Feb 2008 | B2 |
7333067 | Hung et al. | Feb 2008 | B2 |
7339528 | Wang et al. | Mar 2008 | B2 |
7340286 | Korva et al. | Mar 2008 | B2 |
7345634 | Ozkar et al. | Mar 2008 | B2 |
7352326 | Korva | Apr 2008 | B2 |
7355270 | Hasebe et al. | Apr 2008 | B2 |
7358902 | Erkocevic | Apr 2008 | B2 |
7375695 | Ishizuka et al. | May 2008 | B2 |
7381774 | Bish et al. | Jun 2008 | B2 |
7382319 | Kawahata et al. | Jun 2008 | B2 |
7385556 | Chung et al. | Jun 2008 | B2 |
7388543 | Vance | Jun 2008 | B2 |
7391378 | Mikkola | Jun 2008 | B2 |
7405702 | Annamaa et al. | Jul 2008 | B2 |
7417588 | Castany et al. | Aug 2008 | B2 |
7423592 | Pros et al. | Sep 2008 | B2 |
7432860 | Huynh | Oct 2008 | B2 |
7439929 | Ozkar | Oct 2008 | B2 |
7443344 | Boyle | Oct 2008 | B2 |
7468700 | Milosavlejevic | Dec 2008 | B2 |
7468709 | Niemi | Dec 2008 | B2 |
7498990 | Park et al. | Mar 2009 | B2 |
7501983 | Mikkola | Mar 2009 | B2 |
7502598 | Kronberger | Mar 2009 | B2 |
7564413 | Kim et al. | Jul 2009 | B2 |
7589678 | Perunka et al. | Sep 2009 | B2 |
7616158 | Mak et al. | Nov 2009 | B2 |
7633449 | Oh | Dec 2009 | B2 |
7663551 | Nissinen | Feb 2010 | B2 |
7679565 | Sorvala | Mar 2010 | B2 |
7692543 | Copeland | Apr 2010 | B2 |
7710325 | Cheng | May 2010 | B2 |
7724204 | Annamaa | May 2010 | B2 |
7760146 | Ollikainen | Jul 2010 | B2 |
7764245 | Loyet | Jul 2010 | B2 |
7786938 | Sorvala | Aug 2010 | B2 |
7800544 | Thornell-Pers | Sep 2010 | B2 |
7830327 | He | Nov 2010 | B2 |
7843397 | Boyle | Nov 2010 | B2 |
7889139 | Hobson et al. | Feb 2011 | B2 |
7889143 | Milosavljevic | Feb 2011 | B2 |
7901617 | Taylor | Mar 2011 | B2 |
7903035 | Mikkola et al. | Mar 2011 | B2 |
7916086 | Koskiniemi et al. | Mar 2011 | B2 |
7963347 | Pabon | Jun 2011 | B2 |
7973720 | Sorvala | Jul 2011 | B2 |
8049670 | Jung et al. | Nov 2011 | B2 |
8054232 | Chiang et al. | Nov 2011 | B2 |
8077115 | Yamada | Dec 2011 | B2 |
8098202 | Annamaa et al. | Jan 2012 | B2 |
8179322 | Nissinen | May 2012 | B2 |
8193998 | Puente et al. | Jun 2012 | B2 |
8378892 | Sorvala | Feb 2013 | B2 |
8466756 | Milosavljevic et al. | Jun 2013 | B2 |
8473017 | Milosavljevic et al. | Jun 2013 | B2 |
8564485 | Milosavljevic et al. | Oct 2013 | B2 |
8629813 | Milosavljevic | Jan 2014 | B2 |
8659482 | Kim et al. | Feb 2014 | B2 |
20010050636 | Weinberger | Dec 2001 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020196192 | Nagumo et al. | Dec 2002 | A1 |
20030085707 | Minerbo | May 2003 | A1 |
20030146873 | Blancho | Aug 2003 | A1 |
20030201945 | Reece | Oct 2003 | A1 |
20040090378 | Dai et al. | May 2004 | A1 |
20040137950 | Bolin et al. | Jul 2004 | A1 |
20040140941 | Joy | Jul 2004 | A1 |
20040145525 | Annabi et al. | Jul 2004 | A1 |
20040171403 | Mikkola | Sep 2004 | A1 |
20050057401 | Yuanzhu | Mar 2005 | A1 |
20050159131 | Shibagaki et al. | Jul 2005 | A1 |
20050176481 | Jeong | Aug 2005 | A1 |
20060071857 | Pelzer | Apr 2006 | A1 |
20060109192 | Weigand | May 2006 | A1 |
20060119513 | Lee | Jun 2006 | A1 |
20060192723 | Harada | Aug 2006 | A1 |
20060220962 | d'Hont et al. | Oct 2006 | A1 |
20070042615 | Liao | Feb 2007 | A1 |
20070082789 | Nissila | Apr 2007 | A1 |
20070152881 | Chan | Jul 2007 | A1 |
20070188388 | Feng | Aug 2007 | A1 |
20080055164 | Zhang et al. | Mar 2008 | A1 |
20080059106 | Wight | Mar 2008 | A1 |
20080088511 | Sorvala | Apr 2008 | A1 |
20080204328 | Nissinen | Aug 2008 | A1 |
20080246689 | Qin et al. | Oct 2008 | A1 |
20080266199 | Milosavljevic | Oct 2008 | A1 |
20090009400 | Kim et al. | Jan 2009 | A1 |
20090009415 | Tanska | Jan 2009 | A1 |
20090045961 | Chamarti | Feb 2009 | A1 |
20090135066 | Raappana et al. | May 2009 | A1 |
20090153412 | Chiang et al. | Jun 2009 | A1 |
20090174604 | Keskitalo | Jul 2009 | A1 |
20090196160 | Crombach | Aug 2009 | A1 |
20090197654 | Teshima | Aug 2009 | A1 |
20090231213 | Ishimiya | Sep 2009 | A1 |
20090284432 | Cozzolino | Nov 2009 | A1 |
20090322639 | Lai | Dec 2009 | A1 |
20100156726 | Montgomery et al. | Jun 2010 | A1 |
20100220016 | Nissinen | Sep 2010 | A1 |
20100244978 | Milosavljevic | Sep 2010 | A1 |
20100309092 | Lambacka | Dec 2010 | A1 |
20110068990 | Grzyb et al. | Mar 2011 | A1 |
20110102268 | Watanabe | May 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20110207422 | Ban | Aug 2011 | A1 |
20120119955 | Milosavljevic et al. | May 2012 | A1 |
20130088404 | Ramachandran et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
1316797 | Oct 2007 | CN |
201319403 | Sep 2009 | CN |
10104862 | Aug 2002 | DE |
10150149 | Apr 2003 | DE |
0 208 424 | Jan 1987 | EP |
0 376 643 | Apr 1990 | EP |
0 751 043 | Apr 1997 | EP |
0 807 988 | Nov 1997 | EP |
0 831 547 | Mar 1998 | EP |
0 851 530 | Jul 1998 | EP |
1 294 048 | Jan 1999 | EP |
1 014 487 | Jun 2000 | EP |
1 024 553 | Aug 2000 | EP |
1 067 627 | Jan 2001 | EP |
0 923 158 | Sep 2002 | EP |
1 329 980 | Jul 2003 | EP |
1 361 623 | Nov 2003 | EP |
1 406 345 | Apr 2004 | EP |
1 453 137 | Sep 2004 | EP |
1 220 456 | Oct 2004 | EP |
1 467 456 | Oct 2004 | EP |
1 753 079 | Feb 2007 | EP |
1881558 | Jan 2008 | EP |
20020829 | Nov 2003 | FI |
118782 | Mar 2008 | FI |
2553584 | Oct 1983 | FR |
2724274 | Mar 1996 | FR |
2873247 | Jan 2006 | FR |
2266997 | Nov 1993 | GB |
2360422 | Sep 2001 | GB |
2389246 | Dec 2003 | GB |
59-202831 | Nov 1984 | JP |
60-206304 | Oct 1985 | JP |
61-245704 | Nov 1986 | JP |
06-152463 | May 1994 | JP |
07-131234 | May 1995 | JP |
07-221536 | Aug 1995 | JP |
07-249923 | Sep 1995 | JP |
07-307612 | Nov 1995 | JP |
08-216571 | Aug 1996 | JP |
09-083242 | Mar 1997 | JP |
09-260934 | Oct 1997 | JP |
09-307344 | Nov 1997 | JP |
10-028013 | Jan 1998 | JP |
10-107671 | Apr 1998 | JP |
10-173423 | Jun 1998 | JP |
10-209733 | Aug 1998 | JP |
10-224142 | Aug 1998 | JP |
10-322124 | Dec 1998 | JP |
10-327011 | Dec 1998 | JP |
11-004113 | Jan 1999 | JP |
11-004117 | Jan 1999 | JP |
11-068456 | Mar 1999 | JP |
11-127010 | May 1999 | JP |
11-127014 | May 1999 | JP |
11-136025 | May 1999 | JP |
11-355033 | Dec 1999 | JP |
2000-278028 | Oct 2000 | JP |
2001-053543 | Feb 2001 | JP |
2001-267833 | Sep 2001 | JP |
2001-217631 | Oct 2001 | JP |
2001-326513 | Nov 2001 | JP |
2002-319811 | Oct 2002 | JP |
2002-329541 | Nov 2002 | JP |
2002-335117 | Nov 2002 | JP |
2003-060417 | Feb 2003 | JP |
2003-124730 | Apr 2003 | JP |
2003-179426 | Jun 2003 | JP |
2004-112028 | Apr 2004 | JP |
2004-363859 | Dec 2004 | JP |
2005-005985 | Jan 2005 | JP |
2005-252661 | Sep 2005 | JP |
20010080521 | Oct 2001 | KR |
20020096016 | Dec 2002 | KR |
511900 | Dec 1999 | SE |
WO 9200635 | Jan 1992 | WO |
WO 9627219 | Sep 1996 | WO |
WO 9801919 | Jan 1998 | WO |
WO 9930479 | Jun 1999 | WO |
WO 0120718 | Mar 2001 | WO |
WO 0129927 | Apr 2001 | WO |
WO 0133665 | May 2001 | WO |
WO 0161781 | Aug 2001 | WO |
WO 2004017462 | Feb 2004 | WO |
WO 2004057697 | Jul 2004 | WO |
WO 2004100313 | Nov 2004 | WO |
WO 2004112189 | Dec 2004 | WO |
WO 2005062416 | Jul 2005 | WO |
WO 2007012697 | Feb 2007 | WO |
WO 2010122220 | Oct 2010 | WO |
Entry |
---|
Vergerio, S et al. “A Two-PIFA Antenna Systems for Mobile Phone at 2 GHz With MIMO Applications”, National Board of Patents and Registrations downloaded on Jun. 17, 2010. |
Dialio, A., et al. “Enhanced Diversity Antennas for UMTS Handsets”, EuCAP 2006, Nice, France, Nov. 6-10, 2006 (ESA SP-626, Oct. 2006). |
Plicanic, et al., “Actual Diversity Performance of a Multiband Diversity Antenna With Hand and Head Effects”, IEEE Transactions on Antennas and Propagation, vol. 57, No. 5, May 2009. |
Joshi, Ravi K., et al., “Broadband Concentric Rings Fractal Slot Antenna”, XXVIIIth General Assembly of International Union of Radio Science (URSI). (Oct. 23-29, 2005), 4 Pgs. |
Singh, Rajender, “Broadband Planar Monopole Antennas,” M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay, Nov. 2003, pp. 1-24. |
Gobien, Andrew, T. “Investigation of Low Profile Antenna Designs for Use in Hand-Held Radios,” Ch.3, The Inverted-L Antenna and Variations; Aug. 1997, pp. 42-76. |
See, C.H., et al., “Design of Planar Metal-Plate Monopole Antenna for Third Generation Mobile Handsets,” Telecommunications Research Centre, Bradford University, 2005, pp. 27-30. |
Chen, Jin-Sen, et al., “CPW-fed Ring Slot Antenna with Small Ground Plane,” Department of Electronic Engineering, Cheng Shiu University. |
“LTE—an introduction,” Ericsson White Paper, Jun. 2009, pp. 1-16. |
“Spectrum Analysis for Future LTE Deployments,” Motorola White Paper, 2007, pp. 1-8. |
Chi, Yun-Wen, et al. “Quarter-Wavelength Printed Loop Antenna With an Internal Printed Matching Circuit for GSM/DCS/PCS/UMTS Operation in the Mobile Phone,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 9m Sep. 2009, pp. 2541-2547. |
Wong, Kin-Lu, et al. “Planar Antennas for WLAN Applications,” Dept. of Electrical Engineering, National Sun Yat-Sen University, 2002 09 Ansoft Workshop, pp. 1-45. |
“λ/4 printed monopole antenna for 2.45GHz,” Nordic Semiconductor, White Paper, 2005, pp. 1-6. |
White, Carson, R., “Single- and Dual-Polarized Slot and Patch Antennas with Wide Tuning Ranges,” The University of Michigan, 2008. |
Extended European Search Report dated Jan. 30, 2013, issued by the EPO for EP Patent Application No. 12177740.3. |
“An Adaptive Microstrip Patch Antenna for Use in Portable Transceivers”, Rostbakken et al., Vehicular Technology Conference, 1996, Mobile Technology for the Human Race, pp. 339-343. |
“Dual Band Antenna for Hand Held Portable Telephones”, Liu et al., Electronics Letters, vol. 32, No. 7, 1996, pp. 609-610. |
“Improved Bandwidth of Microstrip Antennas using Parasitic Elements,” IEE Proc. vol. 127, Pt. H. No. 4, Aug. 1980. |
“A 13.56MHz RFID Device and Software for Mobile Systems”, by H. Ryoson, et al., Micro Systems Network Co., 2004 IEEE, pp. 241-244. |
“A Novel Approach of a Planar Multi-Band Hybrid Series Feed Network for Use in Antenna Systems Operating at Millimeter Wave Frequencies,” by M.W. Elsallal and B.L. Hauck, Rockwell Collins, Inc., 2003 pp. 15-24, waelsall@rockwellcollins.com and blhauck@rockwellcollins.com. |
Abedin, M. F. and M. Ali, “Modifying the ground plane and its erect on planar inverted-F antennas (PIFAs) for mobile handsets,” IEEE Antennas and Wireless Propagation Letters, vol. 2, 226-229, 2003. |
C. R. Rowell and R. D. Murch, “A compact PIFA suitable for dual frequency 900/1800-MHz operation,” IEEE Trans. Antennas Propag., vol. 46, No. 4, pp. 596-598, Apr. 1998. |
Cheng-Nan Hu, Willey Chen, and Book Tai, “A Compact Multi-Band Antenna Design for Mobile Handsets”, APMC 2005 Proceedings. |
Endo, T., Y. Sunahara, S. Satoh and T. Katagi, “Resonant Frequency and Radiation Efficiency of Meander Line Antennas,” Electronics and Commu-nications in Japan, Part 2, vol. 83, No. 1, 52-58, 2000. |
European Office Action, May 30, 2005 issued during prosecution of EP 04 396 001.2-1248. |
Examination Report dated May 3, 2006 issued by the EPO for European Patent Application No. 04 396 079.8. |
F.R. Hsiao, et al. “A dual-band planar inverted-F patch antenna with a branch-line slit,” Microwave Opt. Technol. Lett., vol. 32, Feb. 20, 2002. |
Griffin, Donald W. et al., “Electromagnetic Design Aspects of Packages for Monolithic Microwave Integrated Circuit-Based Arrays with Integrated Antenna Elements”, IEEE Transactions on Antennas and Propagation, vol. 43, No. 9, pp. 927-931, Sep. 1995. |
Guo, Y. X. and H. S. Tan, “New compact six-band internal antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 295-297, 2004. |
Guo, Y. X. and Y.W. Chia and Z. N. Chen, “Miniature built-in quadband antennas for mobile handsets”, IEEE Antennas Wireless Propag. Lett., vol. 2, pp. 30-32, 2004. |
Hoon Park, et al. “Design of an Internal antenna with wide and multiband characteristics for a mobile handset”, IEEE Microw. & Opt. Tech. Lett.vol. 48, No. 5, May 2006. |
Hoon Park, et al. “Design of Planar Inverted-F Antenna With Very Wide Impedance Bandwidth”, IEEE Microw. & Wireless Comp., Lett., vol. 16, No. 3, pp. 113-115-, Mar. 2006. |
Hossa, R., A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” IEEE Microwave and Wireless Components Letters, vol. 14, 283-285, 2004. |
I. Ang, Y. X. Guo, and Y. W. Chia, “Compact internal quad-band antenna for mobile phones” Micro. Opt. Technol. Lett., vol. 38, No. 3 pp. 217-223 Aug. 2003. |
International Preliminary Report on Patentability for International Application No. PCT/FI2004/000554, date of issuance of report May 1, 2006. |
Jing, X., et al.; “Compact Planar Monopole Antenna for Multi-Band Mobile Phones”; Microwave Conference Proceedings, 4.-7.12.2005.APMC 2005, Asia- Pacific Conference Proceedings, vol. 4. |
Kim, B. C., J. H. Yun, and H. D. Choi, “Small wideband PIFA for mobile phones at 1800 MHz,” IEEE International Conference on Vehicular Technology, 27{29, Daejeon, South Korea, May 2004. |
Kim, Kihong et al., “Integrated Dipole Antennas on Silicon Substrates for Intra-Chip Communication”, IEEE, pp. 1582-1585, 1999. |
Kivekas., O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, “Bandwidth, SAR, and eciency of internal mobile phone antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 46, 71{86, 2004. |
K-L Wang, Planar Antennas for Wireless Communications, Hoboken, NJ: Willey, 2003, ch. 2. |
Lindberg., P. and E. Ojefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Transactions on Antennas and Propagation, vol. 54, 2226{2232, 2006. |
Marta Martinez-Vazquez, et al., “Integrated Planar Multiband Antennas for Personal Communication Handsets”, IEEE Trasactions on Antennas and propagation, vol. 54, No. 2, Feb. 2006. |
P. Ciais, et al., “Compact Internal Multiband Antennas for Mobile and WLAN Standards”, Electronic Letters, vol. 40, No. 15, pp. 920-921, Jul. 2004. |
P. Ciais, R. Staraj, G. Kossiavas, and C. Luxey, “Design of an internal quadband antenna for mobile phones”, IEEE Microwave Wireless Comp. Lett., vol. 14, No. 4, pp. 148-150, Apr. 2004. |
P. Salonen, et al. “New slot configurations for dual-band planar inverted-F antenna,” Microwave Opt. Technol., vol. 28, pp. 293-298, 2001. |
Papapolymerou, Ioannis et al., “Micromachined Patch Antennas”, IEEE Transactions on Antennas and Propagation, vol. 46, No. 2, pp. 275-283, Feb. 1998. |
Product of the Month, RFDesign, “GSM/GPRS Quad Band Power Amp Includes Antenna Switch,” 1 page, reprinted Nov. 2004 issue of RF Design (www.rfdesidn.com), Copyright 2004, Freescale Semiconductor, RFD-24-EK. |
S. Tarvas, et al. “An internal dual-band mobile phone antenna,” in 2000 IEEE Antennas Propagat. Soc. Int. Symp. Dig., pp. 266-269, Salt Lake City, UT, USA. |
Wang, F., Z. Du, Q. Wang, and K. Gong, “Enhanced-bandwidth PIFA with T-shaped ground plane,” Electronics Letters, vol. 40, 1504-1505, 2004. |
Wang, H.; “Dual-Resonance Monopole Antenna with Tuning Stubs”; IEEE Proceedings, Microwaves, Antennas & Propagation, vol. 153, No. 4, Aug. 2006; pp. 395-399. |
Wong, K., et al.; “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets”; IEEE Transactions on Antennas and Propagation, Jan. '03, vol. 51, No. 1. |
X.-D. Cai and J.-Y. Li, Analysis of asymmetric TEM cell and its optimum design of electric field distribution, IEE Proc 136 (1989), 191-194. |
X.-Q. Yang and K.-M. Huang, Study on the key problems of interaction between microwave and chemical reaction, Chin Jof Radio Sci 21 (2006), 802-809. |
Chiu, C.-W., et al., “A Meandered Loop Antenna for LTE/WWAN Operations in a Smartphone,” Progress in Electromagnetics Research C, vol. 16, pp. 147-160, 2010. |
Lin, Sheng-Yu; Liu, Hsien-Wen; Weng, Chung-Hsun; and Yang, Chang-Fa, “A miniature Coupled loop Antenna to be Embedded in a Mobile Phone for Penta-band Applications,” Progress in Electromagnetics Research Symposium Proceedings, Xi'an, China, Mar. 22-26, 2010, pp. 721-724. |
Zhang, Y.Q., et al. “Band-Notched UWB Crossed Semi-Ring Monopole Antenna,” Progress in Electronics Research C, vol. 19, 107-118, 2011, pp. 107-118. |
Number | Date | Country | |
---|---|---|---|
20130044036 A1 | Feb 2013 | US |