The invention relates to yielding mine roof supports.
Many alternative support beams, mine props or mine pillars have been designed to replace the wooden support beam or reinforce the wooden support beam, but usually the high cost prevents it from entering the market. U.S. Pat. No. 4,712,947 disclose a timber load support member and a sleeve surrounding the support member in its axial direction. The timber prop had an initial length of 1200 mm with the surrounding sleeve made from mild steel being 900 mm long with a wall thickness of 2.8 mm. The timber fibres of the prop began to progressively separate in the direction transverse to the prop axis at around 30 mm and was fully load supporting at around 280 mm after a 23% reduction in length and around 60 tons of load. Quite a large displacement of wood or un-controlled yielding is seen over the length of the prop weakening the support beam with cracked fibres that can be seen at the head and foot part of the prop being held together by the relative expensive, heavy steel sleeve.
U.S. Pat. No. 6,910,834 disclose a mine support prop comprised of an outer steel shell formed in the shape of an elongate tube. An aerated or other lightweight concrete or cement is poured into the elongate tube to substantially fill the entire length of the tube. The total weight of the prop is 58 kg, has a length of 2 m, width of 150 mm and the sleeve diameter is 2 mm. A plurality of elongate steel support members having a length less than the elongate tube are attached to the tube to prevent buckling of the elongate tube along the portion of the tube to which the support members are attached. Buckling is more prone to happen with a relative high (>10) slenderness ratio (height to width ratio) when an elongate tube is exposed to sufficient axial force and therefore the use of the steel support members in the above specification. The elongate tube may be formed by fibreglass formation but no reference is made in the specification to its thickness, specific fibre orientation or that its required length may be less than the entire length of the tube. The mine prop can support a load above 22 tons until more than 175 mm of displacement have occurred. A high slenderness ratio prop is of benefit to the mines as they convey these props down the mine in the same “cart” as what they bring the ore to the surface and the higher the slenderness ratio the more props they can transport with the “cart” at any given time.
A need has thus been identified for a mine roof support overcoming at least some of the shortcomings of the above mine supports.
A yielding mine roof support is provided which is made in the form of a hollow tube made from an epoxy, phenolic, or polyester fibreglass composite.
The tube wall thickness may be between 1 mm and 15 mm.
The tube may taper over at least a portion of its extent. The tapered portion may be from 25 mm to 150 mm in length, typically from 50 mm to 100 mm in length.
The wall thickness of the tube may taper over at least a portion of its extent. This is believed to provide a gradual yielding characteristic.
The tapered portion may be located at and end zone of the tube.
The tapered portion may have at least a third less material than an untapered portion, typically at least 50% less material than an untapered portion.
The fibre orientation of the fibreglass may vary from 1 to 49% radial and the balance of the fibre orientation longitudinal for balancing between hoop strength and longitudinal tensile strength.
Carbon fibre reinforcement may be included in the fibreglass.
The total weight of the support may vary from 9 kg (for 1.5 m length) to 6 kg (for a 1 m length) for a support with yield design point at 40 tons.
The wall thickness may be proportional to the load that must be designed for and therefore the wall thickness of lower design load supports will be less than that of higher design loads.
The wall thickness for the epoxy resin composite support with a nominal 100 mm inner diameter with a design load of 15 ton may be 4.2 mm.
The wall thickness for the epoxy resin composite support with a nominal 100 mm inner diameter with a design load of 30 ton may be 8.3 mm.
The wall thickness for the epoxy resin composite support with a with a nominal 100 mm inner diameter design load of 40 ton may be 11 mm.
Where the support is made of epoxy resin composite a flame retardant may be added to the epoxy resin.
The invention will now be illustrated with reference to the accompanying Figures in which:
The design specifically allows for yielding at one end of the support by tapering the one end of the support. See
The tapered design of the support allows for gradual yielding at one specific end. Please see
Both graphs indicate a second sudden increase and drop in load. This carbon fibre reinforcement can be included (or not) to indicate that a certain yield distance has been reached.
The lessons learned on the 14 ton support tests were then implemented on a 40 ton support. See
The wall thickness of an epoxy resin composite support of the invention is shown in the Table 1 below as a function of load design.
The inventor believes that the invention, as illustrated, provides a mine roof support which is an improvement over the described prior art above as the slenderness ratio of the current beam is also relatively high but the inventor has developed a fibreglass support with specific fibre orientation to prevent buckling of the support. The main aim was not to try and develop a prop to carry/support as high a possible load but to rather design an optimal support that is cost competitive and lighter weight compared to the current wood only support beams that is becoming scarcer and more difficult to source by the day.
Number | Date | Country | Kind |
---|---|---|---|
2012/05524 | Jul 2012 | ZA | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ZA2013/000053 | 7/22/2013 | WO | 00 |