This invention pertains to mineral, cosmetic, pharmaceutical, agricultural, nutraceutical, and other compositions and methods for producing the same.
More particularly, this invention pertains to a method for producing compositions including an unusually large number of naturally occurring minerals.
In a further respect, the invention pertains to a mineral composition that has an unusually low pH but that does not irritate dermal tissues when applied thereto.
In another respect, the invention pertains to nutritional, cosmetic, and pharmaceutical compositions that include a significant number of mineral elements and that facilitate delivery of the minerals into the body of a human being or animal.
The following definitions are utilized herein.
Chemical element. Any of more than 100 fundamental metallic and nonmetallic substances that consist of atoms of only one kind and that either singly or in combination constitute all matter, most of these substances lighter in weight than and including uranium being found in nature and the rest being produced artificially by causing changes in the atom nucleus.
Clay. A natural or synthetic colloidal lusterless earthy composition that includes tiny sheet-like layered particles of alumina and/or silica that are less than about 0.002 millimeters in size, that is generally plastic when moist, and that, when naturally occurring, includes decomposed igneous and/or metamorphic rocks. Most clays have a pH in the range of about 4.5 to 8.5. Natural and synthetic clays include mineral elements. Clays can, in additional to having particles less than five microns in size, include particles having a size greater than five microns.
Leonardite. A soft, loose-textured coal that has low BTU value. Leonardite is a humate; can include up to 70% by weight minerals; can be formed from lignite; can occur naturally as the result of not being heated and pressurized over time to the extent necessary to produce anthracite, lignite, or bituminous coal; and, can include compost as a component.
Mineral. Any naturally occurring chemical element or compound. A mineral has a characteristic crystal structure and chemical composition or range of compositions.
Mineral element. A chemical element that occurs naturally as or in a mineral. A mineral element may be produced using synthetic or manufacturing processes; however, each mineral element does occur naturally as or in a mineral.
Rare earth or rare earth element. Any one of a group of metallic elements with atomic numbers 58 through 71, including cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In nature, rare earth elements are bound in combination with nonmetallic elements in the form of phosphates, carbonates, fluorides, silicates, and tantalates.
Sand. A loose material consisting of small but easily distinguishable grains usually less than two millimeters in diameter and more than about 0.02 millimeters in diameter, most commonly of quartz, resulting from the disintegration of rocks.
Silt. Unconsolidated or loose sedimentary material whose constituent rock particles are finer than grains of sand and larger than clay particles, specifically, material consisting of mineral soil particles ranging in diameter from about 0.02 to 0.002 millimeters.
Mineral elements are essential to life. The body however does not manufacture a single mineral element although all tissue and internal fluids contain them from bones, teeth, soft tissue, muscle, blood and nerve cells. The usefulness of mineral elements and of trace mineral elements in biological systems has been scientifically and medically established. Their complimentary function for enhancing nutrient exchange, improved conductivity of cellular transport, support essential osmotic balance of every tissue, fluid, cell and organ, and play a role on everything from muscle response, to transmission of messages through the nervous system, the production of hormones, digestion, and utilization of nutrients. They play a significant role in disease prevention not only in the functions described above, but on a genetic fundamental level, as biological systems require mineral elements to effectively and accurately program DNA synthesis required for cell replication. Any defective programming in DNA synthesis by deficient mineral element function could lead to abnormal replication and alternatively promote disease state or death.
The presence in the body of many mineral elements is the result of supplementation through diet. Macro mineral elements are those that the body requires in greater quantities than 100 mg daily, while Micro mineral elements are those that the body requires less than 100 mg daily. Food consumption, particularly of fruits and vegetables, is the only means to supplement vital mineral elements to the body. The introduction of processed food and the insurgence of soil mineral depletion have created a food market less apt to derive and deliver the mineral element requirements that were once delivered only by consumption. Today's synthetic vitamin and mineral element supplement market (which is valued in the billions of dollars) has been established on the basis that the human body is not getting all the necessary mineral elements through normal food consumption.
Soil depletion phenomena are real and measurable. Restoration of soil involves methods of crop re-cycling and use or organic fertilizers to help reconstitute the mineral content of soil. The use of organic fertilizers has been increasing in usage over the last three decades. Their increased usage is the result of environmental and agricultural concerns for moving towards a chemical-free and pesticide-free method of crop production coupled with a means for replenishment that can alleviate the soil depletion of minerals on farms overburdened by decades of use.
Soil taxonomy and the many sub-classifications yield earth matter that collectively includes all known natural minerals. Soils vary in their mineral content with some having predominant concentration a certain minerals and trace minerals. The minerals can be concentrated from the soil using extraction techniques known in the art and are usually identified and quantified by analytical equipment.
In all cases, soil classification and the extraction techniques applied to capture or recover minerals are the limiting factors in maximizing the total number and amounts of minerals identified and quantified. Most extraction techniques fail to capture a wide spectrum of inherent minerals found in soil.
One facet of the invention pertains to extraction techniques used to gather, isolate, and concentrate specific mineral elements. For example, U.S. Pat. No. 4,150,093 Kaminsky and U.S. Pat. No. 3,990,885 Baillie describe hot water extraction of tar sands yielding heavy minerals at specific high concentrations of titanium and zirconium.
Clay soil is one of the three principal types of general soil classifications, the other two being sandy soil and loamy soil. Most soils include silt.
The extraction techniques described herein relates in part to specific soils and soil combination compositions having taxonomic classifications including clay soil, sandy soil, and/or clay-sand soil comprising a combination of clay soil and sandy soil. Sandy soil typically is described as silicates. Soils classified as clay soils contain a significant percentage of clay in their composition, typically at least twenty percent by weight.
Soil includes very coarse, coarse, fine, very fine, and medium size particle sizes. The coarse particles ranges in size from 0.5-1.0 mm. The fine particles are from about 0.10 mm to 0.25 mm in size. The medium particles are from 0.25-0.50 mm in size. Very coarse particles are greater than about 1.0 mm in size. The very fine particles are less than about 0.10 mm in size.
The percent sand in clay-sand soil typically by definition equals or is greater than 20% by weight. The percent of silt in clay-sand soil typically by definition equals or is greater than 20% by weight.
Two samples of selected soil were analyzed by A&L laboratories in Memphis, Tenn. with the following results:
The soils from Sites 4 and/or 5 or other sites were collected and subjected to the aqueous extraction process described below to produce both a liquid mineral element composition containing mineral elements and to produce a dry powder mineral element composition. The dry powder mineral element composition is produced by drying the liquid mineral element composition.
Both the liquid mineral element composition and the dry powder mineral element composition capture and recover similar mineral elements to constitute a comprehensive mineral composition. Both liquid and dry powder mineral element compositions produced by the procedures described herein preferably, but not necessarily, contain a minimum of 8 macro mineral elements and a minimum of 60 micro mineral elements.
Physical testing and analysis was also conducted on the liquid and dry mineral element compositions. Typical specifications of liquid extract solution range in color but preferably are from yellow to amber brown and contain between 1 to 10% by weight of mineral elements, most preferably 3-5%. The solution is acidic with a pH ranging from 2.5-4.5, most preferably from 2.5-3.5. The liquid extract can be dried to produce an anhydrous powder. The anhydrous powder presently ranges in color from light-off-white to brown, but preferably from yellow to golden amber, is insoluble in any non-polar solvent such as hydrophobic liquids (oil and fats), is insoluble in alcohol, and is readily soluble, yet non-swelling, in water and hydro-alcoholic solutions at concentrations of 1 to 5%, most preferably at concentrations of 3-5% by weight. The dry powder is partially soluble or capable of being partially suspended in polar solvent in supersaturated solutions. The dry powder can also be easily suspended in non-polar solvents.
As stated above, both liquid and dry mineral element compositions produced by the procedures described herein will contain a minimum of 8 macro mineral elements and a minimum of 60 micro mineral elements. The micro mineral elements include 1trace and rare earth mineral elements.
For example, the dry mineral element composition will contain at concentrations ranging from 0.0001-20.00% by weight, most preferably from 0.001%-10% by weight, the macro mineral elements of calcium, chlorine, magnesium, manganese, phosphorous, potassium, silicon, and sodium; and, will preferably contain at least sixty micro mineral elements at concentrations ranging from 0.00001-3.0% by weight, most preferably from 0.0001-1% by weight. The micro mineral elements include aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, bromine, cadmium, cerium, cesium, chromium, cobalt, copper, dysprosium, erbium, europium, fluorine, gadolinium, gold, hafnium, holmium, iodine, indium, iridium, iron, lanthanum, lead, lithium, lutetium, mercury, molybdenum, neodymium, nickel, niobium, palladium, platinum, praseodymium, rhenium, rhodium, rubidium, ruthenium, samarium, scandium, selenium, silver, strontium, sulfur, tantalum, terbium, tellurium, thallium, thorium, thulium, tin, titanium, tungsten, vanadium, ytterbium, yttrium, zinc, and zirconium.
Since the process described herein normally does not introduce any minerals as part of the extraction process, it can be established that any minerals identified and quantified by the process described herein have been captured and recovered from the initial soil matter or the starting raw material. Therefore, it can be established that the original clay or other soil that processed through the extraction method described herein likely include aluminum silicates and other metal silicates in nature which has been naturally enriched with multiple detectable minerals. It can also be established that if a mineral element is identified and quantified in the aqueous liquid extract, it will be identified and quantified in the dry powdered extract in much higher concentrations as a result of drying process or volume reduction.
For example, a lot produced using the soil and extractions methods described herein was tested by independent analytical testing for conducting chemical analysis using standard techniques of identification and quantification for both dry and liquid forms of the comprehensive mineral composition. The results of testing performed at Teledyne Wah Chang Laboratories in Huntsville, Ala., utilizing scientifically accepted and standard equipment such as Titration, Inductively Coupled Plasma, Mass Spectrometry, and Atomic Absorption equipment resulted in the mineral element quantification data set forth below in TABLE I for an aqueous mineral element composition and from the dry mineral element composition that resulted when the aqueous mineral element composition was dried to produce a powder.
The mineral element compositions set forth above in Table I were produced from naturally occurring soil the analysis of which is reflected below in Table II.
Once a desirable naturally occurring soil or soil combination is obtained, the soil(s) is subjected to the extraction process shown in
Clay soils, mixtures of clay soils, or mixtures of clay soil(s) and leonardite are presently preferred in the practice of the invention. One reason such soil combinations are preferred is that such soils can be high in the mineral elements deemed important in the practice of the invention. As noted, it is preferred that mineral element compositions produced in accordance with the invention include at least eight macro mineral elements and at least sixty micro mineral elements.
The first step in determining whether a clay soil is acceptable is to determine of arsenic, lead, mercury, and cadmium are each present in acceptably small concentrations. It is presently preferred that the concentration of each of these elements be less than the concentrations shown below in Table III.
To achieve the desired concentrations noted above, a soil that has a greater than desired concentration of the toxic elements can be admixed with one or more soils containing a lesser than desired concentration of the toxic elements. Further, the maximum desired concentrations of the four toxic elements noted above can vary depending on the intended end use of the mineral element composition produced by the invention. For example, if the mineral element composition is intended to be used in products ingested by human beings, the acceptable levels of the toxic elements normally will be less than if the mineral element composition will be used in agricultural products.
If the soil, or soil combination, has appropriately low concentrations of the four toxic elements arsenic, lead, mercury, and cadmium, the soil is next tested to determine if acceptable concentrations of rare earth elements are present in the soil or soil combination. Desired levels of rare earth elements are set forth below in Table IV.
The concentration of the elements listed in Table IV can vary as desired, but, as noted, it is desirable to have at least the concentration of each element as noted in Table IV. A lanthanum concentration of at least eighteen ppm and a scandium concentration of at least three and seven-tenths ppm are also preferred. Concentrations of promethium and gadolinium are also desirable. In the practice of the invention, at least ten rare earth elements are present in the soil, preferably at least twelve, and more preferably all of the rare earth elements along with lanthanum and scandium. The presence of most or all of the rare earth elements in the soil, and in the mineral element compositions derived from the soil, is believed to be important in improving the efficacy of the mineral element composition when ingested by the body or when transdermal absorbed by the body.
The clay soil or soil combination also includes at least 5% by weight calcium, preferably at least 10% by weight calcium, and most preferably at least 20% by weight calcium. Concentrations of calcium of 25% by weight or greater are acceptable.
The clay soil or soil combination also includes at least 5% by weight silica, preferably at least 10% by weight silica, and most preferably at least 20% by weight silica. Concentrations of silica of 25% by weight or greater are acceptable.
The clay soil or soil combination also includes at least 0.25% by weight phosphorous, preferably at least 1% by weight phosphorous, and most preferably at least 2% by weight phosphorous.
Leonardite is a valuable mineral source in producing soils that are subjected to the extraction process illustrated in
Once a clay soil or clay soil combination is obtained that contains the requisite mineral elements, the clay soil is subjected to the extraction process of
Example of Extraction Process
In
The slurry from tank 10 is directed, as indicated by arrow 16, into a settling tank 11 to permit particulate to settle downwardly out of the slurry. The slurry is maintained in the settling tank 11 for any desired length of time, but this length of time is presently in the range of about one to ten days. As the length of time that the slurry is maintained in the settling tank 11 increases, the amount of liquid that can be drawn out of the tank and sent to cooling tank 12 or concentrator 13 increases and the amount of solids that have settled to the bottom of the tank increases. Chemicals or any other desired method can be utilized to facilitate the settling of solids from slurry directed into tank 10. After the slurry has resided in settling tank 11 for the desired period of time, liquid is drawn out of the tank to cooling tank 12, or directly to the concentrator 13. The solids on the bottom of tank 11 can be directed to tank 10 to be reprocessed, can be discarded, or can be otherwise utilized.
Cooling tank 12 cools the fluid from tank 11 to a temperature in the range of 40° F. to 70° F. (5° C. to 21° C). Tank 12 (and 14) is presently cooled with a refrigeration system to cool the fluid in tank 12. Consequently, when fluid contacts the inner cooled wall surfaces of tank 12, the wall surfaces transport heat away from and cool the fluid. Any desired system can be utilized to cool tank 12 (and 14) and/or to cool the fluid in the tank. For example, a coil can be placed in the fluid and cool the fluid without directly cooling the tank walls with a refrigeration or other system. The fluid from tank 11 is cooled to prevent or minimize yeast and mold growth. The fluid in tank 11 normally is heated due to the ambient temperature and not due to any chemical or mechanical action that takes places in tank 11. Cooled liquid from tank 12 is, as indicated by arrow 18, directed from tank 12 to concentrator 13.
The concentrator 13 comprises a thin film composite reverse osmosis system in which fluid is directed into a plurality of long, cylindrical, hollow liquid permeable membrane tubes under pressure; and, in which fluid is forced radially out through the liquid permeable cylindrical membrane wall to increase the concentration of the mineral elements in the fluid. Evaporation is an alternate approach to increasing the concentration of mineral elements in the fluid. A reverse osmosis system is preferable to evaporation because it requires less energy, and because the water that passes radially through the membrane is a source of clean usable water.
One preferred reverse osmosis system includes eight hollow tubes or “vessels” that are about four inches in diameter and forty inches long. Each tube houses three concentric cylindrical membranes. The permeability flow rate is approximately 80% to 95% rejection, depending on the feed rate and the concentration of mineral elements in the fluid being treated. The spacing between the three concentric membranes is about ¼ inch. There are three ring couplers and one end plug per tube. The maximum pressure allowed by the cylindrical membranes is about 600 psig. A pressure of between 300 to 450 psig is recommended and is normally used. The membranes are to be utilized at a temperature of 135° F. (57° C.) or less. The temperature of the fluid and the membrane is, however, typically maintained in the range of 55° F. to 65° F. (12° C. to 20° C.). The fluid from tank 11 is processed by passing it sequentially through each of the eight tubes.
If desired, concentration systems other than reverse osmosis systems can be utilized. Such other systems are not believed comparable to a reverse osmosis system in terms of cost and efficiency.
In
The concentrate liquid produced by concentrator 13 has a pH of approximately 3. The concentrate liquid typically includes from three to twelve percent by weight mineral elements, i.e. if the mineral elements are separated from the concentrate liquid, a dry material is produced that has a weight equaling about 3% to 12% by weight of the concentrate liquid. The pH of the concentrate liquid is adjusted by varying the amount of citric acid or other edible acid and/or alkaline or acidic soil added to the mixing tank 10 and is in the range of pH 2.0 to pH 5.0, preferably pH 2.5 to pH 3.5. The pH of the concentrate liquid (and dry powder or other material produced therefrom) preferably is less than pH 4.5. Table I herein illustrates the mineral element present in one concentrate liquid produced by concentrator 13. If necessary, the concentrate liquid is recirculated back through concentrator 13 to increase the mineral element content in the liquid. As the proportion of mineral elements increases, the propensity of mineral elements to precipitate from the concentrate liquid increases. A mineral element concentration of at least eight percent is presently preferred for injection into dryer 15. A mineral element concentration in the range of three to twelve percent or more is beneficial because many prior art processes currently only produce a fluid having a mineral element concentration of about two percent.
Any desired drying system can be utilized. The present drying apparatus consists of a tower into which the concentrate fluid is sprayed. Air in the tower is heated. The concentrate fluid is sprayed in a pattern that causes the spray to swirl down the sides of the tower. As the spray travels down the sides of the tower, the water evaporates, producing powder particles including mineral elements. The powder falls downwardly to the bottom of the tower. Moist air travels upwardly through the center of the tower and is directed 23 to a bag house 22. The moist air enters elongate air-permeable hollow generally cylindrical bags in the bag house. The air travels outwardly through the walls of the bags and leaves behind powder particles on the inside surfaces of the bag. The bags are shaken each thirty seconds to cause the powder on the inner surfaces of the bag to fall downwardly for collection. Table I illustrates the mineral element concentration in the powder produced in dryer 15 when the liquid mineral element concentrate having the composition set forth in Table I was directed into dryer 15. The dry powder mineral element composition of Table I in aqueous solution has a pH of about 3.0.
In one spray system utilized in the dryer 15, the fluid concentrate is directed into dryer 15 under a pressure of about 2500 psi. The orifice size of the spray nozzles utilized is about 0.027 inch. The spray angle of the nozzle is 70 degrees and the average droplet size is about 75 microns.
The areas of application and product usage for the mineral element compositions of the invention include nutritional, personal care, and agricultural products. For example, in the area of nutritional products, the mineral element compositions resulting from the processes described herein can provide a broad spectrum mineral supplement to supplement minerals not derived from food consumption.
For example, the macro mineral elements found in the mineral element compositions of the invention are typically made up of all known macro mineral elements. These macro minerals are essential to bodily functions and are dependent on each other in the body and have been indicative for preventing disease. As a specific example, zinc acts as a cofactor to many enzymatic reactions such as DNA and RNA polymerase for the synthesis of proteins. Calcium is also a cofactor to the enzymes responsible for fat and protein metabolism. Calcium is believed to help prevent osteoporosis and colon cancer. Sodium and potassium are important for nerve transmission, muscle contraction, and balance of fluids in the body. Phosphorous is the second most abundant mineral in the body, after calcium, and plays many important roles in heart regularity, nerve impulses, and kidney function.
The trace or rare earth minerals also play an important role in body functions and have also been indicative of preventing disease. For example, copper helps make red blood cells, plays a role in bodily enzymes, and is important for the absorption of iron. Fluorine helps form bones and teeth, and helps make teeth decay-resistant. Iron deficiency is common throughout the world. Women are especially at risk, since they lose iron in menstrual blood. Deficiency can lead to anemia, with symptoms of fatigue, weakness and ill health. Iodine deficiency can result in goiter, the enlargement of the thyroid gland. Selenium is currently being investigated for its potential to prevent cancer.
In certain cases, supplementation of certain mineral elements can bring about improvements in disease states. For example, in the case of diabetes chromium, magnesium, and vanadium have been documented to improved diabetic disease state. Chromium is needed to make glucose tolerance factor, which helps insulin improve its action. Studies suggest that a deficiency in magnesium may worsen the blood sugar control in type 2 diabetes. Magnesium interrupts insulin secretion in the pancreas and increases insulin resistance in the body's tissues. Evidence suggests that a deficiency of Magnesium may contribute to certain diabetes complications. Vanadium has been clinically proven to normalize blood glucose levels in animals with type 1 and type 2 diabetes.
As people age, the ability to metabolize or absorb certain mineral elements decreases. People over age 65 have a greater risk of zinc deficiency due to a reduced ability to absorption, leading to other disease states. Zinc supplements may be required to avoid symptoms of deficiency, including anorexia, slow wound healing, impaired taste sensation or reduced immune function.
The use of a nutritional supplement in tablets, soft capsules, bars, processed foods or beverages which contains the small concentrations of the mineral element compositions described herein could be beneficial to health if used to supply sub-toxic dosages of certain mineral elements that can pose a toxic risk. An Acute Oral Toxicity animal study conducted at Northview Pacific Labs in Hercules, Calif. indicated that acute dosages of 1 gram of dry mineral element composition per kilogram of weight of an individual classified the Comprehensive Mineral Composition posed no toxicity risk to an individual. This qualifies the products produced by the processes of the invention as a unique composition that delivers a substantial natural balance of minerals through oral supplementation in a single or multiple dosages for human and veterinary product consumption.
The following examples are provided by way of explanation, and not limitation, of the invention.
Procedure:
Procedure:
Mineral content of 1 Kilo of the Nutritional Granola Bar delivers no less than 1 ppm of Macro Minerals consisting of a blend of Calcium, Chlorine, Magnesium, Manganese, Phosphorous, Potassium, Silicon, Sodium, and no less than 0.0001 ppm of Micro Minerals consisting of a blend of Aluminum, Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Bromine, Cadmium, Cerium, Cesium, Chromium, Cobalt, Copper, Dysprosium, Erbium, Europium, Fluorine, Gadolinium, Gold, Hafnium, Holmium, Iodine, Indium, Iridium, Iron, Lanthanum, Lead, Lithium, Lutetium, Mercury, Molybdenum, Neodymium, Nickel, Niobium, Palladium, Platinum, Praseodymium, Rhenium, Rhodium, Rubidium, Ruthenium, Samarium, Scandium, Selenium, Silver, Strontium, Sulfur, Tantalum, Terbium, Tellurium, Thallium, Thorium, Thulium, Tin, Titanium, Tungsten, Vanadium, Ytterbium, Yttrium, Zinc, Zirconium.
Procedure:
Procedure:
Procedure:
Compounding
Encapsulation
Procedure:
Beverage Additive
Powdered Concentrate Mineral Pack
Package ¼ oz of the dry mineral element composition of Table I in foil pack. Mixing the ¼ oz of dry mineral element composition in the foil pack into 12 ounces of any beverage including water delivers no less than one ppm of Macro Minerals consisting of a blend of Calcium, Chlorine, Magnesium, Manganese, Phosphorous, Potassium, Silicon, Sodium, and no less than 0.0001 ppm of Micro Minerals consisting of a blend of Aluminum, Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Bromine, Cadmium, Cerium, Cesium, Chromium, Cobalt, Copper, Dysprosium, Erbium, Europium, Fluorine, Gadolinium, Gold, Hafnium, Holmium, Iodine, Indium, Iridium, Iron, Lanthanum, Lead, Lithium, Lutetium, Mercury, Molybdenum, Neodymium, Nickel, Niobium, Palladium, Platinum, Praseodymium, Rhenium, Rhodium, Rubidium, Ruthenium, Samarium, Scandium, Selenium, Silver, Strontium, Sulfur, Tantalum, Terbium, Tellurium, Thallium, Thorium, Thulium, Tin, Titanium, Tungsten, Vanadium, Ytterbium, Yttrium, Zinc, Zirconium.
In the area of topical application and delivery of minerals, there is growing evidence that transdermal delivery could be the best route to deliver therapeutic agents, particularly metal drugs. There is also great interest on skin for being the next frontier for better route of delivery of vitamins and minerals for improved systemic absorption and availability. For example, studies at the Graduate School of Science and Technology at Bond University in Australia demonstrated how the gastro-intestinal tract presents a significant barrier to the efficient absorption of both orally administered and inject-able dietary essential trace minerals. Their studies indicate that presenting trace minerals which can penetrate the dermis permits their slow release from the skin with more efficient (relative to incipient toxicity) systemic delivery. Examples are given of dermal application of copper, zinc, titanium, platinum and gold complexes to treat chronic inflammatory disease. Some of these compounds are also anti-cancer agents. Other studies have demonstrated that skin penetration of minerals follow a pattern of organ distribution. The inventors believe that the mineral element compositions described herein can be an ideal multi-mineral product for delivery through the skin qualifying as a unique composition that delivers a substantial natural balance of minerals to the surface of the skin or on stratum corneum for transdermal supplementation. A single or multiple dosage for human and veterinary product application onto the skin would contain small concentrations of the mineral element compositions described herein and could be beneficial to health if used in sub-toxic dosages.
An example of a transdermal product follows.
Procedure:
The resulting aqueous solutions from the mineral element composition are highly acidic. Preparation of acidic mineral element solutions can useful, particularly for the personal care industry.
An example of a low pH composition follows:
Water—100% as supplied through the process of reverse osmosis pH=5.7
Water: 95% by weight, as supplied through the process of reverse osmosis Dry mineral element composition of Table I: 5% by weight Mix water and mineral element composition together. The pH of the resulting aqueous solution is 3.0. The mineral composition aqueous solution of Example 10 is substantially non-irritating to skin and eyes. Acidic solution will normally be irritating to open wounds. For example, aqueous solutions of glycolic acid with a pH=3.0 will sting or burn when applied or upon contact to freshly shaven skin. The pH=3.0 aqueous solution of Example #10 causes little or no sting or burning when applied to freshly shaven skin.
In the area of personal care products, minerals have been the subject of increased importance. Minerals play an important role in skin structure. As examples, zinc plays an important antioxidant role necessary for development of new cells and cell turnover or cellular proliferation. Silicon has been studied for its role in the formation of collagen, the skin underlying support. Copper is important in keratinization and in the production of enzymes. Selenium is important in maintaining skin elasticity. Minerals as used in baths, bath beads, mud treatments, masks, and facial mineral restoration products have been extensively used in the spa, salon, and retail cosmetic industry. “Dead Sea” minerals, colloidal minerals, and phyto-minerals have been used extensively for beautification and therapeutic purposes. The inventors believe that the mineral element composition described herein is novel for formulating products for cosmetic beautification using conventional procedures known to those who practice the art.
Examples of cosmetic beautification products follow.
Procedure: Mix above components together to form facial mud composition. Apply mud composition to skin.
Procedure: Admix water and mineral composition to form spray composition. Apply spray composition to face to wet skin.
Procedure:
Skin proliferation, the rate at which cell are born at the basal layer and subsequently shed from the body after reaching the upper layers of the stratum corneum, is an important and dynamic function for maintaining healthy skin. For example, psoriatic patients suffer from proliferation disorders as skin cells do not regenerate or desquamate normally. Because minerals such as zinc and copper play a role in skin proliferation, they have been extensively studied for topical application and have been shown to improve certain skin condition disorder. Skin proliferation disorders such as dandruff have also been studied with the use of minerals to bring about improvements.
Altering the rate of skin proliferation has been the mechanism by which many anti-aging skin care products are promoted. As skin ages the skin proliferation rate decreases, and stimulating cell renewal to a rate that is closer to younger skin has proven to improve the general appearance of skin. Ingredient such as retinoic acids, retinol and alpha hydroxy acids (AHA's) are widely promoted on a global scale for their ability to increase cell turnover and promote younger looking skin.
For these reasons AHA's are a commonly added to skin care products including moisturizers, cleanser, toners, and masks. AHA's are naturally derived from fruit and milk sugars and synthetically made as pharmaceutical and cosmetic acidulant ingredient. They are used in skin care as ‘cosmeceutical’ or functional cosmetic ingredients.
The most commonly used AHA's are glycolic acid and lactic acid. AHA's work mainly as an exfoliant of the skin. They cause the cells of the skin to become “unglued” allowing the dead skin cells at the surface of the skin to slough off, making room for re-growth of new skin. They also indirectly stimulate, through the process of irritation, the production of new cells. They have been reported to improve wrinkling, roughness, and pigmentation on skin after long term application and have been extensively studied.
AHA's as used in skin-care products work best at acidic pH's as it is the free acid and not the neutralized or salt counterparts that have been found effective on the skin as exfoliants. Typically, a pH of 3-5 is optimal when utilizing AHA's. As a result, two major side effects of AHA's are irritation and sun sensitivity. Symptoms of irritation include redness, burning, itching, pain, and possibly scarring. There are milder and other forms of exfoliants on the market today than AHA. Beta hydroxy acids such as salicylic acid have been reported to bring about skin cell turnover rate increases. Retinol (the alcohol form of retinoic acid) has also been extensively used.
It was unexpectedly found that the liquid mineral element composition and the dry powder mineral element composition produced in accordance with the invention, as well as solutions of the same, were able to cause skin to exfoliate. There appears to be no prior art suggesting any anticipatory use of minerals as skin exfoliants or to affect cell renewal.
Topical preparations that included the use of the mineral element compositions of the invention were observed to provide multiple skin benefits. Among the benefits observed was mild exfoliation. Exfoliation was subjectively measured by the ability of skin to be renewed after several days of use, with some mild peeling depending on subject. Skin was observed as less sallow and more translucent. Product containing 5% by weight of the dry powdered mineral element composition of Table I in aqueous solution was observed to provide the maximum exfoliation effect.
Typically, AHA products become irritating after several days of use as the skin becomes sensitized to low pH levels of these products. Comparatively, aqueous solutions including 5% by weight of the dry mineral element composition of Table I at a pH of 3 demonstrated the ability to exfoliate skin in a non-irritating manner.
It is therefore novel, at least for the mineral element compositions derived by the extraction process described herein, that the mineral element compositions can serve as a new class of cosmetic and dermatological ingredients of exfoliation with significantly less adverse effects such as burning and irritation.
The use of the comprehensive mineral composition in topical over the counter therapeutic products is believed to be beneficial to skin disorders ranging from severe dry skin to treatment of skin disorders. It is known that many macro and micro mineral elements play important roles in treating skin disorders. For example, copper is essential for production of tyrosinase, an enzyme which is required for the production of melanin for the activation of melanocytes which together with sunscreens protect the skin from UV by initiating tanning. As another example, selenium can help in the treatment and prevention of dandruff and deficiency in the mineral can lead to appearance of premature aging.
It is believed that the comprehensive mineral compositions described herein can be an ideal multi-mineral product for delivery on the skin qualifying as a unique composition that delivers a substantial natural balance of minerals in a single or multiple dosages for human and veterinary product consumption providing mild exfoliation effects:
Examples of additional skin care product compositions follow.
Procedure:
Procedure:
Aloe Vera Gel
Procedure:
Procedure:
Procedure:
Procedure:
Also unexpected in terms of skin care benefits was the ability of the liquid mineral element composition of Table I to minimize excess oil, minimize pore size, and balance skin tone both during application and over extended periods of time, this indicating that the mineral element composition was possibly affecting regulation of sebaceous glands.
Procedure:
Procedure:
The process described herein for producing a comprehensive mineral composition has no waste products. The process does have residual wash water extract that s utilized on an organic farm to reconstitute minerals as part of a soil depletion restoration program. The agricultural applications and product by process for agricultural use claims should be covered.
The following example describes a tablet that can be produced for administration by placing the tablet under an individual's tongue and allowing the tablet to dissolve or by placing the tablet in the individual's mouth against the inner cheek and allowing the tablet to dissolve.
Acacia
Procedure:
Procedure:
This patent application is a continuation application of U.S. patent application Ser. No. 14/992,575 filed Jan. 11, 2016, now U.S. Pat. No. 10,406,176, issued Sep. 10, 2019, which is a continuation application of U.S. patent application Ser. No. 14/717,660 filed May 20, 2015, now U.S. Pat. No. 9,241,955, issued Jan. 26, 2016, which is a continuation application of U.S. patent application Ser. No. 14/229,340, filed Mar. 28, 2014, now U.S. Pat. No. 9,044,417, issued Jun. 2, 2015, which is a divisional application of U.S. patent application Ser. No. 10/725,729, filed Dec. 2, 2003, now U.S. Pat. No. 8,709,497, issued Apr. 29, 2014. This patent application claims the benefit of and priority to all of the above mentioned patents and patent application, which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10725729 | Dec 2003 | US |
Child | 14229340 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14992575 | Jan 2016 | US |
Child | 16566524 | US | |
Parent | 14717660 | May 2015 | US |
Child | 14992575 | US | |
Parent | 14229340 | Mar 2014 | US |
Child | 14717660 | US |