This invention relates generally to heat exchangers having a plurality of parallel tubes extending between a first header and a second header and, more particularly, to improving fluid flow distribution amongst the tubes receiving fluid flow from the header of a heat exchanger, for example a heat exchanger in a refrigerant vapor compression system.
Refrigerant vapor compression systems are well known in the art. Air conditioners and heat pumps employing refrigerant vapor compression cycles are commonly used for cooling or cooling/heating air supplied to a climate controlled comfort zone within a residence, office building, hospital, school, restaurant or other facility. Refrigerant vapor compression systems are also commonly used for cooling air, or other secondary media such as water or glycol solution, to provide a refrigerated environment for food items and beverage products within, for instance, display cases in supermarkets, convenience stores, groceries, cafeterias, restaurants and other food service establishments.
Conventionally, these refrigerant vapor compression systems include a compressor, a condenser, an expansion device, and an evaporator connected in refrigerant flow communication. The aforementioned basic refrigerant system components are interconnected by refrigerant lines in a closed refrigerant circuit and arranged in accord with the vapor compression cycle employed. An expansion device, commonly an expansion valve or a fixed-bore metering device, such as an orifice or a capillary tube, is disposed in the refrigerant line at a location in the refrigerant circuit upstream with respect to refrigerant flow of the evaporator and downstream of the condenser. The expansion device operates to expand the liquid refrigerant passing through the refrigerant line running from the condenser to the evaporator to a lower pressure and temperature. In doing so, a portion of the liquid refrigerant traversing the expansion device expands to vapor. As a result, in conventional refrigerant vapor compression systems of this type, the refrigerant flow entering the evaporator constitutes a two-phase mixture. The particular percentages of liquid refrigerant and vapor refrigerant depend upon the particular expansion device employed and the refrigerant in use, for example R12, R22, R134a, R404A, R410A, R407C, R717, R744 or other compressible fluid.
In some refrigerant vapor compression systems, the evaporator is a parallel tube heat exchanger. Such heat exchangers have a plurality of parallel refrigerant flow paths therethrough provided by a plurality of tubes extending in parallel relationship between an inlet header, or inlet manifold, and an outlet header, or outlet manifold. The inlet header receives the refrigerant flow from the refrigerant circuit and distributes the refrigerant flow amongst the plurality of flow paths through the heat exchanger. The outlet header serves to collect the refrigerant flow as it leaves the respective flow paths and to direct the collected flow back to the refrigerant line for return to the compressor in a single pass heat exchanger or to an additional bank of heat exchange tubes in a multi-pass heat exchanger. In the latter case, the outlet header is an intermediate manifold or a manifold chamber and serves as an inlet header to the next downstream bank of tubes.
Historically, parallel tube heat exchangers used in such refrigerant vapor compression systems have used round tubes, typically having a diameter of ½ inch, ⅜ inch or 7 millimeters. More recently, flat, typically rectangular or oval in cross-section, multi-channel tubes are being used in heat exchangers for refrigerant vapor compression systems. Each multi-channel tube typically has a plurality of flow channels extending longitudinally in parallel relationship the length of the tube, each channel providing a small flow area refrigerant flow path. Thus, a heat exchanger with multi-channel tubes extending in parallel relationship between the inlet and outlet headers of the heat exchanger will have a relatively large number of small flow area refrigerant flow paths extending between the two headers. In contrast, a parallel tube heat exchanger with conventional round tubes will have a relatively small number of large flow area flow paths extending between the inlet and outlet headers.
Non-uniform distribution, also referred to as maldistibution, of two-phase refrigerant flow is common problem in parallel tube heat exchangers which adversely impacts heat exchanger efficiency. Two-phase maldistribution problems are often caused by the difference in density of the vapor phase refrigerant and the liquid phase refrigerant present in the inlet header due to the expansion of the refrigerant as it traversed the upstream expansion device.
One solution to control refrigeration flow distribution through parallel tubes in an evaporative heat exchanger is disclosed in U.S. Pat. No. 6,502,413, Repice et al. In the refrigerant vapor compression system disclosed therein, the high pressure liquid refrigerant from the condenser is partially expanded in a conventional in-line expansion value upstream of the evaporative heat exchanger inlet header to a lower pressure, liquid refrigerant. A restriction, such as a simple narrowing in the tube or an internal orifice plate disposed within the tube, is provided in each tube connected to the inlet header downstream of the tube inlet to complete expansion to a low pressure, liquid/vapor refrigerant mixture after entering the tube.
Another solution to control refrigeration flow distribution through parallel tubes in an evaporative heat exchanger is disclosed in Japanese Patent No. JP4080575, Kanzaki et al. In the refrigerant vapor compression system disclosed therein, the high pressure liquid refrigerant from the condenser is also partially expanded in a conventional in-line expansion value to a lower pressure, liquid refrigerant upstream of a distribution chamber of the heat exchanger. A plate having a plurality of orifices therein extends across the chamber. The lower pressure liquid refrigerant expands as it passes through the orifices to a low pressure liquid/vapor mixture downstream of the plate and upstream of the inlets to the respective tubes opening to the chamber.
Japanese Patent No. JP2002022313, Yasushi, discloses a parallel tube heat exchanger wherein refrigerant is supplied to the header through an inlet tube that extends along the axis of the header to terminate short of the end the header whereby the two phase refrigerant flow does not separate as it passes from the inlet tube into an annular channel between the outer surface of the inlet tube and the inside surface of the header. The two phase refrigerant flow thence passes into each of the tubes opening to the annular channel.
Obtaining uniform refrigerant flow distribution amongst the relatively large number of small flow area refrigerant flow paths is even more difficult than it is in conventional round tube heat exchangers and can significantly reduce heat exchanger efficiency as well as cause serious reliability problems due to compressor flooding. Two-phase maldistribution problems may be exacerbated in inlet headers associated with conventional flat tube heat exchangers due to the lower fluid flow velocities attendant to the larger dimensions of such headers. At lower fluid flow velocities, the vapor phase fluid more readily separates from the liquid phase fluid. Thus, rather than being a relatively uniform mixture of vapor phase and liquid phase fluid, the flow within the inlet header will be stratified to a greater degree with a vapor phase component separated from the liquid phase component. As a consequence, the fluid mixture will undesirably be non-uniformly distributed amongst the various tubes, with each tube receiving differing mixtures of vapor phase and liquid phase fluid.
In U.S. Pat. No. 6,688,138, DiFlora discloses a parallel, flat tube heat exchanger having an inlet header formed of an elongated outer cylinder and an elongated inner cylinder disposed eccentrically within the outer cylinder thereby defining a fluid chamber between the inner and outer cylinders. The inlet end of each of the flat, rectangular heat exchange tubes extend through the wall of the outer cylinder to open into the fluid chamber defined between the inner and outer cylinders.
Japanese Patent No. 6241682, Massaki et al., discloses a parallel flow tube heat exchanger for a heat pump wherein the inlet end of each multi-channel tube connecting to the inlet header is crushed to form a partial throttle restriction in each tube just downstream of the tube inlet. Japanese Patent No. JP8233409, Hiroaki et al., discloses a parallel flow tube heat exchanger wherein a plurality of flat, multi-channel tubes connect between a pair of headers, each of which has an interior which decreases in flow area in the direction of refrigerant flow as a means to uniformly distribute refrigerant to the respective tubes.
It is a general object of the invention to reduce maldistribution of a two-phase fluid flow in a heat exchanger having a plurality of multi-channel tubes extending between a first header and a second header.
It is an object of one aspect of the invention to distribute two-phase fluid flow in a relatively uniform manner in a heat exchanger having a plurality of multi-channel tubes extending between a first header and a second header.
A heat exchanger is provided having at least one heat exchange tube defining a plurality of discrete fluid flow paths therethrough and a header having a chamber for collecting a fluid and a channel for receiving a two-phase fluid from a fluid circuit. The chamber has an inlet in flow communication with the channel and an outlet in flow communication with an inlet opening to the plurality of fluid flow paths of the heat exchange tube. The channel defines a relatively high turbulence flow passage that induces uniform mixing of the liquid phase refrigerant and the vapor phase fluid and reduces potential stratification of the vapor phase and the liquid phase within the fluid passing through the header. Among other applications, the heat exchanger of the invention may be employed in refrigerant vapor compression systems of various designs, including, without limitation, heat pump cycles, economized cycles and commercial refrigeration cycles.
In an embodiment, the heat exchanger includes a plurality of heat exchange tubes having a plurality of flow paths extending longitudinally in parallel relationship from the inlet end to the outlet end thereof, and an inlet header defining a longitudinally extending chamber. The inlet header has a plurality of longitudinally spaced slots opening to the header chamber through a wall of the inlet header. Each slot adapted to receive the inlet end of a respective heat exchange tube. A longitudinally extending insert is disposed within the header chamber. The insert header defines a channel extending longitudinally within the header for receiving a fluid from a fluid circuit and a chamber extending longitudinally within the header, the chamber being in flow communication with the plurality of flow paths of the plurality of heat exchange tubes and in fluid flow communication with the channel. The channel defines a relatively high turbulence flow passage.
In an embodiment, the heat exchanger includes an inlet header defining a longitudinally extending chamber having an open mouth and a plurality of heat exchange tubes disposed in longitudinally spaced relationship with their respective the inlet ends extending into the open mouth of the header chamber. Each heat exchange tube defines a plurality of flow paths extending longitudinally in parallel relationship from the inlet end to the outlet end of the tube. A channel extends longitudinally within the header for receiving a fluid from a fluid circuit. The header chamber is in flow communication with the channel. A plurality of block inserts are arranged with an insert disposed within the header chamber between each pair of neighboring heat exchange tubes to fill volume within the header chamber between each pair of neighboring heat exchange tubes.
For a further understanding of these and objects of the invention, reference will be made to the following detailed description of the invention which is to be read in connection with the accompanying drawing, where:
The heat exchanger 10 of the invention will be described in general herein with reference to the illustrative single pass, parallel tube embodiment of a multi-channel tube heat exchanger as depicted in
However, the depicted embodiment is illustrative and not limiting of the invention. It is to be understood that the invention described herein may be practiced on various other configurations of the heat exchanger 10. For example, the heat exchange tubes may be arranged in parallel relationship extending generally horizontally between a generally vertically extending inlet header and a generally vertically extending outlet header. As a further example, the heat exchanger could have a toroidal inlet header and a toroidal outlet header of a different diameter with the heat exchange tubes extend either somewhat radially inwardly or somewhat radially outwardly between the toroidal headers. In such an arrangement, although not physically parallel to each other, the tubes are in a “parallel flow” arrangement in that those tubes extend between common inlet and outlet headers.
Each multi-channel heat exchange tube 40 has a plurality of parallel flow channels 42 extending longitudinally, i.e. along the axis of the tube, the length of the tube thereby providing multiple, independent, parallel flow paths between the inlet and the outlet of the tube. Each multi-channel heat exchange tube 40 is a “flat” tube of flattened rectangular, or oval, cross-section defining an interior which is subdivided to form a side-by-side array of independent flow channels 42. The flat, multi-channel tubes 40 may, for example, have a width of fifty millimeters or less, typically twelve to twenty-five millimeters, and a depth of about two millimeters or less, as compared to conventional prior art round tubes having a diameter of either ½ inch, ⅜ inch or 7 mm. The tubes 40 will typically have about ten to twenty flow channels 42, but may have a greater or a lesser multiplicity of channels, as desired. Generally, each flow channel 42 will have a hydraulic diameter, defined as four times the flow area divided by the perimeter, in the range from about 200 microns to about 3 millimeters, and commonly about 1 millimeter. Although depicted as having a circular cross-section in the drawings, the channels 42 may have a rectangular, triangular or trapezoidal cross-section or any other desired non-circular cross-section.
In the embodiment of the heat exchanger 10 depicted in
Each of the plurality of heat exchange tubes 40 of the heat exchanger 10 has its inlet end 43 inserted into a slot 26 in the wall 22 of the inlet header 20. So inserted, the flow channels 42 of the heat exchange tubes 40 are open to the mouth of the trough 52 of the insert 50 and thereby in fluid flow communication with the chamber 55. The chamber 55 may be generally V-shaped as depicted in
Referring now to
Referring now to
Referring now to
In the embodiment depicted in
The header of the invention is characterized by the relatively small fluid volume and cross-sectional flow area of the passages that the fluid entering the header 20 from line 14 must traverse to be distributed to the flow channels 42 of the respective heat exchange tubes 40. Consequently, the fluid flowing through the header of the invention will have a higher velocity and will be significantly more turbulent. The increased turbulence will induce more thorough mixing within the fluid flowing through the header and result in a more uniform distribution of fluid flow amongst the heat exchange tubes opening to the header. This is particularly true for mixed liquid/vapor flow, such as a refrigerant liquid/vapor mixture, which is the typical state of flow delivered into the inlet header of an evaporator heat exchanger in a vapor compression system operating in a refrigeration, air conditioning or heat pump cycle. The channels 54, 62, 94 define relatively high turbulence flow passages that induce uniform mixing of the liquid phase refrigerant and the vapor phase refrigerant and reduce potential stratification of the vapor phase and the liquid phase within the refrigerant passing through the header. The heat exchanger of the invention may be employed in refrigerant vapor compression systems of various designs, including, without limitation, heat pump cycles, economized cycles and commercial refrigeration cycles.
The depicted embodiment of a single-pass heat exchanger 10 is illustrative and not limiting of the invention. It is to be understood that the invention described herein may be practiced on various other configurations of the heat exchanger 10. For example, the heat exchanger of the invention may also be arranged in various multi-pass embodiments as an evaporator, as a condenser, or as a condenser/evaporator. The cross-section of the inlet header of the heat exchanger is not limited to the particular cross-sections illustrated in the drawings, but rather may be of any suitable cross-sectional shape, including but not limited to semi-circular, semi-elliptical, or hexagonal.
While the present invention has been particularly shown and described with reference to the embodiments illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by the claims.
Reference is made to and this application claims priority from and the benefit of U.S. Provisional Application Ser. No. 60/649,426, filed Feb. 2, 2005, and entitled MINI-CHANNEL HEAT EXCHANGER HEADER, which application is incorporated herein in its entirety by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2005/047361 | 12/28/2005 | WO | 00 | 6/28/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/083447 | 8/10/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2297633 | Philipp | Sep 1942 | A |
2591109 | Wade | Apr 1952 | A |
3920069 | Mosier | Nov 1975 | A |
4088182 | Basdekas et al. | May 1978 | A |
4382468 | Hastwell | May 1983 | A |
4497363 | Heronemus | Feb 1985 | A |
4607689 | Mochida et al. | Aug 1986 | A |
4724904 | Fletcher et al. | Feb 1988 | A |
5320165 | Hughes | Jun 1994 | A |
5341870 | Hughes et al. | Aug 1994 | A |
5415223 | Reavis et al. | May 1995 | A |
5517757 | Hayashi et al. | May 1996 | A |
5632329 | Fay | May 1997 | A |
5743329 | Damsohn et al. | Apr 1998 | A |
5826649 | Chapp et al. | Oct 1998 | A |
5934367 | Shimmura et al. | Aug 1999 | A |
5941303 | Gowan et al. | Aug 1999 | A |
5967228 | Bergman et al. | Oct 1999 | A |
5971065 | Bertilson et al. | Oct 1999 | A |
6340055 | Yamauchi et al. | Jan 2002 | B1 |
6564863 | Martins | May 2003 | B1 |
6688137 | Gupte | Feb 2004 | B1 |
6688138 | DiFlora | Feb 2004 | B2 |
20010004935 | Sanada et al. | Jun 2001 | A1 |
20030116308 | Watanabe et al. | Jun 2003 | A1 |
20030155109 | Kawakubo et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
1611907 | May 2005 | CN |
0228330 | Jul 1987 | EP |
1258044 | Apr 1961 | FR |
2217764 | Aug 1990 | JP |
4080575 | Mar 1992 | JP |
6241682 | Sep 1994 | JP |
7301472 | Nov 1995 | JP |
8233409 | Sep 1996 | JP |
11351706 | Dec 1999 | JP |
2002022313 | Jan 2002 | JP |
WO-0242707 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20080093062 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60649426 | Feb 2005 | US |