The present invention relates to the field of exploitation of solar energy. It more specifically concerns a platform allowing optimal collection of solar energy, intended to be used for household needs.
Solar energy is more and more associated with photovoltaic panels generating electricity. Based on this paradigm, many activities have been launched in a huge effort to deploy this kind of technology. But all these efforts have not been able to solve three principal problems:
On another hand, it can be remarked that nowadays, in the major categories (i.e. households, industry and transport) only about 15% of the total energy is used in the form of electricity. All the rest is thermal energy.
Patent applications PCT/IB2008/002723 and PCT/IB2009/000055 which are expressly incorporated herein by reference, disclose large solar platforms, with a diameter up to several kilometres, intended to exploit solar energy. Such huge installations are preferably implemented in deserts or on seas or lakes, i.e. in large free areas. As a consequence, heat produced in such installations has to be transformed in steam and then in electricity to be carried to inhabited area.
The application US61/119,838 which is expressly incorporated herein by reference discloses a cooling machine, based on a diffusion absorption system, to provide a very efficient cooling.
The present invention aims to propose improved installation adapted to exploit advantageously solar energy in inhabited area.
A first aspect of the invention is illustrated in
Said water supply pipe and said steam pipe are arranged on the frame preferably, in such a manner that the frame is able to rotate according to the second axis, without being disturbed by these pipes. They may comprise a flexible portion in the area of the axis or being connected to a water supply network and to a steam network, by a pipe portion coinciding with the second axis.
For each set, each of the reflector panels is fixed at a desired angle on the frame, so that all of the reflector panels reflect or direct sunlight upwardly toward the heat pipe. This concentrates the reflected solar radiation on the heat pipe and transforms water in steam.
The concentrators of a set can therefore be rotated around two different axes:
A skilled person can arrange this second axis in different positions. This allows the reflectors to be orientated optimally regarding the incident angle of the solar radiations. Those skilled in the art may consider several actuation means in order to have the frames rotated and provide the second rotation axis. A jack may be used for example, actuating directly on the frames.
It can be remarked that, as shown on
The frames and the plate may be rotated in order to improve the solar radiation collection. Particularly, the orientation of the concentrators on the frame may be chosen and fixed in an optimal manner, according to specific conditions of a place (i.e. geographic latitude). One can also envisage having the frames oriented in a fixed and optimized manner on the plate. The orientation can also be punctually modified, for example, between a summer and a winter positions. The orientation of the frames may also be adapted continuously, according to several tracking methods. One can envisage an azimuth tracking, with an automatic rotation of the plate, following the azimuth of the sun, with the reflector panels arranged horizontally on the frame. One can envisage an elevation tracking, with an automatic rotation of the frames following the elevation of the sun. One can envisage an optimized azimuth tracking, with an automatic rotation of the plate, following the azimuth of the sun, but with an optimized fixed elevation angle. Finally, one can envisage an azimuth/elevation tracking with automatic two axis rotations: of the plate, following the azimuth of the sun, and of the frames following the elevation of the sun.
Thus, the concentrated solar power collector may be fixedly oriented or, according to the tracking parameters to be used, may be able to rotate around 1 or 2 axes. Graphics presented in
The following abbreviations are used in these graphics:
Graphics and table of
On the one hand, it can be remarked that the main energy consumption in private households switches from cooling in the south to heating in the north. In the north, peak consumption coincides with the time of minimal solar radiation. In the south, the inverse is true, as peak consumption occurs in summer. The main energy form switches form electricity in the south for air-conditioning to heat supply in the north for heating and for warm-water. Of course, these last remarks concern northern hemisphere and north and south need to be interchanged in the southern hemisphere.
On the other hand, table of
Such collectors as described above can be relatively small, with a diameter of 200 meters for the plate. Such dimensions allow this kind of collector to be implemented in inhabited area, or in immediate vicinity of inhabited areas, like illustrated by
With tanks, either for warm-water or for ice/cold-water, connected to the DACM and to a network for feeding to houses, it is possible to provide hot and cold water, either for heating houses of a small city or of a district in winter or for cooling them in summer. These tanks provide cool/heat reserve for days with insufficient irradiation.
Performance provided by collectors described above allows considering the implementation of small sized individual collectors, directly on the roof of houses. Actually, a 3-bedroom apartment of 100 m2, using about 100 kWh per square meter and per year, consumes about 10′000 kWh per year, i.e. 27 kWh per day (mean, for the main energy requirements, i.e. warm water and heating or cooling). The daily consumption in winter is about twice the mean, i.e. 55 kWh per day. A collector with an optimized azimuth tracking collects around 3000 Wh/m2/day. That means that only 18 m2 of reflectors are needed. This installation can be completed with
Such an apartment would need an insulated water storage tank (for 2 days without any sun) which can store 170 kWh, i.e. around 2000 liters for heating and warm water.
Based on this analysis showing that a concentrated solar power collector arranged with an optimized azimuth tracking provides a very advantageous cost/performance, the invention proposes another embodiment illustrated in
As explained previously, the solar concentrators are able to rotate according to an azimuth tracking mode. The reflector panels are oriented on the frame with a fixed and optimized angle while the frame is able to rotate on a stand surface, where the concentrated solar power collector is installed. The optimized angle is chosen so that said reflector panels are oriented at between 20 and 70° with reference to the stand surface, according to local specific conditions.
In order to achieve this rotation of the frame, the embodiment shown in
The frame carries preferably any elements necessary to produce and store steam to be used further. More precisely, a steam tank is directly located on the frame and directly connected to the heat pipe. An adapted insulation is arranged between the steam tank and the housing of the collector. This tank provides means to store the heat produced by the reflector panels. In addition, it improves the stability of the concentrated solar power collector, by ballasting the frame. A heat exchanger is directly mounted inside the steam tank and is connected outside by pipes passing through the collector at the centre of its bottom, with reference to its rotation axis. A rotating joint is arranged between the pipes and the collector.
This heat exchanger can simply be connected to a hot water network of a household, or to a DACM cooling machine connected to the concentrated solar power collector.
This embodiment provides a very compact, low cost and high performance concentrated solar power collector that can be easily installed in inhabited areas, especially on flat roofs of houses or buildings. It can be remarked that such a frame can also advantageously be used for supporting photovoltaic panels. These panels can be oriented with an optimized angle and track the azimuth of the sun.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP10/57007 | 5/20/2010 | WO | 00 | 11/18/2011 |
Number | Date | Country | |
---|---|---|---|
61179859 | May 2009 | US |