The present invention relates to the transmission and reception of signals in a wireless, multi-antenna MIMO (Multiple Input Multiple Output) transmission system. The invention can be applied in a number of fields, such as in the field of high-bitrate home multimedia networks.
Current WiFi technology, even that which corresponds to the most recent standard, does not provide the same coverage quality in a home as it does in a wired network. This problem cannot be solved by increasing transmission power as, with the rise of ecology, it has become necessary to design signal transition equipment that is both robust against interference and low-energy consuming, and that emits as little electromagnetic radiation as possible. These requirements apply particularly to equipment frequently used in domestic environments, for example home gateways and set-top boxes.
The technology used most frequently in this equipment to transmit signals is MIMO technology. This technology is known to increase transmission capacities by multiplying signal transmission paths and improve the robustness of transmission using spatial multiplexing and spatio-temporal coding techniques.
MIMO technology involves transmitting and receiving signals using a plurality of transmission channels with different characteristics to obtain separate signals and therefore increase the probability of at least one signal not being affected by fading. Signals are received or transmitted via a plurality of radio channels associated with a plurality of antennas.
For example, it is known from US2010/119002, an antenna system with one or several multi sector antennas where each sector is associated with a classical MIMO device.
The speed of the signals transmitted or received by the device may be increased by increasing the device's number of radio channels at the expense of energy consumption. Energy consumption generally increases exponentially with the number of radio channels. The energy consumption of each radio channel essentially results from the power amplifier, which consumes around 1 W due to the low energy efficiency of the OFDM modulation used in WiFi, which forces the amplifier to function well below saturation with increased back-off.
It is, moreover, well known that MIMO technology becomes less efficient in environments dominated by interference. And yet, with the constantly increasing amount of wireless equipment in homes, it has become essential to improve this technique for the transmission of signals in domestic environments.
An MIMO beamforming technique, illustrated in
Although this technique is used to obtain the desired radiation patterns, this solution is inadequate for the following reasons:
One purpose of the invention is to provide a multi-antenna device capable of transmitting and receiving MIMO signals to overcome some or all of the aforementioned disadvantages.
More specifically, a purpose of the invention is to provide a multi-antenna device capable of transmitting and receiving MIMO signals that is efficient in terms of speed and robust in environments dominated by interferences, and which transmits the least possible electromagnetic radiation into the environment in which it is placed.
For this purpose, the invention proposes to use the cluster propagation phenomenon illustrated in
Also, according to the invention, it is proposed to replace the omnidirectional antennas of the MIMO signal transmission and reception devices with controlled multi-sector antennas to function solely in angular sectors corresponding to the clusters identified for the environment in which they are present.
The invention is therefore intended for a signal transmission and/or reception device in a MIMO system consisting of:
characterized in that the antenna system consists of at least one so-called multi-sector antenna, with M angular sectors in a horizontal plane capable of selectively receiving and/or transmitting said N signals in one or more of said M angular sectors, said M angular sectors not overlapping each other and together forming a global angular sector of 360 degrees, where M>N,
and in that the device also consists of switching means, mounted between the MIMO module and the antenna system to connect each of the N inputs/outputs of the MIMO module with P angular sectors of the at least one multi-sector antenna, where 1≦P<M, according to a switching diagram determined using control means in accordance with a criteria representing the quality of the reception of signals by said device or another device.
As such, according to the invention, the device transmits and/receives the N signals in a reduced number (=P) of angular sectors from the M angular sectors of the multi-sector antenna. As such, in transmission, the device does not transmit signals in every direction, but only in the predefined prioritized directions, which reduces the quantity of electromagnetic waves transmitted and concentrates the energy transmitted in the prioritized directions. In reception, the device only receives the signals from these prioritized directions, which reduces the cost of signal processing as well as the energy consumption of the device.
According to a first embodiment, the antenna system consists of N multi-sector antennas with M angular sectors and the switching means consisting of N switching circuits, each input/output of the MIMO module being connected to one of said N multi-sector antennas via one of said N switching circuits.
Each of said N multi-sector antennas includes Q inputs/outputs, Q being less than or equal to 2M−1, each of said Q inputs/outputs being connected to a specific combination of angular sectors of the multi-sector antenna.
Advantageously, for each multi-sector antenna, no more than D angular sectors are connected via a switching circuit to an input/output of the MIMO module, where D<M. The number D corresponds to the maximum number of prioritized directions accepted by the device. For example, it can be considered that the device will use a maximum of 3 prioritized directions. D can therefore be fixed at 3. In this case, it is not necessary for the antennas to contain 2M−1 inputs.
inputs/outputs may therefore suffice for the antennas.
Advantageously, M is at least equal to 4 and D is at most equal to 3.
According to a second embodiment, the antenna system consists of a multi-sector antenna with M angular sectors, where M>N, and the switching means consist of a switching circuit, said multi-sector antenna consisting of M inputs/outputs, each one connected to an angular sector of said antenna, said switching circuit being intended to selectively connect N antenna inputs/outputs to N inputs/outputs of the MIMO module. This embodiment is sub-optimal but reduces the number of device components.
Regardless of the embodiment, the number M of angular sectors of the multi-sector antennas is preferably equal to 6 as it has been discovered that, statistically, the angular opening of a cluster in plane H is typically 60°. 6 sectors are therefore typically required to cover the entire space (360°). Moreover, each sector has an angular opening in the vertical plane of 60°. In certain situations, it may be worth increasing the number of sectors, but 6 sectors represents a good compromise in terms of complexity-performance and cost-performance.
According to the invention, the M angular sectors of said at least one multi-sector antenna present identical openings in a vertical plane. The M angular sectors each present an opening of at least 120° between the −60° and +60° angles in the vertical plane. Preferably, they each present an opening of at least 60° between the −30° and +30° angles in the vertical plane.
Experts in the field may note other advantages when studying the following examples, illustrated in the figures appended, provided by way of example.
In reference to
Each input/output ESi of the MIMO module is connected to inputs/outputs of the antenna 30i via the switching circuit 20i, with iε[1 . . . N] The inputs/outputs of the antenna 30i, which are connected to the output ESi of the MIMO module, are selected using a switching diagram implemented by the switching circuit 20i. This diagram is determined using control means 40 according to a signal reception quality criterion.
Each antenna 30i includes, in plane H, M angular sectors sensitively not overlapping each other and together forming a global angular sector of 360 degrees. Each antenna 30i is capable of selectively transmitting or receiving signals in P angular sectors, where 1≦P<M. Each angular sector or combination of angular sectors corresponds to a specific radiation diagram.
Each antenna 30i also includes Q=2M−1 inputs, each one connected to a specific combination of angular sectors from the 2M−1 possible combinations of angular sectors of the antenna. Inputs/outputs that are not connected to any sector are excluded.
The P angular sectors through which the MIMO signal associated with the input ESi is transmitted or received are selected using the switching circuit 20i according to a switching diagram determined using control means. The switching circuit 20i is used to connect the ESi input/output with the input/output of antenna 30i, which is connected to the selected P angular sectors.
The switching diagram used by the switching circuit 20i is determined using control means 40. These control means 40 may be included in the MIMO module 10. This is determined using an algorithm based on MIMO signal reception quality used by the device if concerned with a transmission/reception device or by the MIMO signal reception device if the present device is only a MIMO signal transmission device. The signal reception quality can be defined using one or more values provided by the MIMO value, particularly the RSSI (Received Signal Strength Indication) value, the SINR (Signal to Interference plus Noise Ratio) value, the BER (Bit Error Rate) and the PER (Packet Error Rate).
As can be seen in
each input/output being connected to up to D angular sectors, and the number of switching diagrams that switching circuit 20i must implement can also be reduced to
The invention device can be simplified to further reduce its cost, as illustrated in
Regardless of the embodiment (
In the M=6 case, the width of the angular sectors is about 60° in the horizontal plane and between −30° and +30° in the vertical plane (or elevation plane).
The angular sectors used by the devices in
quality indicators are determined; the configuration showing the highest quality indicator is selected for device A in order to communicate with device B;
quality indicators are then determined and the configuration showing the highest quality indicator is selected for device B in order to communicate with device A. It should be noted that the SINR indicator appears to be the most suitable indicator in an environment dominated by interferences.
The second step or both steps can be repeated periodically in order to take into account changes in the propagation environment. As an alternative, in order to reduce the frequency of system reconfigurations (frequency of learning procedure launches), it may be decided to maintain the configurations of devices A and B while the transmission channel varies slightly, in other words so that the quality indicator does not fall below a predefined limit.
It should be noted that the invention device is capable of functioning with a classic device consisting of a conventional omnidirectional antenna, a portable device, for example. If A indicates the invention device and B indicates the classic device, the learning phase takes place as follows. Device A listens for the learning symbols transmitted by device B through its omnidirectional antenna and determines, for each configuration (or combination) of N sectors from M sectors, a quality criterion (RSSI or SINR or BER or PER).
quality indicators are thus determined and the configuration with the highest quality indicator is selected for device A in order to communicate with device B.
When device A or B include N multi-sector antennas and N switching circuits (
configurations are tested via the N antennas and the N switching circuits.
Compared with the existing MIMO devices consisting of omnidirectional antennas and using the beamforming technique, the invention device provides the following advantages:
Moreover, as the invention device consists of N multi-sector antennas and N switching circuits (corresponding to
With respect to the invention device consisting of 1 sole antenna and 1 sole switching circuit, the expected gain is lower, in the order of GTx+GRx-10 log N, N being the number of MIMO chains, but the structure of the device is less complex.
Although the invention has been described in relation to different particular embodiments, it is obvious that it is in no way restricted and that it comprises all the technical equivalents of the means described together with their combinations if the latter fall within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1255300 | Jun 2012 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/061318 | 5/31/2013 | WO | 00 |