Mine stopping

Information

  • Patent Grant
  • 6457906
  • Patent Number
    6,457,906
  • Date Filed
    Monday, November 13, 2000
    24 years ago
  • Date Issued
    Tuesday, October 1, 2002
    22 years ago
Abstract
A mine stopping installed in a mine passageway having air flowing through the passageway in a first direction includes a rigid wall extending across the passageway to close the passageway and an opening in the wall to permit the passage of air therethrough. The wall extends between the opening and one side of the passageway at an oblique angle with respect to the direction of air flow through the passageway whereby air flowing through the passageway strikes the wall at the oblique angle thereby to reduce the dynamic air pressure exerted on said wall.
Description




BACKGROUND OF THE INVENTION




This invention relates generally to mine ventilation and, more particularly, to mine doors and mine stoppings.




So-called “stoppings” are widely used in mines to stop off the flow of air in passageways in the mines, a “stopping” generally being a masonry (e.g., concrete block) or metal wall installed at the entrance of a passageway to block flow of air therethrough. Such stoppings are typically provided with a doorway or opening and a door therein for occasional access to the blocked-off passageway. This arrangement is satisfactory under usual conditions when the stopping should prevent the passage of air through the passageway. In some conditions, however, high pressure concussive air is forced against the stopping and door. This may occur, for instance, in longwall mining where a large roof can collapse very rapidly and displace a large amount of air, thereby creating a shock wave of high pressure concussive air. Likewise, a mine blast will also force high pressure concussive air against the stopping and the door. In conventional stopping arrangements, the concussive air cannot escape through the stopping without causing significant damage to the stopping, the door or both.




Moreover, prior art stoppings are constructed generally perpendicular to the direction of air flow through the passageway. This construction is not optimal for decreasing the stress on the stopping caused by the concussive air.




SUMMARY OF THE INVENTION




Among the several objects and features of the present invention may be noted the provision of an improved mine stopping having a door which seals an opening in the stopping; the provision of such a stopping wherein the door can swing open in either of two directions to avoid damage to the stopping due, for example, to concussive air generated by longwall mining or by a mine blast; and the provision of such a stopping which is effective in controlling mine ventilation.




Further among the several objects and features of the present invention may be noted the provision of a mine stopping which may be installed in a mine passageway so as to reduce dynamic air pressure exerted on the stopping; the provision of such a mine stopping which is less likely to be damaged by concussive air; and the provision of such a mine stopping which is effective in controlling mine ventilation and which is economical to manufacture.




Briefly, this invention is directed to a mine stopping comprising a wall extending across a passageway in a mine to close the passageway. The wall has an opening therein. A door is hinged adjacent the opening for swinging between a closed position in which the door closes the opening to inhibit the passage of air therethrough, a first open position in which the door is swung in one direction away from the closed position, and a second open position in which the door is swung in an opposite direction away from the closed position. The door is movable to either of the first and second open positions when the door is subjected to substantial concussive air pressure thereby to permit concussive air to pass through the opening in both directions.




In another aspect of the invention, a swinging door system for closing an opening in a mine stopping comprises a door hinged adjacent the opening for swinging between a closed position in which the door closes the opening to inhibit the passage of air therethrough, a first open position in which the door is swung in one direction away from the closed position, and a second open position in which the door is swung in an opposite direction away from the closed position. The door is movable to either of the first and second open positions when subjected to substantial concussive air pressure thereby to permit concussive air to pass through the opening in both directions.




In yet another aspect of the present invention, a mine stopping is installed in a mine passageway having air flowing through the passageway in a first direction. The mine stopping comprises a rigid wall extending across the passageway to close it, and an opening in the wall to permit the passage of air therethrough for regulating the airflow. The wall extends between the opening and one side of the passageway at an oblique angle with respect to the direction of air flow through the passageway whereby air flowing through the passageway strikes the wall at the oblique angle thereby to reduce the dynamic air pressure exerted on the wall.




Other objects and features of the present invention will be in part apparent and in part pointed out hereinafter.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front elevation of a mine stopping of the present invention having a swinging door mounted thereon;





FIG. 2

is a horizontal cross section taken in the plane of line


2





2


of

FIG. 1

;





FIG. 3

is an enlarged front elevation of the door;





FIG. 4

is an enlarged vertical cross section taken in the plane of line


4





4


of

FIG. 3

;





FIG. 5

is a side elevation showing the door in a first open position with respect to a door frame, the door being shown in phantom lines in a second open position;





FIG. 6

is an enlarged front elevation of the swinging door with a locking bar mounted thereon;





FIG. 7

is an enlarged vertical cross section taken in the plane of line


7





7


of

FIG. 6

;





FIG. 8

is a horizontal cross section like

FIG. 2

showing a second embodiment of the invention; and





FIG. 9

is a horizontal cross section like

FIG. 2

showing a third embodiment of the invention;











Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to the drawings,

FIGS. 1-5

show a sloped mine stopping, generally designated


10


, having a rigid wall


12


extending across a passageway


14


in a mine


15


to close the passageway, an opening


16


in the wall, and a swinging door


18


for closing the opening. The opening


16


is preferably defined by a rectangular door frame, generally designated


20


. The door


18


is hinged adjacent the opening


16


, the door preferably being hinged on the door frame


20


. However, it is contemplated that the door may be hinged directly on the wall


12


. The door frame


20


has opposing top and bottom horizontal frame members, designated


22


and


23


, respectively, and two opposing vertical right and left side frame members, designated


24


and


25


, respectively. The horizontal and vertical frame members


22


-


25


may be formed from channel bar stock, for example. The door


18


includes a main panel portion


28


, preferably formed from steel plate and reinforcing box beams


29


extending along its bottom and vertical sides. The door also includes an upper portion


30


preferably formed by a separate steel strip secured, such as by welding, to the main portion. The upper portion


30


is shaped to form a sleeve


32


extending parallel to the top edge of the door for receiving a horizontal hinge pin


34


which is secured to the top frame member


22


. The door


18


is swingable on the hinge pin


34


relative to the frame


20


between a closed position (

FIG. 4

) engaging surfaces of the frame members


22


-


25


to inhibit the flow of air through the opening, a first open position in which the door is swung in one direction away from its closed position (FIG.


5


), and a second open position in which the door is swung in an opposite direction away from its closed position (shown in phantom lines in FIG.


5


). It is to be understood that other hinge configurations for the door


18


may be used within the scope of this invention. For instance, while the door


18


is preferably hinged along its top edge, it will be understood that the door may be hinged at its bottom or at one side.




Preferably, a seal


36


, such as the rubber “D” seal shown in

FIG. 4

, is attached to the reinforcing box beams


29


at the periphery of the door


18


for sealingly engaging the bottom frame member


23


and the right and left side frame members


24


,


25


of the frame


20


to seal against the passage of air through the opening


16


when the door


18


is in its closed position. A skirt


38


is attached to the main panel portion


28


at the top edge of the door


18


and extends substantially parallel to the top frame member


22


along substantially its full length. The skirt


38


is preferably made of neoprene and is attached by a retainer in the form of a steel channel


40


secured by screws


41


extending through the channel, skirt and into the door


18


. As shown in

FIG. 4

, the skirt


38


is shaped to engage the top frame member


22


when the door


14


is in its closed position to further seal the opening


16


. Preferably, a right corner piece


42


and a left corner piece


43


are mounted on adjacent corners of the door


18


for frictional, sealing engagement with the frame


20


. As shown, the right and left corner pieces


42


,


43


are attached, as by screws


45


, near the bottom corners of the door to engage the right and left frame members


24


,


25


, respectively, and the bottom frame member


23


. The right and left corner pieces


42


,


43


help to seal the opening


16


at the bottom corners where the seal


36


may leave gaps. The right and left corner pieces


42


,


43


are preferably relatively stiff and are made of thick rubber or other suitable material. The seal


36


and the corner pieces


42


,


43


frictionally engage the frame members


22


-


25


to hold the door


18


closed under most circumstances. When the door


18


is subjected to substantial air pressure, such as concussive air from a mine blast or longwalling cave-in, the air pressure will overcome the friction between the seal


36


and corner pieces


42


,


43


and the frame members


22


-


25


to force the door to an open position. Moreover, the air pressure may force the door


18


to swing in either direction to its first or second open position. The ability of the door


18


to swing in both directions is advantageous. Whenever a large, abrupt air displacement occurs, such as occurs in longwall mining or in a mine blast, there is an initial expansion or push of concussive air in a direction away from the displacement, followed by a pulling of air in the opposite direction toward the displacement as the low pressure on the displacement side of the stopping


10


is equalized with the higher pressure on the other side of the stopping. The construction of the swinging door


18


, as described above, allows the air flow caused by the displacement to pass through the opening


16


in both directions.




Referring to

FIGS. 6 and 7

, the mine stopping


10


preferably includes a mechanism for maintaining the door


18


in its closed position. In this embodiment, the mechanism includes an elongate locking bar


50


releasably mounted on the door


18


in a locking position in which the bar extends laterally beyond the door for engagement with the door frame


20


to prevent the door from moving toward either of its first or second open positions. As shown in

FIG. 5

, the bar


50


is secured to both the right and left frame members


24


,


25


, although securement to only one frame member is contemplated. Preferably, the locking bar


50


is removably mounted on the door


18


by a plurality of generally U-shaped wire ties


52


(also referred to as twist clamps), each tie having a hook


54


at each end engageable with a slot of a bracket


55


affixed to the door, and a central portion


56


adapted to be twisted so as to deform the wire tie around the bar to hold the bar in engagement with the door. The bar


50


is similarly attached to the right and left frame members


24


,


25


by wire ties


52


engageable with slots (not shown) in the frame members, the arrangement operable to prevent the door from swinging in either direction to an open position. The bar


50


is easily removable from its locking position simply by removing the wire ties


52


. It is to be understood that other mechanisms for maintaining the door closed may be used within the scope of this invention.




Referring again to

FIGS. 1 and 2

, the mine stopping


10


includes the rigid wall


12


extending across the passageway


14


. The wall


12


preferably includes a first wall section


62


extending between the opening


16


and one side of the passageway, and a second wall section


63


extending between the opening and the opposite side of the passageway. Each wall section is generally vertical and is generally planar. At least one of the two wall sections


62


,


63


extends at an oblique angle A (see

FIG. 2

) with respect to the direction of air flow through the passageway


14


. In the preferred embodiment, both sections


62


,


63


extend at an oblique angle with respect to the direction of flow. It should be apparent that the direction of air flow is generally parallel to the walls of the passageway


14


adjacent the stopping


10


. Conventional prior stoppings are installed perpendicular to the flow of air, which causes the stopping to experience the full amount of velocity pressure caused by the flow. (Note that static pressure is neglected in this discussion.) In the present invention, the angling of the wall


12


reduces the velocity pressure exerted against the stopping by a factor of the sine of the angle between the direction of flow and the wall. In the prior stoppings mentioned above, the angle between the direction of flow and the stopping is generally 90°. Since the sine of 90° is 1, the velocity pressure has its full impact on the stopping. In the present invention, as an example, the wall


12


may be constructed such that the angle A between the direction of flow and the wall is, for instance, 45°. Since the sine of 45° is 0.707, the velocity pressure impact on the door would be only 0.707 times the full velocity pressure.




The wall


12


may be constructed of a plurality of elongate extensible panels extending vertically in side-by-side relation from a floor to a roof of the passageway


14


. The panels are preferably positioned substantially in a plane at an oblique angle with respect to the direction of air flow through the passageway


14


. Installation of such panels is described in U.S. Pat. No. Re. 32,675, which is incorporated herein by reference, and suitable panels are available from Jack Kennedy Metal Products, Taylorville, Ill. The wall may also be constructed of masonry blocks or other similar materials.




It is to be understood that the stopping


10


with angled wall sections


62


,


63


may be constructed without a door or other structure to close the opening


16


. It should also be understood that the opening


16


may be positioned immediately adjacent the passageway


14


, i.e., the wall


12


may consist of only one section extending from one side of the passageway to an opening at the other side of the passageway, the opening being defined in part by the passageway and in part by the stopping


10


.





FIG. 8

shows a second embodiment wherein the wall sections


162


,


163


are oriented more than ninety degrees relative to the direction of air flow shown. However, as noted above, the direction of air flow in a mine passageway


14


is reversible. Thus, the angled wall sections may be angled more than ninety degrees relative to one direction of air flow, and may be angled at less than ninety degrees to flow in the opposite direction, but preferably the wall sections will generally be oblique to the direction of air flow. Moreover, as shown in

FIG. 8

, the wall sections


162


,


163


may be angled at a shallower angle than in the first embodiment, such as about 30 degrees. The wall sections may also be angled at angles greater than those shown. The exact angle of the wall may depend upon such factors as the expected direction of air flow, or the length of the mine passageway in which the stopping is installed. The preferred angle for most stoppings is in the range of 40-50 degrees.




The sloped stopping


10


is advantageous as described above because it reduces the velocity pressure against the stopping. It is further advantageous in that it directs the air flow more satisfactorily toward the doorway or opening


16


in the stopping. This is accomplished because the sloped stopping acts as a funnel to direct the air flow toward the opening. This feature helps to improve the ventilation of the mine in that it allows air to flow more rapidly and efficiently through the stopping.




Referring to

FIG. 9

, in a less preferred embodiment, the swinging door and frame


20


of the first embodiment is shown installed in a conventional stopping


212


having walls installed perpendicular to the direction of air flow. Thus, the swinging door of this invention may be used advantageously in any mine stopping, and is not limited to use in the angled stopping of this invention.




In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.




As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.



Claims
  • 1. A mine stopping installed in a mine passageway having air flowing through the passageway in a first direction, said mine stopping comprising:a rigid wall extending across the passageway to close the passageway, said wall including a first wall section extending at a first angle relative to the direction of air flow through the passageway and a second wall section extending at a second angle relative to the direction of air flow such that the wall sections are arranged in a non-coplanar, non-parallel relationship with respect to one another, and an opening in the wall to permit the passage of air therethrough, said second angle being oblique to the direction of air flow whereby air flowing through said passageway strikes the second wall section at said oblique second angle thereby to reduce the dynamic air pressure exerted on said wall.
  • 2. A mine stopping as set forth in claim 1 each wall section is generally vertical.
  • 3. A mine stopping as set forth in claim 2 wherein each wall section is generally planar.
  • 4. A mine stopping as set forth in claim 1 wherein both of said first and second angles are less than ninety degrees with respect to the direction of air flow, said wall sections forming a funnel for directing air toward said opening.
  • 5. A mine stopping as set forth in claim 4 wherein the oblique angles are in the range of 30-50 degrees.
  • 6. A mine stopping as set forth in claim 1 further comprising a door installed adjacent the opening for swinging between a closed position for inhibiting the passage of air therethrough and an open position moved away from said closed position.
  • 7. A mine stopping as set forth in claim 6 further comprising a seal at the periphery of the door for sealing against the passage of air past the door when the door is in said closed position.
  • 8. A mine stopping as set forth in claim 1 wherein said wall comprises a plurality of elongate extensible panels extending vertically in side-by-side relation from a floor to a roof of the passageway.
  • 9. A mine stopping as set forth in claim 8 wherein each of said first and second wall sections comprises a plurality of elongate extensible panels extending vertically in side-by-side relation from a floor to a roof of the passageway.
  • 10. A mine stopping as set forth in claim 1 wherein both of said first and second wall angles are greater than ninety degrees with respect to the direction of air flow.
  • 11. A mine stopping installed in a mine passageway comprises:a rigid wall extending across the passageway to close the passageway, said wall comprising a first wall section extending at a first angle relative to the direction of air flow through the passageway and a second wall section extending at a second angle relative to the direction of air flow such that the wall sections are arranged in a non-coplanar, non-parallel relationship with respect to one another, at least one of said first and second angles being between about 30-50 degrees with respect to the direction of air flow through the passageway, whereby air flowing through said passageway strikes the wall at said angle thereby to reduce the dynamic air pressure exerted on said wall.
  • 12. A mine stopping as set forth in claim 11 wherein each of said first and second sections includes at least one elongate extensible panel extending vertically from a floor to a roof of the passageway.
  • 13. A mine stopping as set forth in claim 11 wherein both of said first and second angles are less than ninety degrees with respect to the direction of air flow.
  • 14. A mine stopping as set forth in claim 11 further comprising a door installed in an opening in said wall for swinging between a closed position for inhibiting the passage of air therethrough and an open position moved away from said closed position.
  • 15. A mine stopping as set forth in claim 11 wherein each wall section is generally vertical and is generally planar.
  • 16. A mine stopping installed in a mine passageway comprises:a rigid wall extending across the passageway to close the passageway, said wall comprising a first wall section extending from one side of the passageway at a first angle and a second wall section extending from an opposite side of the passageway at an oblique angle relative to the opposite side such that the wall sections are arranged in a non-coplanar, non-parallel relationship with respect to one another and so that air flowing through said passageway strikes the second wall section at said oblique angle thereby to reduce the dynamic air pressure exerted on said wall.
  • 17. A mine stopping as set forth in claim 16 wherein each of said first and second sections includes at least one elongate extensible panel extending vertically from a floor to a roof of the passageway.
  • 18. A mine stopping as set forth in claim 16 further comprising a door installed in an opening in the wall for swinging between a closed position for inhibiting the passage of air therethrough and an open position moved away from said closed position.
  • 19. A mine stopping as set forth in claim 16 wherein each wall section is generally vertical and is generally planar.
  • 20. A method of installing a stopping in a mine wherein the stopping comprises a plurality of elongate extensible panels adapted to extend from a floor to a roof of a passageway in the mine, each panel comprising a lower panel member adapted for engagement of its lower end with the floor and an upper panel member adapted for engagement of its upper end with the roof, one of said lower and upper panel members having a telescoping sliding fit with respect to the other of the panel members, the method comprising:positioning a first of said extensible panels at a first angle relative to sides of the passageway, positioning a second of said extensible panels at a second angle relative to sides of the passageway, forcing the upper end of the upper panel member of said panels into engagement with the roof and the lower end of the lower panel member of said panels into engagement with the floor, wherein said first and second panels are arranged in a non-coplanar, non-parallel relationship with respect to one another and at least one of said first and second angles is oblique with respect to the sides of the passageway to reduce the dynamic air pressure exerted on said stopping.
  • 21. A method as set forth in claim 20 wherein the forcing step includes engaging an end of an extensible member of a jack with the upper end of the upper panel member and extending the extensible member to effect relative telescopic extension of the upper and lower panel members thereby to force the upper end of the upper panel member into pressure engagement with the roof.
  • 22. A method as set forth in claim 20 further comprising positioning some of said plurality of extensible panels in side-by-side relationship with said first extensible panel and positioning others of said extensible panels in side-by-side relationship with said second extensible panel to form generally planar, generally vertical first and second wall sections, respectively.
CROSS-REFERENCE TO RELATED APPLICATION

This is a divisional of U.S. patent application Ser. No. 09/188,918 filed Nov. 9, 1998, now U.S. Pat. No. 6,164,871.

US Referenced Citations (31)
Number Name Date Kind
283286 Sawyer Aug 1883 A
1243377 Allison et al. Oct 1917 A
1478303 Snyder Dec 1923 A
1575626 Haapanen Mar 1926 A
2188694 Tucker Jan 1940 A
2621725 Shacikoski Dec 1952 A
2729064 Kennedy et al. Jan 1956 A
2738179 Joy Mar 1956 A
3118363 Burgess, Jr. Jan 1964 A
3303343 Bear Feb 1967 A
3690299 Johnson Sep 1972 A
3906670 Burton Sep 1975 A
3972272 Bagby Aug 1976 A
3977312 Kissell Aug 1976 A
4009649 Thimons et al. Mar 1977 A
4023372 Presler et al. May 1977 A
4036024 Dreker et al. Jul 1977 A
4043079 Smith Aug 1977 A
4096702 Burton Jun 1978 A
4388779 Peterson Jun 1983 A
4478535 Kennedy et al. Oct 1984 A
4483642 Kennedy et al. Nov 1984 A
4523406 Kennedy et al. Jun 1985 A
4607568 Hill et al. Aug 1986 A
RE32675 Kennedy et al. May 1988 E
4754797 Sronce Jul 1988 A
4820081 Kennedy et al. Apr 1989 A
RE34053 Kennedy et al. Sep 1992 E
5167474 Kennedy et al. Dec 1992 A
5240349 Kennedy et al. Aug 1993 A
5466187 Kennedy et al. Nov 1995 A
Foreign Referenced Citations (4)
Number Date Country
1451615 Oct 1976 GB
1580537 Dec 1980 GB
2 147 652 May 1985 GB
WO 9841733 Sep 1998 WO