The present disclosure relates to mine ventilation equipment and more particularly to a mine stopping which is especially adapted for low seam height mines.
Mine stoppings are widely used in mines to impede or stop the flow of air in mine passages. Examples of prior mine stoppings are described in U.S. Pat. Nos. 4,483,642, 4,484,837, 4,547,094, 4,820,081, and 9,447,684 assigned to Jack Kennedy Metal Products & Buildings, Inc. Such stoppings are formed by a plurality of elongate metal panels that extend vertically in side-by-side relation from floor to roof across the width of the mine passage. Some mine passages can be quite large, e.g., 20 feet wide and 10 feet high and even as large as 60 feet wide and 35 feet high. In other mines where the seam to be mined is relatively thin, the height of the mine passage is much less. In these mines, the installation of metal stoppings made of vertical panels is less efficient and cost effective.
In one aspect, a mine stopping is installed in a mine passage having a roof, a floor, and opposite first and second side ribs. The mine stopping includes at least one vertical column extending from the floor to the roof. The mine stopping also includes rows of elongate horizontal panels supported one row above another row by the at least one column to extend horizontally between the first and second side ribs to form a wall. The wall of elongate horizontal panels extends substantially completely across the mine passage between the opposite first and second side ribs.
In another aspect, an elongate panel is adapted for installation in a mine passage having a roof, a floor, and opposite side ribs. The elongate panel is adapted to be installed in a generally horizontal position extending between the opposite side ribs. The elongate panel includes a web having upper and lower edges, and a flange extending laterally from the web along one of the upper and lower edges. The web has no flange along the other of said upper and lower edges thereby to allow the web of the elongate panel to lie closely adjacent a web of another elongate panel installed in a horizontal position in said mine passage. The elongate panel includes two elongate panel members having a telescoping fit allowing adjustment of a length of the elongate panel.
In yet another aspect, a column is for use in constructing a mine stopping in a mine passage having a roof, a floor, and opposite side ribs. The column includes a column body including a lower column member and an upper column member. The upper column member is extendable relative to the lower column member to bring lower and upper ends of the column body into pressing engagement with the respective floor and roof of the mine passage. The column includes a system associated with the column body constructed to support a plurality of panels extending horizontally between the opposite side ribs of the mine passage.
Other objects and features of the present disclosure will be in part apparent and in part pointed out herein.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Referring to
The stopping 10, in the embodiment shown, includes three columns 20 extending from floor F to roof R at spaced intervals across the mine passage P. It will be understood that the number of columns 20 may vary from at least one column to two or more columns, depending on the width of the passage P. The stopping 10 also includes a plurality of horizontal rows R1, R2, R3, and R4 of elongate panels supported on the columns 20 at locations one above another, the bottom row adjacent the floor being designated R1, the next row above it R2, and so forth. In the illustrated embodiment, the panels in rows R1, R2, and R4 are of substantially identical construction (although they may vary in length). Each panel of this first type is generally designated 22. The panels in row R3 are of a different construction described hereinafter, and each panel of this second type is generally designated 24. The rows R1-R4 of panels 22, 24 extend horizontally between the side ribs SR of the mine passage P to form a wall of horizontal panels that extends substantially completely across the mine passage and in which the rows of horizontal panels are stacked from adjacent the floor F to adjacent the roof R of the mine passage to substantially completely close the mine passage. The generally horizontal panels 22, 24 are supported at different elevations above the mine floor F by a support system on each column 20 generally designated 26. Walls having other configurations can be used without departing from the scope of the present invention.
In the embodiment of
In general, each horizontal panel 22 of the first type in rows R1, R2 and R4 comprises two panel members 22A, 22B having a telescoping fit with one another to allow adjustment of the length of the panel along a horizontal axis. The panel members 22A, 22B may be formed from sheet metal, for example. In the illustrated embodiment, the panel members are generally of channel-shape in vertical cross section (see
Each panel 22 of the first type also includes end caps 40 located at opposite ends of each panel. As shown best in
The horizontal panels 22 of the first type do not need to have the exact same construction as each other. However, the upper and lower elongate ends of the panels desirably are constructed to abut or be closely adjacent each other to facilitate making a seal between the panels.
As best illustrated in
Each lapping panel 24 in row R3 is similar to the panels 22 in rows R1, R3 and R4 with some exceptions. The lapping panels 24 are different in that the two telescoping panel members 24A, 24B of the lapping panel have no flanges along the lower edges of the webs 30 of the lapping panel members 24A, 24B. The web 30 of an elongate horizontal lapping panel 24 in row R3 lies closely adjacent (and desirably in flatwise contact with) the web 30 of the corresponding channel-shaped panel 22 in row R2 below such that the rear surface of the web of the elongate horizontal lapping panel seals against the front surface of the web of the overlapped channel-shaped panel. This overlapping arrangement allows a combination of the panels 22, 24 to readily fit the height of any mine passage P while minimizing the gaps between the panels. Further, the overlap of the panels 22, 24 allows the panels in rows R4 and R3 to move downward or the panels in rows R1 and R2 to move upward to accommodate mine convergence (i.e., movement of the roof and floor toward one another) without damage to the wall. The lapping panels 24 are also different from the channel-shaped panels 22 in that the lapping panels have no end caps with seals, although suitable end caps and/or seals could be provided. Desirably, the lapping panels 24 have webs 30 of greater height than the webs 30 of the channel-shaped panels 22. The lapping panels 24 can be made using the same sheet metal blanks as used to form the channel-shaped panels 22. Because one of the elongate edge margins of the lapping panel 24 is not bent to form a second flange, the web 30 has a greater dimension between the free edge and the edge having the flange 32.
Lapping panels having other constructions can be used without departing from the scope of the present invention. For example, although the web 30 of the lapping panel in the illustrated example is planar, discontinuities could be provided in the web. Moreover, the web could be bowed to define a generally concave rear surface of the web on the side of the flange 30. Further, the height of the web could be equal to or less than the height of a channel-shaped panel. Other arrangements are possible.
In the illustrated embodiment, each column 20 is a telescoping column having a column body comprising lower and upper column members 20A, 20B telescopically fitted relative to one another, e.g., an upper steel tube telescoped inside a lower steel tube. The lower column member 20A has a lower anchor plate 46 affixed to its lower end for engagement with the floor F of the mine passage P, and the upper column member 20B has an upper anchor plate 48 affixed to its upper end for engagement with the roof R of the mine passage. The upper column member 20B is extendable by a jack or other suitable means to move into pressure engagement with the roof R of the mine passage P. By way of example but not limitation, an hydraulic bottle jack may be positioned between a loop 50 on the lower column member 20A and a lifting collar 52 on the upper column member 20B and activated for this purpose. One or more set screws 54 are provided to lock the column members 20A, 20B relative to one another after they have been jacked into position.
In the illustrated embodiment, the support system 26 on each column 20 comprises a pair of elongate vertical supports 60 affixed (e.g., welded) to ears 62 projecting laterally from the column at opposite sides of the column members 20A, 20B. Each elongate support 60 comprises a lower elongate support member 60A affixed to three ears 62 on the lower column member 20A and an upper elongate support member 60B affixed to one ear 62 on the upper column member 20B. The lower elongate support member 60A could also be affixed to the lower anchor plate 46, and the upper elongate support 60B could also be affixed to the upper anchor plate 48. The elongate support members 60A, 60B have a telescoping fit with one another to allow vertical adjustment of the length of the support 60 as the column 20 extends (as during installation of the column) and contracts (as during a mine convergence). In the illustrated embodiment, the elongate support members 60A, 60B are angle bars nested one inside the other. Other configurations are possible. The horizontal panels 22, 24 are secured to the support members 60A, 60B by clamps 66 comprising, in this embodiment, wire twist clamps described in detail in co-assigned U.S. Pat. No. 4,483,642 incorporated by reference above. This type of wire twist clamp 66 is used to secure the lips 34 of the channel-shaped panels 22 and the lapping panels 24 against the support members 60A, 60B. An elongate vertical opening 62A is provided in each ear 62 to permit one leg of a twist clamp 66 to be inserted through the opening in the event the clamp position coincides with the ear. Without the opening 62A, if the clamp position coincided with an ear 62 an installer would be forced to move the panel 22, 24 up or down somewhat to allow installation of the clamp 66, thus creating an undesirable gap with respect to an adjacent panel.
Other types of columns can be used without departing from the scope of the present invention. For example, other types of column bodies and/or vertical supports could be used. Moreover, connectors other than wire twist clamps could be used.
An exemplary process for installing the mine stopping 10 is described as follows:
1. Select a site along the intended entry that is the most advantageous and has the most true roof R and floor F.
2. Install the columns 20. Each column 20 is telescopically extended to achieve heavy roof-to-floor pressure by using, for example, a hydraulic jack. The set screws 54 are then tightened to secure the column members 20A, 20B relative to one another.
3. Install the horizontal panels 22 in row R1, with the inner ends of the two panels abutting one another at the center column 20. A channel or other support (not shown) may be provided on the column 20 for temporarily supporting the inner ends of the two panels 22. Slide the outer panel members 22A of the panels outward until they contact the respective side ribs SR of the passage P, and then clamp the panel members 22A, 22B of the panels 22 to respective vertical supports 60 on the columns 20.
4. Install the remaining horizontal panels 22 of row R2 similarly by stacking them on the previously installed panels 22 of row R1, the lower flanges of the panels in row R2 being positioned closely adjacent or in contact with the upper flanges of the panels in row R1.
5. Similarly install the horizontal panels of row R4 against the roof R.
6. Install the lapping panels 24 in row R3 to cover the resulting opening (gap) between the panels 22 in rows R2 and the roof panels 22 in row R4. The upper flanges 32 of the lapping panels 24 in row R3 should be closely adjacent or in contact with the lower flanges 32 of the panels in row R4.
7. Seal the gaps between the panels 22, 24 and the gaps between the panels and surrounding mine passage surfaces F, R, SR with appropriate sealant such that the wall is virtually air tight.
It will be understood that the columns 20 do not necessarily have to be in line between the side ribs SR of the mine passage P. The stopping 10 can have a vee shape or other shape in which the left and right sides of the wall are not in alignment with each other.
Optionally, the installation process can include the step of telescopically extending the horizontal panels 22 against one or both of the mine passage side ribs SR using a conventional stopping installation jack such as disclosed in co-assigned U.S. Pat. Nos. 4,695,035 and 7,438,506, hereby incorporated by reference herein. If this is desired, the outer columns 20 and/or one or more intermediate vertical supports 70 (see
The stopping 10 described above has advantages over a stopping in which the panels are installed vertically. In this regard, vertical panels form a beam from the floor to the roof that resists the air load. If the panels are very short like those that would be appropriate for thin seams, they rapidly become “overkill” due to their structural shape. The strength of a uniformly loaded beam increases by the square of the reduction in length. That is, a panel that is half as long can handle four times as much air pressure. While somewhat thinner and lower yield strength material can be used in short panels, normal handling stresses during material moving and installation make a practical limit to that. In the horizontal design of the present invention, the panels 22, 24 span a distance that is much greater than the roof R to floor F height. This allows the efficient structural shape and normally handling resistant materials to be utilized more cost effectively than if the panels are installed vertically. Significantly less material is used.
Similarly, the horizontal panels 22, 24 require far fewer clamps 66 and associated installation labor. Further, instead of jacking many vertical panels in place as required in a vertical panel stopping, only a relatively few columns 20 are jacked in place. These features plus the drastically reduced amount of pieces and hardware contributes to a significantly less laborious installation.
It will also be noted that the lapping panels 24 are very much like the channel-shaped panels 22, which facilitates the manufacture and installation of the panels.
It will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
As various changes could be made in the above constructions and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/650,753 filed on Mar. 30, 2018, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62650753 | Mar 2018 | US |