The term “SAS” is known in the art to refer to “Serial Attached SCSI.” The term “SCSI” is known in the art to refer to “Small Computer System Interface.” Current miniature SAS (“mini SAS”) connectors require strict adherence to SAS specifications. At the connecting end, a rectangular interface that is hollow connects to a receiving port. The rectangular interface has very thin walls that are difficult to machine.
As such, prior techniques for manufacturing mini SAS connectors were restricted to die casting processes. Specifically, the connector was formed as a single piece by forcing molten metal under high pressure into a mould. In that manner, a connector with very thin walls could be manufactured.
A significant drawback to a single-piece connector, such as those formed through die casting, is the difficulty in threading components (e.g., wiring) through the connector and through an attached housing component. For instance, the housing component may be comprised of a split structure with top and bottom halves. One of the halves also would be attached to the single-piece connector. By fitting the top and bottom halves an enclosure would be formed for protecting components. However, before the top and bottom halves could be fitted, the components would have to be threaded first through the single-piece connector, and then positioned to be enclosed within the housing component. Threading components through the single-piece connector is difficult and time consuming.
What is required is a connector that allows for easy placement or threading of components.
An apparatus including top and bottom portions. The top portion and the bottom portion are mated to form a connector having an inner cavity. The top portion includes a top connector portion. The top connector portion includes a first wall and a second wall that is configured opposite the first wall. The top connector portion includes a first top cap that is configured to connect the first and second walls. In addition, the first wall comprises a first concave/convex feature for interlocking. Further, the bottom portion includes a bottom connector portion. The bottom connector portion is configured to mate with the top connector portion to form the connector. The bottom connector portion includes a third wall and a fourth wall that is configured opposite the third wall. The bottom connector portion includes a first bottom that is configured to connect the third wall and the fourth wall. In addition, the third wall includes a second concave/convex feature for interlocking with the first concave/convex feature of the top portion. The second concave/convex feature is oriented opposite the first concave/convex feature.
The accompanying drawings, which are incorporated in and form a part of this specification and in which like numerals depict like elements, illustrate embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to the various embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. While described in conjunction with these embodiments, it will be understood that they are not intended to limit the disclosure to these embodiments. On the contrary, the disclosure is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the disclosure as defined by the appended claims. Furthermore, in the following detailed description of the present disclosure, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be understood that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present disclosure.
Accordingly, embodiments of the present disclosure provide for a mini SAS HD housing that includes a split connector portion having a pair of interlocking S-shaped concave and convex features that interlock together. The mini SAS HD housing, including the split connector portion, is manufactured through die casting and/or conventional machining processes. The mini SAS HD housing, including the split connector portion, is configured into top and bottom halves that allows for convenient threading of components, especially through the connector portion. Further, the mini SAS HD housing in embodiments of the invention provide for self alignment and interlocking, thereby allowing securing of two halves with a single point of contact retaining element (e.g., retaining clip, screw, or similar hardware, etc.). Embodiments of the present invention provide for simplified assembly of the mini SAS HD housing.
In embodiments, the mini SAS HD housing includes two nearly symmetrical halves which snap together. In order for the mini SAS HD housing to be kept in a locked position with respect to the symmetrical halves, the housing includes retainers at various locations along the assembly length.
More specifically, the top portion 105 includes a top connector portion 115. The top connector portion 115 includes a first wall 130, and a second wall 185. In one embodiment, the second wall is configured opposite the first wall, and a first top cap 125 is configured to connect the first wall 130 to the second wall 185. As shown, the first top cap 125 is configured substantially in rectangular fashion, and the first wall 130 and the second wall 130 extend in parallel from top cap 125.
In addition, the first wall 130 includes a first concave/convex feature 135A for purposes of interlocking. Feature 135A is configured in an S-shaped concave and/or convex fashion. As shown in
In addition, the bottom portion 110 includes a bottom connector portion 120. The bottom connector portion 110 is configured to mate with the top connector portion 105 to form a connector 255. In particular, the bottom connector portion 110 includes a third wall 140, and a fourth wall 180. In one embodiment, the fourth wall 180 is configured opposite the third wall 140, and a first bottom 127 is configured to connect the third wall 140 to the fourth wall 180. As shown, the bottom 127 is configured substantially in rectangular fashion, and the third wall 140 and the fourth wall 180 extend in parallel from bottom 127.
In one embodiment, the third wall 140 includes a second concave/convex feature 135B that is configured to interlock with the first concave/convex feature 135A. more specifically, feature 135B is configured in an S-shaped concave and/or convex fashion. As shown in
Furthermore, as shown in
More particularly, to form the connector 255, the top connector portion 115 is mated with the bottom connector portion 120 by interlocking features 135A and 135B. That is, the first concave/convex feature 135A of the top connector portion 115 is interlocked with the second concave/convex feature 135B of the bottom connector portion 120. When interlocked, the pair of S-shaped concave and/or concave features 135A-B in both mating parts eliminate three degrees of freedom. Specifically, translation upwards and downwards with respect to a horizontal axis 190 is eliminated. In addition, rotations about both horizontal axis 190 and lateral axis 193 are eliminated.
Further, third wall 140 includes at least one guiding rail that is attached to a top surface and/or edge 108 of the third wall 140. The at least one guiding rail is indented and configured to guide the first wall 130 of the top connector portion 115 into position when mating with the third wall 140 of the bottom connector portion 120. For instance, for illustration third wall 140 includes guide rail 170A.
Guide rails 170A-C of
In addition, when the top connector portion 115 is mated with the bottom connector portion 120, an inner cavity is formed. As shown in
Further, the top portion 105 also includes a top housing portion 145, wherein portion 145 is attached to the top connector portion 115. In that manner, the top housing portion 145 extends the assembly length of the mini SAS HD housing 100 along the horizontal axis 190. The top housing portion 145 includes a first flange 151 that is attached to and extends from the first wall 130 of the top connector portion 115. The top housing portion also includes a second flange 152 that is attached to and extends from the second wall 185 of the top connector portion 115. In one embodiment, the first flange 151 is configured opposite the second flange 152. In addition, a second top cap 179 connects the first flange 151 and the second flange 152. In addition, the second top cap 179 is attached to and extends from the first top cap 125 of the top connector portion 115.
In addition, the bottom portion 110 also includes a bottom housing portion 150, wherein portion 150 is attached to the bottom connector portion 120. In that manner, the bottom housing portion 150 extends the assembly length of the mini SAS HD housing 100 along the horizontal axis 190. The bottom housing portion 150 is configured to mate with the top housing portion 145 to form a housing 257. In that manner, the inner cavity extends through the connector 255 and the housing 257, such that the inner cavity has a first end 220 and a second end 225.
More specifically, the housing bottom portion 150 includes a third flange 165 that is attached to and extends from the third wall 140 of the connector bottom portion 120. In addition, the housing bottom portion 150 includes a fourth flange 166 that is attached to and extends from the fourth wall 180 of the connector bottom portion 120. In one embodiment, the third flange 165 is configured opposite the fourth flange 166. In addition, a second bottom 119 connects the third flange 165 and the fourth flange 166. Also, the second bottom 119 is attached to and extends from the first bottom 127 of the bottom connector portion 120.
As shown in
Moreover, the top housing portion 145 includes a top channel 155 for accepting a retaining element (not shown). In addition, the bottom housing portion 150 includes a bottom channel 160 for accepting the retaining element. The bottom channel 160 is configured to mate with the top channel to form a channel 260 for accepting the retaining element.
As shown in
In one embodiment, the retaining element (not shown) comprises any locking element, such as, a standard “off the shelf” piece of hardware, or one that is custom designed. The retaining element secures the top portion 105 and the bottom portion n110 together. As such, the retaining element when positioned in the channel 260 eliminates a translation along the guiding rails 170A-C. Specifically, the retaining element creates friction along the guiding rails 170A-C. For example, the retaining element comprises a shear loaded screw, pin, elastic band, metal clip, etc.
Further, the bottom housing portion 150 includes an optional support structure 197. In that manner, the support structure 197 provides support to the top housing portion 145 and or second top cap 179, when the top portion 105 is mated with the bottom portion 110.
In one embodiment, S-shaped concave/convex features 135A and 135B are configured to provide an offset 245 (e.g., 1.5 mm). The offset 245 allows S-shaped concave/convex features 135A and 135B to engage properly.
Thus, according to embodiments of the present disclosure, a mini SAS HD housing is described and includes a split connector portion having a pair of interlocking S-shaped concave and convex features that interlock together.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as may be suited to the particular use contemplated.
Embodiments according to the present disclosure are thus described. While the present disclosure has been described in particular embodiments, it should be appreciated that the disclosure should not be construed as limited by such embodiments.
Number | Name | Date | Kind |
---|---|---|---|
6705894 | Comerci et al. | Mar 2004 | B1 |
7163424 | Dancel et al. | Jan 2007 | B2 |
20040097122 | Garrett et al. | May 2004 | A1 |
20110194823 | Wu | Aug 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20140120787 A1 | May 2014 | US |