Information
-
Patent Grant
-
6358088
-
Patent Number
6,358,088
-
Date Filed
Wednesday, February 23, 200024 years ago
-
Date Issued
Tuesday, March 19, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Paumen; Gary
- Harve; James R.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 406
- 439 608
- 439 404
- 439 405
- 439 610
- 439 596
- 439 703
- 439 589
- 439 606
- 439 31
- 439 165
- 439 595
- 439 467
- 439 546
- 439 587
-
International Classifications
-
Abstract
A miniature connector has an inner insulated body, which supports a plurality of contact conductors which contact conductors on a companion connector, the inner insulating body being surrounded on the outside by a shield case, and an outer surface of a connection cord side end of the shield case is covered by an external insulated mold, adjacent contact conductor housing holes, in which connection ends of the contact conductors are placed, have differing depths, a connecting part cover, formed in unitary manner with the inner insulated body preventing a connection cord core wire, which is soldered onto each of the connection ends, from popping out of its corresponding contact conductor housing hole.
Description
BACKGROUND OF THE INVENTION
The present invention relates to an electrical connector. In particular, the present invention relates to a miniature connector used in connecting electronic devices such as personal computers and the like.
Because of component crowding in small space areas in these electronic devices, the USB type connectors employed are quite small and commonly are termed as such or as “miniature” connectors.
As is well known, in a connector plug, which is used to connect to a connector socket mounted on a printed circuit board and the like, a shield case covers the outside of an inner insulated body, which supports a plurality of contact conductors (contacters). The exterior surface of the end part on the connection cord side of this shield case is covered with an external insulated mold.
In this kind of connector plug, each contact conductor is placed in a contact conductor housing hole, which is formed in the inner insulated body. The connection ends of these contact conductors are soldered to the core wires of a connection cord. If the alignment pitch of the contact conductor housing holes and the contact conductors is smaller in keeping with achieving miniaturization, undesirable contacts between of the connection ends of the contact conductors and the core wires can occur.
During the forming of the external insulated mold, a large resin pressure is imposed on the inner insulated body, and due to deformation of the inner insulated body, the likelihood of the aforementioned contacts problem is increased.
For this reason, with the connector plug of the prior art, contact between adjacent connection ends of the contact conductors or between core wires is prevented by completely separating from each other the contact conductor housing holes, formed in the inner insulated body.
However, with recourse to complete separation of the contact conductor housing holes, a certain amount of thickness for the partitioning wall between contact conductor housing holes is necessary. As a result, there is a limit to the amount that the alignment pitch for the contact conductor housing holes and the contact conductors can be reduced and optimum miniaturization made difficult.
OBJECT AND SUMMARY OF THE INVENTION
The object of the present invention is to provide a miniature connector with a construction that assures, even when the alignment pitch of the contact conductor housing holes and the contact conductors is made very small, contacts between the connection ends of the contact conductors and the core wires that are soldered to these are prevented.
In order to achieve this object, the present invention proposes a miniature connector, the miniature connector having an inner insulated body, which supports a plurality of contact conductors which contact conductors on a companion connector; the inner insulating body being surrounded on the outside by a shield case; and an outer surface of a connection cord side end of the shield case being covered by an external insulated mold, wherein: adjacent contact conductor housing holes, in which connection ends of the contact conductors are placed, have differing depths; a connecting part cover, which is formed in a unitary manner with the inner insulated body, prevents a connection cord core wire, which is soldered onto each of the connection ends, from slipping out of the corresponding contact conductor housing hole.
In the detailed description of the preferred embodiment of the present invention given later, the following features will be explained.
1) A construction, wherein by having alternately different depths for the contact conductor housing holes, the connection cord core wires, which are to be soldered onto the connection ends, are arranged in a zig-zag manner.
2) A construction, wherein wide grooves, which receive non-adjacent core wires of the connection cord, are formed on the surface of the connecting part cover.
3) A construction, wherein a connecting part cover is formed in a unitary manner with a main body part of the inner insulated body via a thin walled hinge.
The above, and other objects, features and advantages of the present invention will become apparent from the following description read in conjunction with the accompanying drawings, in which like reference numerals designate the same elements.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view of a miniature connector of the present invention with a section removed.
FIG. 2
is a longitudinal cross-section view of the miniature connector.
FIG. 3
is an enlarged perspective view partly broken away of the inner insulated body of the same miniature connector with a section removed.
FIG. 4
is an enlarged cross-section view of
FIG. 2
taken along line
4
—
4
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to
FIGS. 1 and 2
, a plug part
10
a
of a connector plug
10
is inserted in a detachable manner into an insertion opening
3
of a connector socket
2
, which is mounted on a printed circuit board
1
.
Connector socket
2
includes an insulated mold
5
, which supports a plurality of contacts
4
which are aligned in the cross direction. Insulated mold
5
is housed in a metal shield case
6
of rectangular tubular configuration. Insulated mold
5
is shielded from the effects of external electric fields and external magnetic fields by shield case
6
.
Connector plug
10
has a plug part
10
a
and an inner insulated body
13
, which supports a plurality of contacters
11
(contact conductors) which are aligned spaced parallel with each other and extending perpendicular to the viewing direction in FIG.
2
. Inner insulated body
13
is surrounded by a shield case
15
of metal plate bent and formed into rectangular tubular configuration.
Inner insulated body
13
, which is an injection molded component, includes a main body
13
a
, in which a plurality of contacter housing grooves or housing holes
16
A,
16
B (FIGS.
3
and
4
), which are on a cord connecting part side of the connector plug and extend in the longitudinal direction of inner insulated body
13
. Contacters
11
are each positioned inside contacter housing grooves
16
A,
16
B, contact passage hole
23
, and plug part side contact housing groove
16
C. However, when a contacter
11
is inserted into contacter housing grooves
16
A,
16
B, a contact end part
11
a
and a connection end
11
b
are exposed in housing grooves
16
A,
16
B and in contact housing groove
16
C in order to have elastic contact with contact
4
and to have been soldered onto core wire
17
a
of connection cord
17
.
Shield case
15
has a plug part shield
15
a
, of the same cross-sectional shape as insertion opening
3
of connector socket
2
. A cord connecting part
15
b
, which has an enlarged cross-sectional shape, formed continuous with plug part shield
15
a
. After housing inner insulated body
13
and connection cord
17
, along with the surface of cord connecting part
15
b
, into which an end of connection cord
17
are introduced, is closed by a shield cover
18
.
Furthermore, in the manufacture process for connector plug
10
, after assembling shield case
15
, shield cover
18
, inner insulated body
13
, and connection cord
17
, these are placed together in an injection molding die, and external insulated mold
19
is molded onto the outer surface of everything except plug part shield
15
a.
Referring to
FIGS. 3 and 4
, the details of inner insulated body
13
, which is injection molded, are shown. Contacter housing grooves
16
A,
16
B are formed in main body part
13
a
of inner insulated body
13
. Referring to
FIG. 4
, adjacent contacter housing grooves
16
A,
16
B in the alignment direction have alternately differing depths. As a result, when connection ends
11
b
of contacters
11
are installed into contacter housing grooves
16
A,
16
B, connection ends
11
b
are arranged in a zigzag manner.
Therefore, in contacter housing grooves
16
A,
16
B, core wires
17
a
, which are soldered onto connection ends
11
b
of contacters
11
, are also arranged in a zigzag manner.
Referring to
FIGS. 2 and 3
, a flap member
13
c
, which is bent via a thin-walled hinge
13
b
in the direction A, is formed in unitary manner on the lower part of main body part
13
a
of inner insulated body
13
. The flap member
13
c
carries a plurality of small plug protrusions
20
, which by swinging the flap member from the
FIG. 3
to
FIG. 2
position thereof, can become inserted into contacter passage holes
23
. The protrusions are formed in unitary manner with the surface of flap member
13
c
as seen from FIG. By inserting plug protrusions
20
into the corresponding contacter passage or housing holes
23
, the holes of contacter passage holes
23
can be closed off by the blocking presence therein of the protrusions.
A pair of locking tabs
13
d
, which are positioned on both ends of thin-walled hinge
13
b
, are formed unitary with the on main body part
13
a
. Corresponding to locking tabs
13
d
, strikers
13
e
, in the form of rectangular frames, are formed in a unitary manner on the right and left sides of flap
13
c.
Flap
13
c
is bent 180 degrees from the
FIG. 3
position and plug protrusions
20
become aligned with and inserted into the corresponding contacter passage holes
23
, flap member
13
c
being pushed strongly against the middle surface of main body part
13
a
. With this action, locking tabs
13
d
also become engaged inside strikers
13
e
, and main body part
13
a
and flap
13
c
become securely fastened to each other. Contacter passage holes
23
are completely closed off by plug protrusions
20
. The plug protrusions
20
are prevented from inadvertently slipping out of contacter passage holes
23
, and block them to prevent resin from the external insulated mold
19
forming operation from entering contacter passage holes
23
.
The flap member structure includes a connecting part cover
13
f
. With flap member
13
c
fastened to the main body part
13
a
by locking tabs
13
d
, the main expanse of connecting part cover
13
f
acts as a cover at the connection part side of main body part
13
a
to cover the part where the contacters are soldered to associated core wires
17
A. Wide grooves
22
are formed on the surface of connecting part cover
13
f
. Wide grooves
22
are positioned opposite contacter housing groove
16
A, which is the shallower of contacter housing grooves
16
A,
16
B, and span between adjacent contacter housing grooves
16
A,
16
B. Core wires
17
a
that are soldered onto connection ends
11
b
in the shallow contacter housing groove
16
A are placed in wide grooves
22
.
Furthermore, core wires
17
a
that are soldered onto connection ends
11
b
of deep contacter housing groove
16
B are prevented from popping out of their corresponding contacter housing grooves
16
B by restraint pieces
11
g
on connecting part cover
13
f
. Adjacent core wires
17
a
, which are soldered onto connection ends
11
b
of contacters
11
, are completely separated vertically. Inadvertent contacts between core wires
17
a
are prevented in advance.
In making connector plug
10
, after contacters
11
are inserted into contacter housing grooves
16
A,
16
B of inner insulated body
13
and each connection end
11
b
is soldered onto core wire
17
a
of connection cord
17
, inner insulated body
13
is placed inside shield case
15
. The open part of shield case
15
is covered with shield cover
18
. Connector plug
10
is completed by forming an external insulated mold
19
surrounding shield case
15
and shield cover
18
. During the mold formation, resin enters by high pressure into a connection area
24
inside the shield case cover.
In the process for attaching contacters
11
into inner insulated body
13
, each contacter
11
is passed through contact passage hole
23
. After inserting contacters
11
into contacter housing grooves
16
A,
16
B,
16
C, flap member
13
c
is swung from thin-walled hinge
13
b
180 degrees towards main body part
13
a
of inner insulated body
13
, and plug protrusions
20
are inserted into corresponding contact passage holes
23
blocking them. By pushing flap
13
c
strongly against main body
13
a
, locking tabs
13
d
fall into strikers
13
e
. Spaces in contact passage holes
23
, where there is the risk of having resin from external insulated mold
19
enter, are eliminated.
In addition, when locking tabs
13
d
are fastened to flap member
13
c
, the lower surface of main body
13
a
is covered by connecting part cover
13
f
. Core wires
17
a
of connection cord
17
, which are soldered onto connection end part
11
b
in each of contacter housing grooves
16
A,
16
B, are covered completely by connecting part cover
13
f
. In addition, adjacent connection end parts
11
b
are positioned in a separated manner in deep contacter housing grooves
16
B and in wide grooves
22
, which are formed on connecting part cover
13
f
. As a result, even if the alignment pitch of contacters
11
and contacter housing grooves
16
A,
16
B is made small, there is no short circuiting of adjacent connection ends
11
b
and core wires
17
a.
Wide grooves
22
are formed on connecting part cover
13
f
and span between contacter housing grooves
16
A,
16
B which are adjacent in the cross-direction. Wide grooves
22
also house core wires
17
a
that are soldered to contacters
11
of shallow contacter groove
16
A. In addition, core wires
17
a
of connection cord
17
which are positioned inside deep contacter housing grooves
16
B are prevented from popping out of each deep contacter housing groove
16
B by restraint pieces
11
g
of connecting part cover
13
f
. As a result, there is no short-circuiting.
As is clear from the above description, by the present invention, adjacent contact conductor housing holes, which house the connection ends of contact conductors, have differing depths. The connection cord core wires, which are to be soldered onto the connection ends, are placed at the corresponding contact housing holes. As a result, the connection ends and the core wires are offset towards the depths of the contact housing holes. Because these are covered by a connecting part cover, formed in unitary manner with the inner insulated body, contacts during the formation of the external insulated mold are reliably prevented.
Because the connecting part cover is formed in a unitary manner with the main body when forming the inner insulated body, manufacturing costs do not rise, and assembly can be conducted without needing special tools. If wide grooves are formed on the surface of the connecting part cover, adjacent connection ends and core wires can be separated even more, and there is even more protection against accidental contacts.
Furthermore, by having a locking means between the main body of the inner insulated body and the connecting part cover, the connecting part cover can easily protect the connection ends and the core wires.
Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.
Claims
- 1. In a connector plug,an inner insulating body, said insulating body including a main body part having a plurality of passages therein, said passages being open at an underside of said insulating body, a corresponding plurality of contact conductors disposed in said passages, each contact conductor having a contact end and an opposite connecting end connected to an associated core wire, the contact end of each contact conductor being engagable with a corresponding conductor carried in a companion connector socket when the connector plug is inserted in said connector socket, the passages wherein the connecting ends of said contact conductors are disposed having differing depths, said inner insulating body being surrounded on an outside thereof by a shield case, an external insulated resin mold covering an outer surface of a connection side end of said shield case, said insulating body carrying a flap member integrally hinged with said main body part at an underside of said main body part, said flap member including a cover part, said flap member being swingable to a position wherein said cover part covers said passages at least where the conductor connector ends are connected to associated core wires, thereby to prevent said core wires from popping out said passages.
- 2. The connector plug of claim 1 in which alternate ones of said passages have different depths so that the corresponding ones of core wires associated with said passages define a zig-zag core wire profile.
- 3. The connector plug of claim 2 in which a surface of said cover part facing the underside of said main body part includes grooves receiving nonadjacent adjacent ones of said core wires.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-049247 |
Feb 1999 |
JP |
|
US Referenced Citations (10)