1. Statement of the Technical Field
The inventive arrangements concern hybrid couplers, and more particularly hybrid couplers having a miniaturized design and capable of producing from a single input signal, two output signals that are 180° out of phase.
2. Description of the Related Art
Hybrid couplers are passive devices used in the field of radio frequency (RF) systems. Typically such hybrid coupler devices can receive an input signal and produce two output signals where the input power is equally divided between two output ports. More particularly, 180° hybrid couplers are four-port devices that can receive an input signal and provide as an output two equally-split but 180 degree phase-shifted output signals. In RF systems, broadband 180° hybrids are frequently used for anti-phase power dividing and combining.
One problem with conventional 180° hybrid couplers is that they include multiple components such as Lange couplers that are a quarter wavelength in size, or in some implementations, transmission line structures that are a half wave length in size or larger. Open space is required around the periphery of such components to ensure their proper operation. These factors can result in a device which requires a large surface area on a circuit board or substrate. The use of high dielectric constant ceramic media and other techniques have been used to miniaturize these devices to some extent. However, for many applications, the overall size of these devices remains prohibitive, especially for lower operating frequencies. Below X-band, conventional coupler designs are generally too large for use in monolithic microwave integrated circuit (MMIC) designs. Ferrite versions of 180° hybrid couplers are also known, and can be made relatively small. However, the upper operating frequency of such devices is limited to about 3 GHz. Broadband ferrite versions of 180° hybrid couplers are also known to suffer from excessive loss at the high end of their operating band.
The invention concerns a 180° hybrid coupler which includes a first transmission line transformer and a second transmission line transformer. Each of the first and second transmission line transformers is comprised of a coplanar stripline structure disposed in a spiral configuration. For example, a rectangular spiral configuration can be used for this purpose. Each of the coplanar stripline structures has a first characteristic impedance and is configured to function as a balun. A common input feed is coupled to each of the first and second transmission line transformers. According to one aspect of the invention, the common input feed is comprised of a coplanar waveguide.
A third transmission line transformer and a fourth transmission line transformer are also provided. Each of the third and fourth transmission line transformers is also configured to function as a balun and is coupled to the first and second transmission line transformers. The transmission line comprising each of the third and fourth transmission line transformers each has a second characteristic impedance. The third and fourth transmission line transformers are each comprised of coplanar stripline disposed in a spiral configuration. For example, a rectangular spiral configuration can be used for this purpose.
The first, second, third, and fourth transmission line transformers are configured to produce a first output signal from the third transmission line transformer which is approximately 180 degrees out of phase relative to a second output signal from the fourth transmission line transformer when an input signal is applied to the common input feed.
According to an aspect of the invention, the coplanar stripline used in the third and fourth transmission line transformers can each have a second characteristic impedance value that is different from the first characteristic impedance. According to one aspect of the invention, the first characteristic impedance value is approximately equal to the product of the second characteristic impedance and √2.
A first resistor is connected between a second output node of the first transmission line transformer and a second output node of the second transmission line transformer. A second resistor is connected between a first output node of the first transmission line transformer and a first output node of the second transmission line transformer. According to one aspect of the invention, the first resistor and the second resistor each have a resistance value approximately equal to a value of the second characteristic impedance.
Embodiments will be described with reference to the following drawing figures, in which like numerals represent like items throughout the figures, and in which:
A block diagram is provided in
Referring to
The first and second input nodes 101-1a, 101-2a of the first impedance network 101 are respectively connected to the first and second input nodes 102-1a, 102-2a of the second impedance network 102. The common connection of the input nodes for the first and second impedance networks 101, 102 defines port 1 of the 180 hybrid coupler.
Referring again to
The third impedance network 103 has a first input node 103-1a, a second input node 103-2a, a first output node 103-1b and second output node 103-2b. Similarly, the fourth impedance network 104 has a first input node 104-1a, a second input node 104-2a, a first output node 104-1b and second output node 104-2b. The balun configuration of the impedance networks 103, 104 serves to isolate the balanced input nodes of the impedance networks 101, 102 from the unbalanced output nodes.
The first output node 101-1b of the first impedance network 101 is connected to the first input node 103-1a of the third impedance network 103. The second output node 101-2b of the first impedance network 101 is connected to the second input node 104-2a of the fourth impedance network 104.
The first output node 102-1b of the second impedance network 102 is connected to a first input node 104-1a of the fourth impedance network 104. The second output node 102-2b of the second impedance network 102 is connected to the second input node 103-2a of the third impedance network.
At relatively low frequencies, a balun can be implemented using a conventional transformer arrangement. For example, each of the first, second, third and fourth impedance networks 101, 102, 103, and 104 could each be implemented using two wires wound upon a balun or toroidal type ferrite core to form a primary and a secondary winding. However, in an embodiment of the invention described herein, each of the first, second, third and fourth impedance networks 101, 102, 103, and 104 are implemented as transmission line transformers. In a transmission line transformer the conductor structure forming a transmission line is also used as a winding, resulting in a device that is capable of very wideband operation. Notably, the first and second impedance networks 101, 102 have a common characteristic impedance Z′. The third and fourth impedance transformers 103, 104 can have a characteristic impedance Z.
The impedance transformers 101, 102, 103, 104 in
Referring again to
The isolation provided by the first, second, third, and fourth impedance networks 101, 102, 103, 104 and the various electrical connections between such impedance networks as described herein will result in a circuit that functions as a 180° hybrid. Stated differently, this means that the circuit will produce a first output signal from the third impedance network 103 (port 2) which is approximately 180 degrees out of phase and equal amplitude relative to a second output signal from the fourth impedance network 104 (port 3) when an input signal is applied to the first and second impedance networks 101, 102 at port 1. Also, equal amplitude signals of opposite phase applied to networks 103 and 104 are combined and output on port 1. Any portion of the signals applied to networks 103 and 104 that are not of equal amplitude and opposite phase result in an even mode signal which is terminated by resistors 106 and 108 providing isolation to the even mode of propagation.
As noted above, the first, second, third, and fourth impedance networks 101, 102, 103, 104 are transmission line transformers. As will be appreciated by those skilled in the art, transmission line transformers are advantageously formed from a length of transmission line. Referring now to
As can be observed in
As may be observed in
Each coplanar stripline used to form baluns 101, 102, 103, 104 could be arranged in a simple linear layout, as opposed to the spiral configuration shown. However, it is preferred that the coplanar stripline structure be modified in the present embodiment by arranging the coplanar stripline in a spiral configuration to form the balun in each instance. The spiral configuration is advantageous in this embodiment because it permits a more compact and therefore miniaturized realization of the impedance network. The spiral turns are also advantageous in that they permit inductive coupling to occur between adjacent portions of each individual loop forming the spiral configuration. Such inductive coupling increases usable bandwidth of each impedance network 101, 102, 103, and 104, particularly at the lower end of the operating bandwidth for each device. Notably, the embodiment of the invention shown in
In
It will be readily appreciated by those skilled in the art that the characteristic impedance of the coplanar stripline will be affected by the width and spacing of the two conductors forming the coplanar stripline. The characteristic impedance can also be modified by selection of a particular substrate material. For example, the dimensions and spacing of the coplanar stripline necessary to achieve a particular characteristic impedance will depend in part on the relative permittivity of the substrate on which the coplanar stripline is disposed. Accordingly, these dimensions and materials can advantageously be selected to obtain a desired characteristic impedance for the coplanar stripline.
The techniques and methods for determining the dimensions necessary for achieving a particular characteristic impedance for coplanar stripline are well known in the art and therefore shall not be described here in detail. However, it should be understood that the spacing between adjacent loops or coils of transmission line forming each impedance network 101, 102, 103, 104 can have an affect on the characteristic impedance of such transmission line. This effect is due to the magnetic and capacitive coupling between adjacent portions of transmission line. Also, there are several design considerations that will determine a desired number of loops or coils required to form a suitable balun in the case of each impedance network 101, 102, 103, 104. For example, each balun must provide effective isolation between the input and output nodes of each impedance transformer. However, it is desirable to also maximize the operating bandwidth of each balun so that the 180° hybrid can operate over the largest possible range of frequencies. In this regard, it is desirable for the device to provide the best possible phase and amplitude tracking over the largest possible range of frequencies. Of course, the return loss and transmission loss of the device are parameters that must also be considered.
In order to optimize the various operating parameters described above, a computer modeling program is advantageously used to determine the actual spacing between each coil or loop of the spiral transmission line structure, the number of such coils or loops, and the exact dimensions of the coplanar transmission line structure. Any suitable RF circuit modeling program can be used for this purpose. For example, computer modeling systems that use a method of moments analysis or finite element analysis can be used for this purpose. Such modeling programs are commercially available from a variety of sources and permit a designer to select certain parameters which are to be optimized by varying the dimensions and other electrical features of the RF structure under analysis. In the present case, the structure can be analyzed to achieve specific phase and amplitude tracking over the largest possible bandwidth, with minimal loss.
Referring once again to
With the inventive arrangements described herein, a very small scale 180° hybrid coupler can be realized without the use of ferrite materials. The approach described can be implemented in an RF integrated circuit (RFIC) or in a monolithic microwave integrated circuit (MMIC). For example, computer modeling has shown that very small scale 180° hybrid coupler having a useful operational bandwidth extending from 1 GHz to 20 GHz can be fabricated on a substrate 0.004 inches thick, that is 0.02 inches wide and 0.04 inches in length. In contrast, conventional stripline versions of similar devices are 3 inches long and 1.3 inches wide on a substrate that is 0.2 inches thick.
Referring now to
The invention described and claimed herein is not to be limited in scope by the preferred embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5867061 | Rabjohn et al. | Feb 1999 | A |
6806790 | Ji | Oct 2004 | B2 |
6993312 | Salib | Jan 2006 | B1 |
7332960 | Burns et al. | Feb 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20100045403 A1 | Feb 2010 | US |