Briefly, and in general terms, the invention is directed to a mini-scope for multi-directional imaging. In one embodiment, the mini-scope includes an elongated mini-scope body having a flexible optical conductor. The flexible optical conductor has a distal and a proximal end. An emissions aperture is disposed on the distal end of the elongated mini-scope body to emit a beam of optical energy propagating through the flexible optical conductor. A selective mirror is also disposed at the distal end of the elongated mini-scope body. The selective mirror is configured to selectively pass and/or reflect the beam of optical energy based on the optical characteristics of the beam of optical energy. An SSID is also disposed at the distal end of the elongated mini-scope body for imaging illumination reflected by an external object in response to the beam of optical energy, the illumination is directed to pass through or reflect from the selective mirror to the camera based on optical characteristics of the beam.
a-2b is a side view of a mini-scope in accordance with another embodiment of the present invention;
Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.
The following detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which form a part hereof, and in which are shown, by way of illustration, exemplary embodiments in which the invention may be practiced. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, it should be understood that other embodiments may be realized and that various changes to the invention may be made without departing from the spirit and scope of the present invention. Thus, the following more detailed description of the embodiments of the present invention, as represented in
The following detailed description and exemplary embodiments of the invention will be best understood by referencing the accompanying drawings, wherein the elements and features of the invention are designated by numerals throughout.
In describing and claiming the present invention, the following terminology will be used:
The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a beam of optical energy” includes reference to one or more of such beams, and reference to “an emitter” includes reference to one or more of such emitters.
As used herein, “mini-scope” refers to a miniature optical instrument for examining the inner parts of the body as well as for other optical applications.
As used herein, “SSID,” Solid State Imaging Device, refers to a camera or imaging device having a size approximately equal to or less than the diameter of a bundle of optical fibers. SSIDs include, for example, charge-injection devices (CID), charge-coupled devices (CCD), complementary metal oxide semiconductor (CMOS) devices, and other miniature-sized imaging devices, including those made from compound semiconductors such as InGaAs, capable of imaging reflected illumination of visible and/or non-visible light.
As used herein, “selective mirror” refers to a surface, having selective reflection properties, based on various characteristics of the incident optical energy. These characteristics can include, for example: wavelength, polarization, intensity, direction, angle, frequency, and other like characteristics. The surface can be planar or nonplanar as suits a particular configuration.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such a list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range were explicitly recited.
As an illustration, a numerical range of “about 1 micrometer to about 5 micrometers” should be interpreted to include not only the explicitly recited values of about 1 micrometer to about 5 micrometers, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc. This same principle applies to ranges reciting only one numerical value and should apply regardless of the breadth of the range or the characteristics being described.
As used herein, the term “about” means that dimensions, sizes, formulations, parameters, shapes and other quantities and characteristics are not and need not be exact, but may be approximated and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error, and the like, and other factors known to those of skill in the art.
Method steps, as described herein, can be performed without regard to order, unless specifically stated.
As illustrated in
This elongated mini-scope body is configured to be inserted into or in contact with a patient or device. The mini-scope can further include a means for emitting a beam of optical energy, such as an emissions aperture 14, an emissions aperture with a lens, or the like. An emissions aperture can be disposed on the distal end of the elongated mini-scope body for emitting the beam of optical energy propagating through the flexible optical conductor. A means for selectively directing a beam of optical energy can be positioned above the emissions aperture to selectively pass and reflect the beam of optical energy 32a based on the optical characteristics of the beam, as described in greater detail below. A means for imaging can also be disposed on the distal end of the elongated mini-scope body. This means for imaging can include a SSID 16, such as a mini charge coupled device (CCD) camera, a mini CMOS camera, or another optical energy detector designed to operate at other wavelengths. The means for imaging can image the illumination reflected by an external object in response to the beam of optical energy 32b, wherein the illumination is directed to pass through or reflect from the selective mirror to the means for imaging.
A means for selectively directing the beam of optical energy can selectively direct a beam or multiple beams of optical energy based on various optical characteristics of the beam. This means for selectively directing can include a selective mirror 12. For example, the selective mirror can be a dichroic mirror, a polarization dependant beam splitting plate, a polarization dependant beam splitting cube, a prism, a diffraction grating, or other optical devices that can be configured to selectively pass and reflect a beam or portion of a beam of optical energy based on the properties of the optical energy. In this way, the mini-scope 10 can provide both a forward and a lateral image to a user, without the need for turning, rotating, or redirecting the scope head and without substantially increasing the size of the scope.
As a particular exemplary embodiment, the selective mirror 12 can be a dichroic mirror or a mirror which reflects or passes a beam of optical energy based on the frequency characteristics of the beam of optical energy. Dichroic mirrors can be designed to reflect a specific wavelength region of optical energy. For example, a dichroic mirror can be designed to reflect blue light (e.g., light with an optical wavelength of about 440-550 nm), but pass red light (e.g., light with an optical wavelength of about 625-740 nm). As another example, a mirror can be designed to reflect all light having a wavelength of about 450 ±10 nm, thus reflecting most blue light, while passing light with an optical frequency outside of this range. Similarly, a dichroic mirror can be designed to pass and reflect other frequency regions, such as red light, or all near ultraviolet wavelength of about 380 -200 nm.
In another particular embodiment of the invention, the selective mirror 12 can be a polarizing beam splitter cube or other optical element configured to pass or reflect a beam of optical energy based on the polarization characteristics of the beam. Typically, polarization beam splitter plates are designed to separate optical energy into the P-and S-components by passing one component and reflecting the other. This type of selective mirror can pass or reflect a spectrum of light frequencies, given constant P-or S-polarization.
The width of the selective mirror can be approximately the diameter of the elongated mini-scope body, and the length can vary according to the desired angular orientation of the mirror. This selective mirror can have a variety of shapes including an ellipse, a circle, a square, a rectangle, and the like. The selective mirror can be positioned at a fixed or movable angle. For example, this angle can be a 45 degree, 15 degree angle, facing in the reverse direction, or any other angular orientations relative to the plane of the supportive end structure 28, according to the design, usage, and type of the selective mirror.
As illustrated in
According to another embodiment of the present invention, the mini-scope 10 can include a rotating device (not shown) for rotating the selective mirror 12. The rotating device can be coupled to the supportive end structure and be configured to both support, rotate and/or pivot the selective mirror, the emissions aperture 14, and/or the SSID 16 about the center axis of the elongated mini-scope body 18. The rotating device can also rotate the supportive end structure and/or the selective mirror in other directions, as desired. Alternatively, the supportive end structure 28 and mirror supporting structure 24 can include rotational means. For example, a mirror supporting structure that serves as a rotating device can rotate the mirror so as to increase or decrease the direction of reflection. This mirror supporting structure can be made of a piezoelectric material that is configured to rotate the mirror in response to a predefined electrical condition. The rotating device can also rotate via a variety of other rotational means, including a mechanical device, electromechanical device, electromagnetic device, or other suitable device. Power for this device can be supplied through the electrical connection 26, or through a similar connection.
The mini-scope can also include a transparent shield 30, for protecting the patient and mini-scope elements. The shield may be coupled to the supportive end structure 28 and can be fabricated from various materials such as plastics, glass, ceramics, etc.
As illustrated in
Alternatively, as illustrated in
Referring now to
According to another embodiment of the invention, the selective mirror 12 of
To decrease the loss of the reflected illumination that has changed polarity, the selective mirror 12 can further include a non-selective portion, such as a half silvered mirror portion 38, as shown in
According to another embodiment of the present invention, the means for selectively directing a beam of optical energy can be a prism 41, as illustrated in
As illustrated in
According to one embodiment of the present invention, the first and second selective mirrors 12 and 12a can be dichroic mirrors, positioned at 45 degrees and 135 degrees, respectively, relative to the emissions aperture. The first selective mirror 12 is configured to reflect optical energy having a wavelength of approximately 450±10 nm, while the second selective mirror is configured to reflect optical energy having a wavelength of approximately 550±10 nm. In order to obtain multi-directional images, a first beam of optical energy 32a, having a wavelength of 450 nm, can be transmitted down the flexible optical conductor. This first beam can be reflected by the first selective mirror, illuminating objects in the lateral direction. Simultaneously or alternatively, a second beam of optical energy 34a, having a wavelength of 550 nm can be transmitted down the flexible optical conductor. This second beam can pass through the first selective mirror and be reflected off the second selective mirror, illuminating objects in a reverse-lateral direction. Further, a third beam of optical energy 40a, having a wavelength of 650 nm (red light) can be either simultaneously or alternatively transmitted down the flexible optical conductor. This third beam can pass through the first and second selective mirrors, illuminating objects in a forward direction. The reflected illumination of the first, second, and third beams 32b, 34b, and 40b, in response to external objects are passed through or reflected from the first, second or both the first and second selective mirrors, towards the GRIN lens 22 and SSID 16 for producing a recorded image.
Referring now to
According to another embodiment of the present invention, the light source 52 can alternatively transmit a first beam of optical energy, having a first predefined optical characteristic, for a predetermined amount of time. The light source can then transmit a second beam of optical energy, having a second predefined optical characteristic, for a predetermined amount of time (e.g., as shown in
According to another embodiment of the present invention, a plurality of beams of optical energy, each having a distinct optical characteristic, can be transmitted and recorded simultaneously, as previously mentioned. Imaging software 55 of a processing system 54 can then selectively filter and display the recorded image according to the predefined characteristics of the plurality of beams of optical energy. Thus it can display multiple directional views of the distal end of the mini-scope 10 on multiple displays 56 and 58.
As illustrated in
The first and second portions of the beam can be transmitted alternatively, sequentially, or simultaneously, or in any combination of these. The first and second portions can further include a plurality of other beams, each having varied intensities. Because the beam can be passed through the selective mirror either simultaneously or alternatively with a second beam, it will be understood that the step of passing and the step of reflection can be performed simultaneously or sequentially.
Summarizing and reiterating to some extent, benefits of the present invention include a mini-scope with multi-directional imaging functionality. Various embodiments of the mini-scope are suitable for use with different types of medical and other applications. The multi-directional imaging is achieved by positioning a means for selectively directing a beam of optical energy in the optical path of the optical energy emitted by the elongated mini-scope body. This allows light to be directed and recorded from a forward and an angled direction, or multiple angled directions. This function can reduce the need for rotation of the mini-scope and bulky and/or complex directional devices.
While the foregoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage, and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.
Number | Name | Date | Kind |
---|---|---|---|
3817635 | Kawahara | Jun 1974 | A |
3856000 | Chikama | Dec 1974 | A |
3971065 | Bayer | Jul 1976 | A |
4283115 | Fraissl | Aug 1981 | A |
4487206 | Aagard | Dec 1984 | A |
4491865 | Danna et al. | Jan 1985 | A |
4515444 | Prescott et al. | May 1985 | A |
4573450 | Arakawa | Mar 1986 | A |
4594613 | Shinbori et al. | Jun 1986 | A |
4600831 | Hutley | Jul 1986 | A |
4604992 | Sato | Aug 1986 | A |
4620534 | Zartman | Nov 1986 | A |
4622954 | Arakawa et al. | Nov 1986 | A |
4646724 | Sato et al. | Mar 1987 | A |
4706118 | Kato et al. | Nov 1987 | A |
4723843 | Zobel | Feb 1988 | A |
4725721 | Nakumura | Feb 1988 | A |
4745470 | Yabe et al. | May 1988 | A |
4745471 | Takamura et al. | May 1988 | A |
4791479 | Ogiu et al. | Dec 1988 | A |
4802487 | Martin et al. | Feb 1989 | A |
4803562 | Eino | Feb 1989 | A |
4832003 | Yabe | May 1989 | A |
4846785 | Cassou et al. | Jul 1989 | A |
4859040 | Kitagishi et al. | Aug 1989 | A |
4867137 | Takahashi | Sep 1989 | A |
4867138 | Kubota et al. | Sep 1989 | A |
4867174 | Skribiski | Sep 1989 | A |
4880298 | Takada | Nov 1989 | A |
4895138 | Yabe | Jan 1990 | A |
4926257 | Miyazaki | May 1990 | A |
4932394 | Nanaumi | Jun 1990 | A |
4998807 | Uzawa et al. | Mar 1991 | A |
5006928 | Kawajiri et al. | Apr 1991 | A |
5009483 | Rockwell, III | Apr 1991 | A |
5021888 | Kondou et al. | Jun 1991 | A |
5040069 | Matsumoto et al. | Aug 1991 | A |
5061036 | Gordon | Oct 1991 | A |
5093719 | Prescott | Mar 1992 | A |
5106387 | Kittrell et al. | Apr 1992 | A |
5109859 | Jenkins | May 1992 | A |
5111804 | Funakoshi | May 1992 | A |
5113254 | Kanno et al. | May 1992 | A |
5130804 | Tamura et al. | Jul 1992 | A |
5166656 | Badihi et al. | Nov 1992 | A |
5191203 | McKinley | Mar 1993 | A |
5198894 | Hicks | Mar 1993 | A |
5220198 | Tsuji | Jun 1993 | A |
5222477 | Lia | Jun 1993 | A |
5228430 | Sakamoto | Jul 1993 | A |
5258834 | Tsuji et al. | Nov 1993 | A |
5289434 | Berni | Feb 1994 | A |
5291010 | Tsuji | Mar 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5305098 | Matsunaka et al. | Apr 1994 | A |
5318024 | Kittrell et al. | Jun 1994 | A |
5361166 | Atkinson et al. | Nov 1994 | A |
5365268 | Minami | Nov 1994 | A |
5376960 | Wurster | Dec 1994 | A |
5377047 | Broome et al. | Dec 1994 | A |
5381784 | Adair | Jan 1995 | A |
5396366 | Brown et al. | Mar 1995 | A |
5398685 | Wilk et al. | Mar 1995 | A |
5402769 | Tsuji | Apr 1995 | A |
5430475 | Goto et al. | Jul 1995 | A |
5434615 | Matumoto | Jul 1995 | A |
5436655 | Hiyama et al. | Jul 1995 | A |
5438975 | Miyagi et al. | Aug 1995 | A |
5455455 | Badehi | Oct 1995 | A |
5458612 | Chin | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5469841 | Kobayashi et al. | Nov 1995 | A |
5494483 | Adair | Feb 1996 | A |
5512940 | Takasugi et al. | Apr 1996 | A |
5531664 | Adachi et al. | Jul 1996 | A |
5547455 | McKenna | Aug 1996 | A |
5547906 | Badehi | Aug 1996 | A |
5594497 | Ahern | Jan 1997 | A |
5603687 | Hori et al. | Feb 1997 | A |
5630788 | Forkner et al. | May 1997 | A |
5647368 | Zeng et al. | Jul 1997 | A |
5673083 | Izumi et al. | Sep 1997 | A |
5685311 | Hara | Nov 1997 | A |
5693043 | Kittrell et al. | Dec 1997 | A |
5704892 | Adair | Jan 1998 | A |
5716323 | Lee | Feb 1998 | A |
5716759 | Badehi | Feb 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5749827 | Minami | May 1998 | A |
5751340 | Strobl et al. | May 1998 | A |
5752518 | McGee et al. | May 1998 | A |
5769792 | Palcic et al. | Jun 1998 | A |
5772597 | Goldberger et al. | Jun 1998 | A |
5776049 | Takahashi | Jul 1998 | A |
5792984 | Bloom | Aug 1998 | A |
5800341 | McKenna et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5818644 | Noda | Oct 1998 | A |
5827172 | Takahashi et al. | Oct 1998 | A |
5840017 | Furusawa et al. | Nov 1998 | A |
5846185 | Carollo | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5865729 | Meehan et al. | Feb 1999 | A |
5870229 | Tsuchida | Feb 1999 | A |
5873816 | Kagawa et al. | Feb 1999 | A |
5879285 | Ishii | Mar 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5908445 | Whayne et al. | Jun 1999 | A |
5913817 | Lee | Jun 1999 | A |
5916155 | Levinson et al. | Jun 1999 | A |
5929900 | Yamanaka et al. | Jul 1999 | A |
5940126 | Kimura | Aug 1999 | A |
5947894 | Chapman et al. | Sep 1999 | A |
5951462 | Yamanaka | Sep 1999 | A |
5957849 | Munro | Sep 1999 | A |
5971915 | Yamamoto et al. | Oct 1999 | A |
5973779 | Ansari et al. | Oct 1999 | A |
5980663 | Badehi | Nov 1999 | A |
5999327 | Nagaoka | Dec 1999 | A |
6008123 | Kook et al. | Dec 1999 | A |
6022758 | Badehi | Feb 2000 | A |
6040235 | Badehi | Mar 2000 | A |
6095970 | Hidaka et al. | Aug 2000 | A |
6117707 | Badehi | Sep 2000 | A |
6118476 | Morito et al. | Sep 2000 | A |
6133637 | Hikita et al. | Oct 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6139489 | Wampler et al. | Oct 2000 | A |
6142930 | Ito et al. | Nov 2000 | A |
6161035 | Furusawa | Dec 2000 | A |
6184923 | Miyazaki | Feb 2001 | B1 |
6211955 | Basiji et al. | Apr 2001 | B1 |
6261226 | McKenna et al. | Jul 2001 | B1 |
6319745 | Bertin et al. | Nov 2001 | B1 |
6322498 | Gravenstein et al. | Nov 2001 | B1 |
6327096 | Tsuchida | Dec 2001 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6366726 | Wach et al. | Apr 2002 | B1 |
6384397 | Takiar et al. | May 2002 | B1 |
6396116 | Kelly et al. | May 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6522913 | Swanson et al. | Feb 2003 | B2 |
6533722 | Nakashima | Mar 2003 | B2 |
6537205 | Smith | Mar 2003 | B1 |
6561972 | Ooshima et al. | May 2003 | B2 |
6595913 | Takahashi | Jul 2003 | B2 |
6622367 | Bolduc et al. | Sep 2003 | B1 |
6643071 | Schnitzer | Nov 2003 | B2 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6695787 | Hogenkijk et al. | Feb 2004 | B2 |
6719686 | Coakley et al. | Apr 2004 | B2 |
6761684 | Speier | Jul 2004 | B1 |
6826422 | Modell et al. | Nov 2004 | B1 |
6827683 | Otawara | Dec 2004 | B2 |
6834158 | Templeton | Dec 2004 | B1 |
6879851 | McNamara et al. | Apr 2005 | B2 |
6898458 | Zeng et al. | May 2005 | B2 |
6937268 | Ogawa | Aug 2005 | B2 |
6953432 | Schiefer | Oct 2005 | B2 |
6960165 | Ueno et al. | Nov 2005 | B2 |
6982740 | Adair et al. | Jan 2006 | B2 |
7030904 | Adair et al. | Apr 2006 | B2 |
7033317 | Pruitt | Apr 2006 | B2 |
7091500 | Schnitzer | Aug 2006 | B2 |
7153299 | Tu et al. | Dec 2006 | B1 |
7166537 | Jacobsen et al. | Jan 2007 | B2 |
7218822 | Treado et al. | May 2007 | B2 |
7221388 | Sudo et al. | May 2007 | B2 |
20010007051 | Nakashima | Jul 2001 | A1 |
20010007511 | Minami et al. | Jul 2001 | A1 |
20010024848 | Nakamura | Sep 2001 | A1 |
20010049509 | Sekine et al. | Dec 2001 | A1 |
20020007110 | Irion | Jan 2002 | A1 |
20020080248 | Adair et al. | Jun 2002 | A1 |
20020111534 | Suzuki et al. | Aug 2002 | A1 |
20020166946 | Shuhei | Nov 2002 | A1 |
20020188204 | McNamara | Dec 2002 | A1 |
20020193660 | Weber | Dec 2002 | A1 |
20030071342 | Honda et al. | Apr 2003 | A1 |
20030220574 | Markus et al. | Nov 2003 | A1 |
20030222325 | Jacobsen et al. | Dec 2003 | A1 |
20040017961 | Petersen et al. | Jan 2004 | A1 |
20040059204 | Marshall | Mar 2004 | A1 |
20040181148 | Uchiyama et al. | Sep 2004 | A1 |
20040225222 | Zeng et al. | Nov 2004 | A1 |
20050054902 | Konno | Mar 2005 | A1 |
20050154277 | Tang et al. | Jul 2005 | A1 |
20050174649 | Okada et al. | Aug 2005 | A1 |
20050234345 | Yang | Oct 2005 | A1 |
20050267340 | Ishihara et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20060069312 | O'Connor | Mar 2006 | A1 |
20060146172 | Jacobsen et al. | Jul 2006 | A1 |
20080045794 | Belson | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
1481753 | Mar 2004 | CN |
0482997 | Oct 1991 | EP |
0639043 | Feb 1995 | EP |
0681809 | Nov 1995 | EP |
1104182 | May 2001 | EP |
1477104 | Nov 2004 | EP |
1626436 | Feb 2006 | EP |
63-155115 | Jun 1988 | JP |
5-049602 | Mar 1993 | JP |
08084700 | Apr 1996 | JP |
2005334462 | Dec 2005 | JP |
2006-162418 | Jun 2006 | JP |
2007-312290 | Nov 2007 | JP |
WO9838907 | Sep 1998 | WO |
WO9940624 | Aug 1999 | WO |
WO0054033 | Sep 2000 | WO |
WO 03081831 | Oct 2003 | WO |
WO2006060777 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080304143 A1 | Dec 2008 | US |