This invention relates to a land mine counter measure system.
Land mines pose a severe threat to military and civilian personnel. The idea of detonating land mines using conventional weapons and ordnances is known but such methods are not very effective or efficient since many ordnances would be required to detonate the numerous possible land mines in a given area.
One current idea is to deploy a net carrying shape charges onto the land mine field. But, never is there a guarantee that all the land mines would be detonated and, worse, some shape charges could fail to detonate resulting in an added explosive danger to personnel who then enter onto the land mine field. Also, this approach would not be used during a war where troops are required to engage the enemy from the beach.
Also, land mines are often buried 6 inches beneath the sand on a beach and also beneath the sand under two or more feet of water. Conventional approaches fail to effectively counter such tactics during wartime.
It is therefore an object of this invention to provide a better land mine counter measure system.
It is a further object of this invention to provide such a system which is highly effective and which can be used during armed conflict.
It is a further object of this invention to provide such a system which is efficient.
It is a further object of this invention to provide such a system which leaves no unexploded ordnances on the land mine field.
It is a further object of this invention to provide such a system which can efficiently and effectively detonate land mines buried in the sand and also under the water.
The invention results from the realization that a more efficient and effective land mine counter measure system is effected by spraying the land mine field with a number of arrow-like kinetic energy rods each aligned about its velocity vector to better penetrate the surface (sand or sand and water) above the mines.
This invention features a mine counter measure system comprising a housing, an explosive in the housing, and a plurality of kinetic energy rods in the housing about the explosive. Each rod has a stabilizer for aligning the rod about its velocity vector to better penetrate the surface above a mine.
In one example, each rod has a length to diameter ratio of greater than 5 and preferably a length to diameter ratio greater than or equal to 10. In one embodiment, the stabilizer is a plurality of fins on the distal end of each rod. In another embodiment, the stabilizer is a flared distal end of the rod. Typically, the proximal end of each rod is pointed. In one example, the proximal end of each rod includes a poly-wedge shape to decrease the drag on the rod. Also, it is preferred that the center of gravity of each rod is proximate the distal end of the rod to orient the proximal end of the rod downward.
Further included may be a foam body in the housing between the rods and the explosive. Or, there may be a foam body in the housing about the rods between the housing and the explosive. In one example, the rods are packaged in coaxially aligned rings and there are coaxially aligned foam bodies between each ring of rods.
The rods may have a circular cross sectional shape, a cruciform cross sectional shape, or a tristar cross sectional shape.
In one example, the housing is a shell. In another example, the housing is a payload. Further included may be a missile for deploying a plurality of said payloads. Typically, the rods are staggered in the housing for better packaging efficiency.
One mine counter measure system in accordance with this invention includes a housing, an explosive in the housing, a plurality of kinetic energy rods in the housing about the explosive, each rod having a stabilizer for aligning the rod about its velocity vector to better penetrate the surface above a mine, each rod having a length to diameter ratio of greater than or equal to 10, each rod having a poly-wedge shaped proximal end, and foam in the housing between the rods and the explosive core.
One mine counter measure system in accordance with this invention features a plurality of munition housings each including, an explosive, and a plurality of kinetic energy rods about the explosive, each rod having a stabilizer for aligning the rod about its velocity vector to better penetrate the surface above a mine and each rod including a poly-wedge shaped tip to decrease the drag on the rod and a length to diameter ratio of greater than or equal to 10. A carrier deploys the munition housings over a minefield.
This invention also features a method of destroying mines in a minefield buried under the surface. The method comprises deploying a munition including a plurality of kinetic energy rods each having a stabilizer into a position above the minefield and deploying the rods above the minefield to fall towards the minefield each aligned along a velocity vector to penetrate the surface and destroy the mines.
In one example, a plurality of the minefields are carried to a position above the minefield and deploying includes detonating an explosive core in each minefield surrounded by the rods.
Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings.
Mine counter measure system 10,
As shown in
As shown in
As shown in
The result is effective and efficient mine destruction without the possibility of leaving unexploded ordnances on the minefield.
In
The rods may also have a non-circular cross section as shown for rod 36″,
In
In
The system of the subject invention also takes into account the effects of water and sand on penetration. Mines that lie on shore can be covered with up to 6 inches of dry or wet sand while mines in the surf zone can be covered with sand and water up to 2 feet.
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. For example, selected structures and techniques of co-pending patent applications Ser. Nos. 09/938,022; 10/162,498; 10/301,302; 10/301,420; 10/384,804; 10/385,319; and 10/370,892, herein incorporated by this reference, may also be used in the connection with the subject invention. Other embodiments will occur to those skilled in the art and are within the following claims:
This application is a divisional application of prior U.S. patent application Ser. No. 10/685,242 filed on Oct. 14, 2003 which is incorporated into this application by reference, and to which this application claims priority.
Number | Date | Country | |
---|---|---|---|
Parent | 10685242 | Oct 2003 | US |
Child | 11880452 | US |