The present invention pertains to embolic protection filtering devices. More particularly, the present invention pertains to embolic protection filtering device with position-stabilizing features and characteristics.
Heart and vascular disease are major problems in the United States and throughout the world. Conditions such as atherosclerosis result in blood vessels becoming blocked or narrowed. This blockage can result in lack of oxygenation of the heart, which has significant consequences because the heart muscle must be well oxygenated in order to maintain its blood pumping action.
Occluded, stenotic, or narrowed blood vessels may be treated with a number of relatively non-invasive medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. Angioplasty techniques typically involve the use of a balloon catheter. The balloon catheter is advanced over a guidewire such that the balloon is positioned adjacent a stenotic lesion. The balloon is then inflated and the restriction of the vessel is opened. During an atherectomy procedure, the stenotic lesion may be mechanically cut away from the blood vessel wall using an atherectomy catheter.
During angioplasty and atherectomy procedures, embolic debris can be separated from the wall of the blood vessel. If this debris enters the circulatory system, it could block other vascular regions including the neural and pulmonary vasculature. During angioplasty procedures, stenotic debris may also break loose due to manipulation of the blood vessel. Because of this debris, a number of devices, termed embolic protection devices, have been developed to filter out this debris.
A wide variety of filtering devices have been developed for medical use, for example, intravascular use. Of the known filtering devices, each has certain advantages and disadvantages. There is an ongoing need to provide alternative filtering devices as well as alternative methods for manufacturing filtering devices.
This disclosure pertains to design, material, and manufacturing method alternatives for filtering devices. An example filtering device includes a filter wire, a filter including a filter loop coupled to the filter wire, and a filter membrane coupled to the filter loop. A plurality of cam members may be coupled to the filter loop. Alternatively, the filter loop may include a plurality of strut members coupled thereto. The cam members and/or the strut members may help to stabilize the longitudinal position of the filtering device within a body lumen.
The above summary of some embodiments is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, and Detailed Description, which follow, more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings illustrate example embodiments of the claimed invention.
When a clinician performs an intravascular intervention such as angioplasty, atherectomy, and the like, embolic debris may dislodge from the blood vessel that can travel in the bloodstream to a position where it may impair blood flow, possibly leading to tissue damage. A number of other situations and/or interventions may also result in the mobilization of embolic debris. Accordingly, embolic protection filtering devices have been developed that can be disposed in the blood vessel downstream of the treatment site and expanded to capture debris.
In general, filter 16 may be adapted to operate between a first generally collapsed configuration and a second generally expanded configuration for collecting debris in a body lumen. To this end, in at least some embodiments, loop 18 may be comprised of a “self-expanding” shape-memory material such as nickel-titanium alloy, which is capable of biasing filter 16 toward being in the second expanded configuration. Additionally, filter loop 18 may include a radiopaque material or include, for example, a radiopaque wire disposed about a portion thereof. Some further details regarding these and other suitable materials are provided below.
One or more struts 20 may extend between filter loop 18 and filter wire 14. Strut 20 may be coupled to filter wire 14 by a coupling 21. Coupling 21 may be one or more windings of strut 20 about filter wire 14 or may be a fitting disposed over an end of strut 20 to attach it to filter wire 14. The exact arrangement of struts 20 can vary considerably. One of ordinary skill in the art would be familiar with the various arrangements of struts 20 that are appropriate for a given intervention.
With filter 16 properly positioned in blood vessel 12, another medical device may be advanced over filter wire 14 in order to treat and/or diagnose a lesion 28. For example, a catheter 26 (such as the balloon catheter depicted in
Filtering device 10 is generally designed to filter embolic debris that might be generated during the course of this medical intervention. For example, device 10 can be used to capture embolic debris that might be generated during the use of catheter 26 such as when a balloon 30 (coupled to catheter 26) is inflated. It should be noted, however, that device 10 may find utility in concert with essentially any procedure that has the potential to loosen and release embolic debris in to the blood stream or with the devices associated with such procedures.
Maintaining the position of a filtering device within a blood vessel during an intervention may be desirable. For example, if the filter migrates within the vessel during an intervention, the filter could come into contact with another device (e.g., a catheter disposed on filter wire 14) and potentially interfere with the goals of the intervention. In addition, advancing other devices over the filter wire may cause small shifts in the position of the filtering device itself that takes the filtering device out of its optimal position. In at least some embodiments, the present invention addresses this potential complication by providing vessel stabilization structures that are incorporated into the design of filtering device 10 and that improve the ability of filtering device 10 to hold and/or maintain its position during an intervention.
One of the position-stabilizing features contemplated for filtering device 10 includes one or more cam members 32 that are disposed on filter loop 18. Cam members 32, which can be more clearly seen in
Turning now to
With the above discussion in mind, it is useful to consider that in some ways, cam member 32 functions in a manner analogous to how a spring-loaded camming device, commonly used by rock climbers, functions, albeit on a smaller scale. Although not a perfect analogy, cams 34a/34b can be thought of as being roughly similar to the cams of a spring-loaded camming device and filter wire 14 can be thought of as being similar to the “trigger” of a spring-loaded camming device that causes the cams on the spring-loaded camming device to project outward when actuated.
It can also be seen in
The number and arrangement of cam members 32 can vary considerably. For example, some embodiments of device 10 include one, two, three, four, five, six, seven, eight, or more cam members 32. These cam members 32 may be disposed in a regular, irregular, or any other suitable pattern about filter loop 18.
Another example filtering device 110 is illustrated in
The way that strut members 140a/b function to longitudinally stabilize the position of filtering device 110 is shown in
The overall design of filtering devices 10/110 disclosed herein includes the use of a number of different materials appropriate for the various components thereof. These materials may include metals, metal alloys, polymers, metal-polymer composite, and the like, or any other suitable material. Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic or super-elastic nitinol, nickel-chromium alloy, nickel-chromium-iron alloy, cobalt alloy, tungsten or tungsten alloys, MP35-N (having a composition of about 35% Ni, 35% Co, 20% Cr, 9.75% Mo, a maximum 1% Fe, a maximum 1% Ti, a maximum 0.25% C, a maximum 0.15% Mn, and a maximum 0.15% Si), hastelloy, monel 400, inconel 825, or the like; other Co—Cr alloys; platinum enriched stainless steel; or other suitable material.
Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane, polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), Marlex high-density polyethylene, Marlex low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), polycarbonates, ionomers, biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
4793348 | Palmaz | Dec 1988 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5947995 | Samuels | Sep 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6129739 | Khosravi | Oct 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6171327 | Daniel et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6468298 | Pelton | Oct 2002 | B1 |
6494895 | Addis | Dec 2002 | B2 |
6527746 | Oslund et al. | Mar 2003 | B1 |
6530939 | Hopkins et al. | Mar 2003 | B1 |
6540722 | Boyle et al. | Apr 2003 | B1 |
6544279 | Hopkins et al. | Apr 2003 | B1 |
6575996 | Denison et al. | Jun 2003 | B1 |
6589263 | Hopkins et al. | Jul 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6645224 | Gilson et al. | Nov 2003 | B2 |
6652554 | Wholey et al. | Nov 2003 | B1 |
6740061 | Oslund et al. | May 2004 | B1 |
6878153 | Linder et al. | Apr 2005 | B2 |
6878291 | Lowe et al. | Apr 2005 | B2 |
6902572 | Beulke et al. | Jun 2005 | B2 |
6939361 | Kleshinski | Sep 2005 | B1 |
6969396 | Krolik et al. | Nov 2005 | B2 |
7014647 | Brady et al. | Mar 2006 | B2 |
7060082 | Goll et al. | Jun 2006 | B2 |
20010044632 | Daniel et al. | Nov 2001 | A1 |
20030060843 | Boucher | Mar 2003 | A1 |
20030187474 | Keegan et al. | Oct 2003 | A1 |
20040093012 | Cully et al. | May 2004 | A1 |
20040127933 | Demond et al. | Jul 2004 | A1 |
20040158275 | Crank et al. | Aug 2004 | A1 |
20040167566 | Beulke et al. | Aug 2004 | A1 |
20040254601 | Eskuri | Dec 2004 | A1 |
20050096692 | Linder et al. | May 2005 | A1 |
20060030876 | Peacock et al. | Feb 2006 | A1 |
20060079930 | McGuckin, Jr. et al. | Apr 2006 | A1 |
Entry |
---|
REI:Climbing Expert Advice web page, “How to Choose Active Rock Climbing Protection,” Oct. 31, 2005, 4 pgs. |
Wikipedia, the free encyclopedia, “Spring loaded camming device,”, Oct. 31, 2005, 2 pgs., http://en.wikipedia.org/wiki/Spring—loaded—camming—device. |
Number | Date | Country | |
---|---|---|---|
20070270900 A1 | Nov 2007 | US |