Wireless communication systems are widely deployed to provide various types of communication; for instance, voice and/or data may be provided via such wireless communication systems. A typical wireless communication system, or network, can provide multiple users access to one or more shared resources (e.g., bandwidth, transmit power, . . . ). For instance, a system may use a variety of multiple access techniques such as Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), Code Division Multiplexing (CDM), Orthogonal Frequency Division Multiplexing (OFDM), and others.
Generally, wireless multiple access communication systems may simultaneously support communication for multiple mobile devices. Each mobile device may communicate with one or more base stations via transmissions on forward and reverse links. The forward link (or downlink) refers to the communication link from base stations to mobile devices, and the reverse link (or uplink) refers to the communication link from mobile devices to base stations. Further, communications between mobile devices and base stations may be established via single-input single-output (SISO) systems, multiple-input single-output (MISO) systems, multiple-input multiple-output (MIMO) systems, and so forth.
Mobile devices that utilize a single antenna for transmission and reception commonly operate with limited data transmission rates. In order to yield higher data transmission rates (e.g., multi-megabit speeds), wireless communication systems may implement MIMO systems. MIMO systems, in combination with space-time coding and other such data processing techniques, can achieve data transmission throughput several times greater than single antenna radio systems.
MIMO systems commonly employ multiple transmit antennas and multiple receive antennas for data transmission. A MIMO channel formed by the multiple transmit and receive antennas may be decomposed into a plurality of independent channels, which may be referred to as spatial channels. Each of the independent channels corresponds to a dimension. Moreover, MIMO systems may provide improved performance (e.g., increased spectral efficiency, higher throughput and/or greater reliability) if the additional dimensionalities created by the multiple transmit and received antennas are utilized.
Mobile devices, however, oftentimes have physical constraints (e.g., limited volume, size, . . . ) that can impact implementation of multiple antennas therewith. For instance, performance of conventional mobile devices commonly has suffered in comparison to single antenna performance due to such physical limitations. Accordingly, arranging multiple antennas that support operation in multiple frequency bands in a small form factor device can be difficult to achieve at low cost and in an aesthetically pleasing manner.
The following presents a simplified summary of one or more embodiments in order to provide a basic understanding of such embodiments. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor delineate the scope of any or all embodiments. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later.
In accordance with one or more embodiments and corresponding disclosure thereof, various aspects are described in connection with a self-expandable multiple-input, multiple-output (MIMO) antenna. A flexible circuit is folded accordion-style and collapsed for storage. Further, a plurality of antenna elements are printed on the flexible circuit. The flexible circuit unfolds and fans out when deployed for operation. The fanning out creates polarization diversity among the plurality of antenna elements to enable multiple receiving and transmitting streams to occur at the same or different radio frequencies.
According to related aspects, a multiple antenna structure is described herein. The multiple antenna structure can include a fanning flexible circuit operable in and in between a collapsed and expanded position. Further, the multiple antenna structure can comprise a plurality of antenna elements printed on one or more surfaces of the fanning flexible circuit.
Another aspect relates to a multiple antenna communication system. The multiple antenna communication system can include a movable or removable antenna housing; a circuit board; and a flex member foldable accordion style, a first end of the flex member attached to the movable antenna housing and a second end of the flex member attached to the circuit board.
Yet another aspect relates to a self-expandable antenna system that enables multiple-input, multiple-out communications. The self-expandable antenna system can include means for expanding an antenna structure including one or more antenna elements. Moreover, the self-expandable antenna system can comprise means for receiving signals via the one or more antenna elements.
Still another aspect relates to a system that enables monitoring signal strength in connection with an expandable antenna structure. The system can include means for evaluating a signal to noise ratio (SNR); means for determining whether the SNR is below a threshold; and means for generating a notification to deploy an expandable antenna structure when the SNR is below the threshold.
To the accomplishment of the foregoing and related ends, the one or more embodiments comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects of the one or more embodiments. These aspects are indicative, however, of but a few of the various ways in which the principles of various embodiments may be employed and the described embodiments are intended to include all such aspects and their equivalents.
Various embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more embodiments. It may be evident, however, that such embodiment(s) may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing one or more embodiments.
As used in this application, the terms “component,” “module,” “system,” and the like are intended to refer to a computer-related entity, either hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computing device and the computing device can be a component. One or more components can reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal).
Furthermore, various embodiments are described herein in connection with a wireless terminal. A wireless terminal can also be called a system, subscriber unit, subscriber station, mobile station, mobile, mobile device, remote station, remote terminal, access terminal, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (UE). A wireless terminal may be a cellular telephone, a cordless telephone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device having wireless connection capability, computing device, or other processing device connected to a wireless modem. According to another example, a wireless terminal may be a wireless data card or embedded module inside another device such as a laptop computer or PDA. Moreover, various embodiments are described herein in connection with a base station. A base station may be utilized for communicating with wireless terminal(s) and may also be referred to as an access point, Node B, or some other terminology.
Moreover, various aspects or features described herein may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer-readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips, etc.), optical disks (e.g., compact disk (CD), digital versatile disk (DVD), etc.), smart cards, and flash memory devices (e.g., EPROM, card, stick, key drive, etc.). Additionally, various storage media described herein can represent one or more devices and/or other machine-readable media for storing information. The term “machine-readable medium” can include, without being limited to, wireless channels and various other media capable of storing, containing, and/or carrying instruction(s) and/or data.
Referring now to
Base station 102 can communicate with one or more mobile devices such as mobile device 116 and mobile device 122; however, it is to be appreciated that base station 102 can communicate with substantially any number of mobile devices similar to mobile devices 116 and 122. Mobile devices 116 and 122 can be, for example, cellular phones, smart phones, laptops, PC cards, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, wireless data cards or embedded modules inside other devices such as laptop computers or PDAs, and/or any other suitable devices for communicating over wireless communication system 100. As depicted, mobile device 116 is in communication with antennas 112 and 114, where antennas 112 and 114 transmit information to mobile device 116 over a forward link 118 and receive information from mobile device 116 over a reverse link 120. Moreover, mobile device 122 is in communication with antennas 104 and 106, where antennas 104 and 106 transmit information to mobile device 122 over a forward link 124 and receive information from mobile device 122 over a reverse link 126. In a frequency division duplex (FDD) system, forward link 118 may utilize a different frequency band than that used by reverse link 120, and forward link 124 may employ a different frequency band than that employed by reverse link 126, for example. Further, in a time division duplex (TDD) system, forward link 118 and reverse link 120 may utilize a common frequency band and forward link 124 and reverse link 126 may utilize a common frequency band.
Each group of antennas and/or the area in which they are designated to communicate can be referred to as a sector of base station 102. For example, antenna groups can be designed to communicate to mobile devices in a sector of the areas covered by base station 102. In communication over forward links 118 and 124, the transmitting antennas of base station 102 may utilize beamforming to improve signal-to-noise ratio of forward links 118 and 124 for mobile devices 116 and 122. Also, while base station 102 utilizes beamforming to transmit to mobile devices 116 and 122 scattered randomly through an associated coverage, mobile devices in neighboring cells may be subject to less interference as compared to a base station transmitting through a single antenna to all its mobile devices.
Mobile devices 116 and 122 can additionally leverage MIMO antenna structures for communicating with base station 102. For instance, such MIMO antenna structures can be easily manufactured, low cost structures with small sizes that yield improved performance as compared to conventional MIMO devices. Moreover, the MIMO antenna structures can include multiple antenna elements that can be printed on flexible material (e.g., flex circuit) that is folded accordion (book) style. Further, the flexible material can be placed between a circuit board and a movable lid. Thus, when the lid is unhinged, the flex material can expand and the antenna can be deployed for operation. Additionally, from the extended position, the antenna can be folded under the lid to be returned to the closed position.
It is contemplated that a MIMO antenna structure can be permanently incorporated into mobile devices 116 and 122. Additionally or alternatively, the MIMO antenna structure can be removable and/or replaceable; thus, the MIMO antenna structure can be removably attached to mobile devices 116 and 122. For example, the MIMO antenna structures can be replaced when damaged. According to another illustration, disparate MIMO antenna structures can operate in differing frequency bands, and therefore, the structures can be switched depending on frequency range upon which communication occurs.
Turning to
Antenna housing 220 is illustrated in a closed or locked position. In the closed or locked position, an antenna structure is collapsed and protected within antenna housing 220. Further, in the closed or locked position, PC card 210 and antenna housing 220 comprise a form factor similar to common WiFi PC cards or other such PC cards including a conventional bulb-type antenna. Accordingly, PC card 210 with antenna housing 220 in the closed or locked position conveniently stores the wireless communication components efficiently and compactly. Moreover, while in the closed or locked position, the antenna structure within antenna housing 220 can transmit and/or receive data; however, reception and/or transmission can be improved when the antenna housing 220 is in an expanded state.
Further, antenna housing 220 can move from the closed or locked position. For instance, antenna housing 220 can be rotated with respect to PC card 210 to transition into an expanded position (e.g., via a hinge, pin, joint, coupler, . . . ). Antenna housing 220, for example, can rotate around juncture 230 to open towards a portion of PC card 210 that can be inserted into a PCMCIA slot of a disparate device (not shown). Pursuant to another example, antenna housing 220 can rotate around juncture 240 to open away from such portion of PC card 210 that can be inserted into a PCMCIA slot. Further, antenna housing 220 can rotate along a side edge of PC card 210 to open parallel to a PCMCIA slot in which PC card 210 can be inserted, for example.
Referring now to
Antenna structure 310 can be composed of a flexible material such as, for example, a flex circuit; thus, the flexible material can allow for folding of antenna structure 310. It is to be appreciated that any flexible electrical component can be utilized in place of a flex circuit. One end of the flex circuit of antenna structure 310 can be attached to a circuit board (e.g., associated with PC card 210). Accordingly, electrical signals can be conveyed from antenna structure 310 to a device with a PCMCIA slot employing system 300 via PC card 210. The other end of the flex circuit of antenna structure 310 can be attached to the movable antenna housing 220 such that antenna structure 310 can be folded accordion-style as antenna housing 220 is moved between the open and closed positions.
System 300 depicts antenna structure 310 that includes four surfaces 320 upon which antennas can be positioned; however, it should be appreciated that any number of surfaces may be utilized depending on the geometry of antenna structure 310 (e.g., number of folds utilized) manufactured or implemented. An antenna (not shown) can be printed or deposited on each surface 320 of the flex circuit material of antenna structure 310. Each antenna printed on the flex circuit can be utilized for operation within a common frequency band and/or differing frequency bands. For example, an antenna printed on one of the surfaces 320 of antenna structure 310 can be utilized to operate at 400 MHz, while another antenna deposited on another surface 320 of antenna structure 310 can be employed for operating at 3.5 GHz. Further, it is to be appreciated that the printed antennas can be operable on multiple frequencies between 400 MHz and 3.5 GHz and/or any other frequency band.
Turning briefly to
Antennas 430 and 440 are depicted as being offset relative to one another. Accordingly, antennas 430 and 440 can provide polarization diversity based upon the alignment of the radiating element upon each of the surfaces 410 and 420. Such polarization diversity can mitigate interference between antennas 430 and 440, and thus, improve overall MIMO performance. It is to be appreciated that substantially any offset angle between antennas 430 and 440 can be employed to create such polarization diversity.
Referring once again to
By leveraging three dimensional antenna structure 310, system 300 can provide advantages in comparison to conventional printed two dimensional antennas or chip antennas. For instance, antenna structure 310 can accommodate a plurality of antennas in a small form factor (e.g., switchable such that four antennas can be utilized to receive four different data streams on a downlink, can be employed to transmit with the four antennas on an uplink, . . . ). Further, antenna structure 310 can provide improved polarization diversity compared to traditional antennas. Moreover, beam forming can be performed by utilizing antenna structure 310 (e.g., steer antenna bandwidth/direction). Additionally, a larger vertically polarized component can be obtained with antenna structure 310 as compared to typical antennas. Also, more gain can be yielded in the direction of the horizontal axis of a device, while minimizing thickness of the device when stowed.
Turning now to
When antenna housing 220 is moved to the open position, antenna structure 310 unfolds for operation. As discussed supra, antenna structure 310 expands accordion-style such that antenna structure 310 unfolds and folds as antenna housing 220 is moved between the open and closed positions, respectively. Further, the folds of antenna structure 310 provide a plurality of surfaces of the flex circuit. Antennas can be printed on some of the plurality of surfaces of the flex circuit. For example,
With reference to
Antenna structure 310 can connect to a housing (e.g., antenna housing 220 of
According to other examples, antenna 310 can utilize a common feedpoint into antenna elements and/or separate feedpoints into the antenna elements. By employing separate feedpoints into different antenna elements, duplex filtering can be reduced in connection with frequency division duplex (FDD) communications due to isolation provided by different antenna elements. Thus, instead of combining transmitter and receiver into a common feedpoint using a duplexing filter, transmitter and receiver can be fed into separate antenna elements through separate feedpoints; hence, filtering can be mitigated based upon an amount of antenna element to antenna element isolation yielded.
Turning now to
Referring to
Mobile device 810 can include software operable to control the operation of card 210 and antenna structure 310. Thus, mobile device 810, via card 210, can specify which antenna among the plurality of antennas is to be utilized at any particular time and for what function. For example, mobile device 810 can select a particular antenna for transmission of uplink data while a differing antenna can be utilized for receiving downlink data. According to another illustration, the antennas can be employed in parallel for a common operation (e.g., receiving downlink data), thus, increasing the rate at which data is received by the mobile device 810.
With reference to
Turning to
With reference to
Turning now to
Turning now to
With reference to
Turning to
Expandable antenna unit 1420 can be positioned anywhere upon device 1410. For instance, expandable antenna unit 1420 can be mounted upon a back 1610 of device 1410. Moreover, it is contemplated that expandable antenna unit 1420 can open to substantially any angle (e.g., 90 degrees, 180 degrees, . . . ).
With reference to
By way of illustration, the output from SNR evaluator 1830 can be a message presented to a user to prompt the user to move fanning expandable antenna 1820 into an open position. The message can be a visual notification displayed on a screen of mobile device 1810, an audio signal, a mechanical vibration, and the like. For instance, a user can be prompted to expand (and/or collapse) fanning expandable antenna 1820 in response to a message on a user interface. According to another example, the output can be an automatic expansion of fanning expandable antenna 1820 (e.g., without user manipulation of fanning expandable antenna 1820). Moreover, SNR evaluator 1830 can similarly provide an output that facilitates transitioning fanning expandable antenna 1820 to a closed position.
Referring to
Turning now to
At 1920, the antenna elements can receive and/or transmit radio frequency signals. The antenna elements can receive and transmit on the same frequency or a variety of frequencies in parallel. At 1930, the antenna structure collapses to a closed position. The antenna structure folds underneath the antenna housing for storage and protection. While collapsed, the antenna structure can provide a small form factor.
With reference to
It will be appreciated that, in accordance with one or more aspects described herein, inferences can be made regarding determining whether to deploy an expandable antenna structure. As used herein, the term to “infer” or “inference” refers generally to the process of reasoning about or inferring states of the system, environment, and/or user from a set of observations as captured via events and/or data. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states, for example. The inference can be probabilistic—that is, the computation of a probability distribution over states of interest based on a consideration of data and events. Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether or not the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources.
According to an example, one or more methods presented above can include making inferences pertaining to evaluating whether to deploy an expandable antenna structure. In accordance with another example, an inference can be made related to an expected SNR at a particular geographic location (e.g., based upon mobile device movement), and the expected SNR can be leveraged in connection with determining whether to deploy the expandable antenna structure. It will be appreciated that the foregoing examples are illustrative in nature and are not intended to limit the number of inferences that can be made or the manner in which such inferences are made in conjunction with the various embodiments and/or methods described herein.
Sector boundary regions provide potential for signal interference between signals transmitted by base stations in neighboring sectors. Line 2116 represents a sector boundary region between sector I 2110 and sector II 2112; line 2118 represents a sector boundary region between sector II 2112 and sector III 2114; line 2120 represents a sector boundary region between sector III 2114 and sector 12110. Similarly, cell M 2104 includes a first sector, sector I 2122, a second sector, sector II 2124, and a third sector, sector III 2126. Line 2128 represents a sector boundary region between sector I 2122 and sector II 2124; line 2130 represents a sector boundary region between sector II 2124 and sector III 2126; line 2132 represents a boundary region between sector III 2126 and sector I 2122. Cell I 2102 includes a base station (BS), base station I 2106, and a plurality of end nodes (ENs) (e.g., wireless terminals) in each sector 2110, 2112, 2114. Sector I 2110 includes EN(1) 2136 and EN(X) 2138 coupled to BS 2106 via wireless links 2140, 2142, respectively; sector II 2112 includes EN(1′) 2144 and EN(X′) 2146 coupled to BS 2106 via wireless links 2148, 2150, respectively; sector III 2114 includes EN(1″) 2152 and EN(X″) 2154 coupled to BS 2106 via wireless links 2156, 2158, respectively. Similarly, cell M 2104 includes base station M 2108, and a plurality of end nodes (ENs) in each sector 2122, 2124, 2126. Sector I 2122 includes EN(1) 2136′ and EN(X) 2138′ coupled to BS M 2108 via wireless links 2140′, 2142′, respectively; sector II 2124 includes EN(1′) 2144′ and EN(X′) 2146′ coupled to BS M 2108 via wireless links 2148′, 2150′, respectively; sector 32126 includes EN(1″) 2152′ and EN(X″) 2154′ coupled to BS 2108 via wireless links 2156′, 2158′, respectively.
System 2100 also includes a network node 2160 which is coupled to BS I 2106 and BS M 2108 via network links 2162, 2164, respectively. Network node 2160 is also coupled to other network nodes, e.g., other base stations, AAA server nodes, intermediate nodes, routers, etc. and the Internet via network link 2166. Network links 2162, 2164, 2166 may be, e.g., fiber optic cables. Each end node, e.g., EN(1) 2136 may be a wireless terminal including a transmitter as well as a receiver. The wireless terminals, e.g., EN(1) 2136 may move through system 2100 and may communicate via wireless links with the base station in the cell in which the EN is currently located. The wireless terminals, (WTs), e.g., EN(1) 2136, may communicate with peer nodes, e.g., other WTs in system 2100 or outside system 2100 via a base station, e.g., BS 2106, and/or network node 2160. WTs, e.g., EN(1) 2136 may be mobile communications devices such as cell phones, personal data assistants with wireless modems, etc. Respective base stations perform tone subset allocation using a different method for the strip-symbol periods, from the method employed for allocating tones and determining tone hopping in the rest symbol periods, e.g., non strip-symbol periods. The wireless terminals use the tone subset allocation method along with information received from the base station, e.g., base station slope ID, sector ID information, to determine tones that they can employ to receive data and information at specific strip-symbol periods. The tone subset allocation sequence is constructed, in accordance with various aspects to spread inter-sector and inter-cell interference across respective tones.
Sectorized antenna 2203 coupled to receiver 2202 is used for receiving data and other signals, e.g., channel reports, from wireless terminals transmissions from each sector within the base station's cell. Sectorized antenna 2205 coupled to transmitter 2204 is used for transmitting data and other signals, e.g., control signals, pilot signal, beacon signals, etc. to wireless terminals 2300 (see
Data/information 2220 includes data 2236, tone subset allocation sequence information 2238 including downlink strip-symbol time information 2240 and downlink tone information 2242, and wireless terminal (WT) data/info 2244 including a plurality of sets of WT information: WT 1 info 2246 and WT N info 2260. Each set of WT info, e.g., WT 1 info 2246 includes data 2248, terminal ID 2250, sector ID 2252, uplink channel information 2254, downlink channel information 2256, and mode information 2258.
Routines 2218 include communications routines 2222 and base station control routines 2224. Base station control routines 2224 includes a scheduler module 2226 and signaling routines 2228 including a tone subset allocation routine 2230 for strip-symbol periods, other downlink tone allocation hopping routine 2232 for the rest of symbol periods, e.g., non strip-symbol periods, and a beacon routine 2234.
Data 2236 includes data to be transmitted that will be sent to encoder 2214 of transmitter 2204 for encoding prior to transmission to WTs, and received data from WTs that has been processed through decoder 2212 of receiver 2202 following reception. Downlink strip-symbol time information 2240 includes the frame synchronization structure information, such as the superslot, beaconslot, and ultraslot structure information and information specifying whether a given symbol period is a strip-symbol period, and if so, the index of the strip-symbol period and whether the strip-symbol is a resetting point to truncate the tone subset allocation sequence used by the base station. Downlink tone information 2242 includes information including a carrier frequency assigned to the base station 2200, the number and frequency of tones, and the set of tone subsets to be allocated to the strip-symbol periods, and other cell and sector specific values such as slope, slope index and sector type.
Data 2248 may include data that WT12300 has received from a peer node, data that WT 12300 desires to be transmitted to a peer node, and downlink channel quality report feedback information. Terminal ID 2250 is a base station 2200 assigned ID that identifies WT 12300. Sector ID 2252 includes information identifying the sector in which WT12300 is operating. Sector ID 2252 can be used, for example, to determine the sector type. Uplink channel information 2254 includes information identifying channel segments that have been allocated by scheduler 2226 for WT12300 to use, e.g., uplink traffic channel segments for data, dedicated uplink control channels for requests, power control, timing control, etc. Each uplink channel assigned to WT 12300 includes one or more logical tones, each logical tone following an uplink hopping sequence. Downlink channel information 2256 includes information identifying channel segments that have been allocated by scheduler 2226 to carry data and/or information to WT12300, e.g., downlink traffic channel segments for user data. Each downlink channel assigned to WT12300 includes one or more logical tones, each following a downlink hopping sequence. Mode information 2258 includes information identifying the state of operation of WT12300, e.g. sleep, hold, on.
Communications routines 2222 control the base station 2200 to perform various communications operations and implement various communications protocols. Base station control routines 2224 are used to control the base station 2200 to perform basic base station functional tasks, e.g., signal generation and reception, scheduling, and to implement the steps of the method of some aspects including transmitting signals to wireless terminals using the tone subset allocation sequences during the strip-symbol periods.
Signaling routine 2228 controls the operation of receiver 2202 with its decoder 2212 and transmitter 2204 with its encoder 2214. The signaling routine 2228 is responsible for controlling the generation of transmitted data 2236 and control information. Tone subset allocation routine 2230 constructs the tone subset to be used in a strip-symbol period using the method of the aspect and using data/information 2220 including downlink strip-symbol time info 2240 and sector ID 2252. The downlink tone subset allocation sequences will be different for each sector type in a cell and different for adjacent cells. The WTs 2300 receive the signals in the strip-symbol periods in accordance with the downlink tone subset allocation sequences; the base station 2200 uses the same downlink tone subset allocation sequences in order to generate the transmitted signals. Other downlink tone allocation hopping routine 2232 constructs downlink tone hopping sequences, using information including downlink tone information 2242, and downlink channel information 2256, for the symbol periods other than the strip-symbol periods. The downlink data tone hopping sequences are synchronized across the sectors of a cell. Beacon routine 2234 controls the transmission of a beacon signal, e.g., a signal of relatively high power signal concentrated on one or a few tones, which may be used for synchronization purposes, e.g., to synchronize the frame timing structure of the downlink signal and therefore the tone subset allocation sequence with respect to an ultra-slot boundary.
The processor 2306 (e.g., a CPU) controls operation of wireless terminal 2300 and implements methods by executing routines 2320 and using data/information 2322 in memory 2308.
Data/information 2322 includes user data 2334, user information 2336, and tone subset allocation sequence information 2350. User data 2334 may include data, intended for a peer node, which will be routed to encoder 2314 for encoding prior to transmission by transmitter 2304 to base station 2200, and data received from the base station 2200 which has been processed by the decoder 2312 in receiver 2302. User information 2336 includes uplink channel information 2338, downlink channel information 2340, terminal ID information 2342, base station ID information 2344, sector ID information 2346, and mode information 2348. Uplink channel information 2338 includes information identifying uplink channels segments that have been assigned by base station 2200 for wireless terminal 2300 to use when transmitting to the base station 2200. Uplink channels may include uplink traffic channels, dedicated uplink control channels, e.g., request channels, power control channels and timing control channels. Each uplink channel includes one or more logic tones, each logical tone following an uplink tone hopping sequence. The uplink hopping sequences are different between each sector type of a cell and between adjacent cells. Downlink channel information 2340 includes information identifying downlink channel segments that have been assigned by base station 2200 to WT 2300 for use when BS 2200 is transmitting data/information to WT 2300. Downlink channels may include downlink traffic channels and assignment channels, each downlink channel including one or more logical tone, each logical tone following a downlink hopping sequence, which is synchronized between each sector of the cell.
User info 2336 also includes terminal ID information 2342, which is a base station 2200 assigned identification, base station ID information 2344 which identifies the specific base station 2200 that WT has established communications with, and sector ID info 2346 which identifies the specific sector of the cell where WT 2300 is presently located. Base station ID 2344 provides a cell slope value and sector ID info 2346 provides a sector index type; the cell slope value and sector index type may be used to derive tone hopping sequences. Mode information 2348 also included in user info 2336 identifies whether the WT 2300 is in sleep mode, hold mode, or on mode.
Tone subset allocation sequence information 2350 includes downlink strip-symbol time information 2352 and downlink tone information 2354. Downlink strip-symbol time information 2352 include the frame synchronization structure information, such as the superslot, beaconslot, and ultraslot structure information and information specifying whether a given symbol period is a strip-symbol period, and if so, the index of the strip-symbol period and whether the strip-symbol is a resetting point to truncate the tone subset allocation sequence used by the base station. Downlink tone info 2354 includes information including a carrier frequency assigned to the base station 2200, the number and frequency of tones, and the set of tone subsets to be allocated to the strip-symbol periods, and other cell and sector specific values such as slope, slope index and sector type.
Routines 2320 include communications routines 2324 and wireless terminal control routines 2326. Communications routines 2324 control the various communications protocols used by WT 2300. By way of example, communications routines 2324 may enable receiving a broadcast signal (e.g., from base station 2200). Wireless terminal control routines 2326 control basic wireless terminal 2300 functionality including the control of the receiver 2302 and transmitter 2304.
With reference to
It is to be understood that the embodiments described herein may be implemented in hardware, software, firmware, middleware, microcode, or any combination thereof. For a hardware implementation, the processing units may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
When the embodiments are implemented in software, firmware, middleware or microcode, program code or code segments, they may be stored in a machine-readable medium, such as a storage component. A code segment may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements. A code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted using any suitable means including memory sharing, message passing, token passing, network transmission, etc.
For a software implementation, the techniques described herein may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in memory units and executed by processors. The memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.
What has been described above includes examples of one or more embodiments. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the aforementioned embodiments, but one of ordinary skill in the art may recognize that many further combinations and permutations of various embodiments are possible. Accordingly, the described embodiments are intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
Number | Name | Date | Kind |
---|---|---|---|
3521290 | Hossein et al. | Jul 1970 | A |
4947825 | Moriarty | Aug 1990 | A |
6833817 | Olsen | Dec 2004 | B2 |
7076263 | Medvedev et al. | Jul 2006 | B2 |
20040113850 | Olsen | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
60223208 | Nov 1985 | JP |
03017420 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20090009421 A1 | Jan 2009 | US |