The present disclosure generally relates to an audio system in a headset (e.g., head mounted display, near-eye display, eyeglasses) or any personal device of the user, and specifically relates to in-ear devices (e.g., all day wearable, sealing in-ear devices).
An ear bud can be used to provide audio content to a user. However, the size of a transducer in an ear bud is a limiting factor for such devices to comfortably fit all ear canal diameters, and traditional dynamic loudspeakers (e.g., with magnet and coil) may be limited in miniaturization. As miniaturization is an issue for components of conventional ear-buds, a large portion of the ear bud is actually located outside of the ear canal (e.g., in the conchal bowl) while being worn by the user.
An in-ear device includes a transducer section with a frame and piezoelectric actuators coupled to the frame. The piezoelectric actuators generate an acoustic pressure wave. The transducer section includes a first side and a second side, the second side being opposite the first side. A front volume section is coupled to the first side to form a front cavity. The front volume section includes an aperture from which the generated acoustic pressure wave exits the front volume section towards an ear drum of a user. A rear volume section is coupled to the second side to form a rear cavity. The transducer section, the front volume section, and the rear volume section are configured to fit entirely within an ear canal of the user.
Figure (
Embodiments relate to an in-ear device with piezoelectric actuators to provide sound to a user that is configured to fit entirely within an ear canal of a user. The in-ear device includes a front volume section, one or more transducer sections including the piezoelectric actuators, and one or more rear volume sections. The front volume section, the one or more transducer sections, and the one or more rear volume sections are attached together to form a fully integrated in-ear device. The in-ear device may also include one or more microphone sections to detect sound internal/external to the ear canal used for audio feedback/noise cancellation. The one or more microphone sections may be attached to at least one of the one or more rear volume sections of the in-ear device to form the fully integrated in-ear device. An in-ear device assembly includes the fully integrated in-ear device, a sleeve, and optionally a pin. The sleeve holds the fully integrated in-ear device to provide a close fit to the ear canal of a user. A pin may be attached to the fully integrated in-ear device and/or the sleeve to allow the user to extract the in-ear device from the ear canal or place the in-ear device into the ear canal. At least a portion of the in-ear device assembly is external to the ear canal. In some embodiments, at least a portion of the sleeve or the pin may be external to the ear canal when the in-ear device assembly is worn by the user. In some embodiments, at least a portion of the in-ear device may be external to the ear canal when the in-ear device assembly is worn by the user. While a dimension of the in-ear device corresponding to a width of the ear canal is smaller than the width of the ear canal so that the in-ear device can fit entirely inside the ear canal of the user, a portion of the in-ear device may be external to the ear canal when worn by the user.
Advantages of the in-ear device over a conventional dynamic loudspeaker can include a reduction in size, a reduction in weight, an improvement in power efficiency, an improvement in impulse response, an improvement in durability, and an ability to provide full band audio content. The in-ear device with piezoelectric actuators eliminates the use of magnets and a coil of a conventional dynamic loudspeaker, allowing for the reduction in size, reduction in weight, and improvement in power efficiency. In contrast to a conventional loudspeaker that is round in shape, the piezoelectric actuators of the in-ear device have a high aspect ratio which enable a shape of the in-ear device to better fit inside the ear canal of the user which is long and narrow shape. The high aspect ratio of the piezoelectric actuators can be selected to move a resonance frequency of the piezoelectric actuators outside of a main band of human hearing so that the piezoelectric actuators can provide a flat response in the full band audio content. In contrast, a conventional loudspeaker has a resonance within the audio band (20 Hz-20 k Hz) which results in a non-flat response. Sometimes, two or more speakers are used to cover the full audio band, one to provide for lower frequencies and one to provide for higher frequencies in the main band of human hearing. The in-ear device may be fabricated using a micro-electro-mechanical system (MEMS) process technology to enable a reduction in size and the use of piezoelectric ceramic may enable improvements in durability. Use of MEMS process technology has advantages in manufacturing such as high precision and high repeatability. The use of piezoelectric ceramic as the active moving element has the material strength advantage over the traditional diaphragm, which often is plastic. Therefore, this device is more durable and more linear, compared to the traditional speakers. The piezoelectric actuators may be cantilever bimorphs with low mass and high stiffness, which as the active moving element, improves the impulse response of the piezoelectric actuators to provide higher performance active noise control over a conventional dynamic loudspeaker.
The term MEMS process technology refers to a process technology used to manufacture devices that include mechanical and electrical components that can be micrometers in size. MEMS process technology may be silicon-based, and produced using microfabrication processes developed for integrated circuits (ICs). The devices manufactured by MEMS process technology may be 3D structures which involve mechanical movement of components.
In-Ear Device with a Single Transducer Section
The front volume section 120 includes three sides 122 and a cover 124. The three sides 122 includes a first side 122a, a second side 122b, and a third side 122c. The first side 122a and the third side 122c are separated from each other (e.g., missing a fourth side) to form the aperture 140 (e.g., shown in
The rear volume section 130 includes four sides 132 and a base 134. The four sides 132 include a first side 132a, a second side 132b, a third side 132c, and a fourth side 132d. The top side 136 of the rear volume section 130 includes top surfaces of the four sides 132. In some embodiments, a rear port with resistive mesh may be used, if the rear volume is not big enough. The resistive mesh has a more damping effect than a mesh covering the front volume section 120. The resistive mesh may function to absorb sound instead of allowing sound to pass through. The rear port may be an aperture on a side of the rear volume section 130 of the in-ear device 100 that is facing the local area external to the ear canal. In some embodiments, acoustic material with small porous particles may be used to fill in the rear volume section 130 to increase an effective acoustic volume. In other embodiments, the rear volume section 130 may include a different number of sides 132 (e.g., one or more sides).
The transducer section 110, the front volume section 120, and the rear volume section 130 can be separately manufactured with MEMS process technology, and subsequently bonded and/or packaged together to form a fully integrated in-ear device 100. The whole manufacturing process may be compatible with Complementary Metal Oxide Semiconductor (CMOS) processing to leverage semiconductor manufacturing process for good precision and cheap cost. In some embodiments, a front volume section 120 and/or a rear volume section 130 may be separately manufactured or fabricated using printed circuit board (PCB) technology or other packaging technology, and then bonded and/or packaged with the transducer section 110 that is fabricated with MEMS process technology to form the fully integrated in-ear device 100.
Note that as illustrated the piezoelectric actuators 114 are all actuated to have their respective free ends displaced at a same amount relative to their corresponding fixed ends. In some embodiments, some or all of the piezoelectric actuators 114 may be actuated independently. Accordingly, an amount of displacement may vary as a function of time for different free ends. For example, at a same time value, an amount of displacement of the free end 192 of the piezoelectric actuator 114a may be different than an amount of displacement of the piezoelectric actuator 114b.
In some embodiments, the frame 112 may be made from a non-conductive material (e.g., plastic, glass, silicon). On top of the frame 112, there are some thin conductive traces and pads (copper, gold, aluminum, etc.) for electrical conduction. The thickness of these traces can be 10-1000 nm. A thickness of the frame 112 is greater than a thickness of the piezoelectric actuators 114. The thickness of the frame can be 100-600 μm.
The piezoelectric actuators 114 are made of piezoelectric materials (e.g., piezoelectric ceramics) that can produce a physical displacement in response to an applied electric field. The piezoelectric material may be aluminum nitride (AlN), scandium doped aluminum nitride (AlScN), zinc oxide (ZnO), lead zirconate titanate (PZT), etc. In some embodiments, the piezoelectric actuators 114 are made of AlN or AlScN, and the in-ear device 100 does not require a direct current (DC) voltage bias to drive the piezoelectric actuators 114, which can simplify a corresponding electronic circuit for activating the piezoelectric actuators 114. The low material loss of the AlN or AlScN can improve power efficiency of the in-ear device 100.
The piezoelectric actuators 114 may be bimorphs, cantilevers that include two layers of piezoelectric materials. When a voltage is applied to drive or activate the bimorph, the applied voltage causes a first piezoelectric layer to expand (e.g., push) and a second piezoelectric layer to contract (e.g., pull), causing the cantilever to extend further than it normally would in comparison to a cantilever with a single layer of piezoelectric material. Use of a bimorph as piezoelectric actuators 114 enables larger volume displacement. The thicknesses of the first and second piezoelectric layers of the bimorph can be the same for increased performance. The total thickness of the bimorph can be 0.5-4 μm. The two layers of the piezoelectric material are sandwiched by three thin electrodes, which can be platinum (Pt) or molybdenum (Mo). The metal-piezo-metal-piezo-metal stack forms the bimorph. The metal layers are connected electrically through the traces to the pads on the frame 112 for electrical connection.
Electrodes may be formed to contact the piezoelectric actuators 114 so that the piezoelectric actuators 114 can be driven by an applied voltage. The pads are placed on top of the frame 112, and they are connected through thin traces connecting to the metal layers on the bimorphs. A controller may apply a voltage from a power supply to the piezoelectric actuators 114 via the electrodes to activate the piezoelectric actuators 114.
Having multiple piezoelectric actuators 114 in the transducer section 110 allow for an increase in an actuator area, which increases the volume displacement of air for better performance of the in-ear device 100. The four piezoelectric actuators 114 move together (in phase) to generate the acoustic pressure wave. In other embodiments, there could be a different number of piezoelectric actuators 114.
The piezoelectric actuators 114 of the transducer section 110 have a high aspect ratio (e.g., width 180 to length 170 ratio). The length 170 of each piezoelectric actuator 114 is relatively short compared to the width 180 of the piezoelectric actuator 114. A high aspect ratio of the piezoelectric actuators 114 enables the in-ear device 100 to better fit in the ear canal, which is constrained by width of the ear canal. In this example, the width of the piezoelectric actuators 114 corresponds to a dimension that is in-line with the ear canal, and the length of the piezoelectric actuators 114 corresponds to a dimension across the ear canal (e.g., width of ear canal). A high aspect ratio of the piezoelectric actuators may also enable the resonance frequency 210 of the piezoelectric actuator to be outside of a main band of human hearing (e.g., above 20 kHz). The piezoelectric actuators 114 may have a resonance frequency above 20 kHz. Given a particular width 180, decreasing the length of the piezoelectric actuator 114 can increase a frequency response of the piezoelectric actuators 114 to improve active noise cancellation. Given a particular length 170, increasing the width 180 of the piezoelectric actuators 114 enables the maximum displacement of the piezoelectric actuators 114 (e.g., height of the free end 192 to a height of a fixed end 190 of a piezoelectric actuator) to be distributed over the free end 192 which allows operation within a constrained thickness (e.g., width of ear canal) more effectively. Increasing the width 180 of the piezoelectric actuators 114 can enable maintaining a larger surface area in view of the short length 170 so that the piezoelectric actuators 114 can move a relatively large volume of air for a given displacement 194, resulting in better performance in a constrained package.
In-Ear Device with Two Transducer Sections
The front volume section 320 is similar to the front volume section 120 except that it does not include a cover. The first transducer sections 310a and 310b are the same as the first transducer section 110. A side of the front volume section 320 is attached to a first side 316a of a first transducer section 310a, and an opposite side of the front volume section 320 is attached to a first side 316b of the second transducer section 310b to generate a front cavity. Rear volume sections 330a and 330b are the same as the rear volume section 130. A second side 318a of first transducer section 310a is coupled to a top side 336a of the rear volume section 330a to generate a first rear cavity. A second side 318b of second transducer section 310b is coupled to the top side 336b of the rear volume section 330b to generate a second rear cavity.
The piezoelectric actuators in the transducer sections 310 are shown in a first position similar to the first position for the transducer section 110 of
Once the piezoelectric actuators of the first and second transducer sections 310a and 310b are activated, the piezoelectric actuators push air against the front volume section 320 and first and second rear volume sections 330a and 330b of the in-ear device 300. A first acoustic pressure wave may be produced by the first transducer section 310a, and a second acoustic pressure wave may be produced by the second transducer section 310b. In some embodiments, each of the piezoelectric actuators of the first transducer section 310a and/or the second transducer section 310b may be actuated independent from one another. For example, a single piezoelectric actuator of the first transducer section 310a may be actuated while the remaining piezoelectric actuators of the first transducer section 310a and the second transducer section 310b are not actuated. In some embodiments, the piezoelectric actuators of the first and second transducer sections 310a and 310b may move together (in phase) to generate the acoustic pressure wave (e.g., the first and second acoustic pressure wave). The audio (acoustic pressure wave) produced from the transducer section 310a exits the in-ear device 300 through the aperture in the front volume section 320 to provide sound to a user via an ear canal of the user. The rear volume sections 330a and 330b may be used to attenuate an out-of-phase acoustic pressure wave that is produced by the first and second transducer sections 310a and 310b. The front volume section 320 and the first and second rear volume sections 330a and 330b may be selected to increase or maximize the energy transduction efficiency and sound pressure level output. This embodiment with two transducer sections will double the acoustic output while sharing the same front cavity, compared to the embodiment with a single transducer section.
In-Ear Device with Two Microphone Sections
The in-ear device 400 includes a transducer section 410, a front volume section 420, and a rear volume section 430 that are similar to the transducer section 110, front volume section 120, and rear volume section 130 of the in-ear device 100. A front cavity 450 is formed in the front volume section 420, and a rear cavity 452 is formed in the rear volume section 430. A mesh 422 covers an aperture of the front volume section 420. The mesh 422 allows acoustic pressure waves to pass through the aperture of the front volume section 420 while protecting the transducer section 410 from liquid and particle ingress. The mesh 422 may be made of woven polyester monofilament with different pore size to ensure the protection and acoustic pressure waves to pass through at the desired frequencies. In other embodiments, there may not be a mesh 422. When the in-ear device 400 is worn by a user, a side of the in-ear device 400 including the mesh 422 covering the aperture of the front volume section 420 faces a direction towards an ear drum of the user, and a side opposite to the side of the in-ear device 400 including the mesh 422 faces a direction towards a local area external to the ear canal of the user.
The first microphone section 460a is positioned on a same side as an aperture (e.g., covered by the mesh 442) of the front volume section 420 of the in-ear device 400 (e.g., side of the in-ear device providing sound to the user) to capture sound internal to the ear canal. The first microphone section 460a includes one or more sides 462a coupled to a side of the rear volume section 430 to form a microphone cavity 464a. An aperture of the first microphone section 460a is in a top surface of the microphone section 460a. The aperture of the first microphone section 460a is covered by a mesh 452a. The mesh 452a allows acoustic pressure waves to pass through the aperture of microphone section while protecting the microphone 460 from liquid and particle ingress. The mesh 452a may be made of woven polyester monofilament with different pore size to ensure the protection and acoustic pressure waves to pass through at the desired frequencies. In other embodiments, there may not be a mesh 452a covering the aperture of the microphone section 460a. In other embodiments, the aperture may be in a portion of a surface or in a different surface of the microphone section 460a. The first microphone section 460a includes a microphone region 466a which includes one or more microphones to detect sound. The one or more microphones may be a MEMS microphone chip or a microphone array. The microphone array may be used to detect a direction of the sound (e.g., source direction). The one or more microphones may be configured to receive a gain signal to scale a detected signal from the one or more microphones based on the instructions provided to the microphone. For example, a gain of the one or more microphones may be adjusted to avoid clipping of the detected signal or for improving a signal to noise ratio in the detected signal. The sound captured from the microphone region 466a be used for audio feedback to improve the sound quality of the audio provided to the user. For example, the captured sound may be compared to a target sound and used to adjust transducer instructions provided to the transducer section 410 to generate a sound pressure wave that is more similar to the target sound, to mitigate the occlusion effect introduced by the blocked ear canal. Also, the microphone signals can be used for feedback active noise cancelling.
The second microphone section 460b is similar to the first microphone section 460a except it is positioned on a side opposite the side including the aperture (e.g., mesh 422) of the front volume section 420 of the in-ear device 400 (e.g., side which faces away from the side providing sound to the user) to capture sound external to the ear canal. The second microphone section 460b includes one or more sides 462b coupled to another side of the rear volume section 430 to form a microphone cavity 464b. An aperture of the first microphone section 460b is in a top surface of the microphone section 460b covered by a mesh 452b. The sound captured from the microphone region 466b may be used for feedforward noise cancellation of ambient sound to improve the sound quality of the audio provided to the user. For example, the captured sound may include noise (e.g., undesirable sound) from the local area and used to adjust transducer instructions provided to the transducer section 410 to generate a sound pressure wave to cancel the noise in the local area. The sound captured from the microphone region 466b may be used to enable a “hear-through” experience to filter out some but not all sound around the user. The microphone region 466b which includes one or more microphones are external microphones at the entrance of the ear canal to capture the sound traveling to the entrance of the ear canal, which can be used to preserve the natural spatial information based on the user's own head and shoulder to create a convincing “hear-through” experience.
In some embodiments, the first microphone section 460 may include a single microphone in the microphone region 466a to detect sound internal to the ear canal while the second microphone section 460 may include a microphone array in the microphone region 466b to detect sound external to the ear canal. For example, it may be useful for the second microphone region 466b to include an array of microphones to detect a direction of the sound that is external to the ear canal.
The microphone sections 460 can be separately manufactured using MEMS process technology, and subsequently bonded and/or packaged together with the front volume section 420, the transducer section 410, the rear volume section 430 to form a fully integrated in-ear device 400. In some embodiments, the microphone sections 460 may be manufactured with the rear volume section 430 using MEMS process technology, and subsequently bonded and/or packaged together with the front volume section 420 and the transducer section 410. In some embodiments, the one or more sides 462 of the microphone sections 460 may be separately manufactured or fabricated on the same MEMS silicon chip or using printed circuit board (PCB) technology or other packaging technology, the microphone and/or microphone array may be separately manufactured using MEMS process technology, and then bonded and/or packaged with the front volume section 420, the transducer section 410, and the rear volume section 430.
The sleeve 504 is configured to be coupled to the in-ear device 502. The sleeve 504 may also be referred to as an eartip. The sleeve 504 may be made of silicone, plastic, rubber, polymer, foam, fabric, etc. or some combination thereof. The in-ear device 502 may be removable from the sleeve 504. An interior dimension of the sleeve 504 corresponds to an exterior dimension of the in-ear device 502. An exterior dimension of the sleeve 504 corresponds to a width of the ear canal 507. In some embodiments, there may be a plurality of sleeves that can couple to the in-ear device 502, the interior dimension being a same size to couple to the in-ear device 502, and the exterior dimension of each sleeve being a different size to provide a better fit for different sized ear canals. When the in-ear device assembly 500 is inserted into the ear canal 507, the sleeve 504 can provide a close seal to the ear canal 507. The sleeve 504 may cover only sides of the in-ear device 502 that are adjacent to the ear canal 507. A side 502a of the in-ear device 502 including an aperture in a front volume section of the in-ear device 502 may be left uncovered by the sleeve 504 to allow sound produced by the in-ear device 502 to be provided via the ear canal 507 towards the ear drum 508 of the user. The in-ear device 502 may include a microphone region on side 502a which is left uncovered by the sleeve 504 to allow sound internal to the ear canal 507 to reach the microphone region. The in-ear device 502 may include a microphone region on side 502b which is left uncovered by the sleeve 504 so that sound external to the ear canal 507 of the user may reach the microphone region. The in-ear device 502 may include a rear port with resistive mesh on side 502b which is left uncovered to the local area external to the ear canal.
The pin 506 is coupled to the in-ear device 502 and to enable a user to extract the in-ear device 502 from the ear canal 507. The user may hold onto the pin 506 to insert the in-ear device 502 into the ear canal 507 or remove the in-ear device 502 from the ear canal 507. The pin 506 may be flexible, comfortable, and easy to handle. The pin 506 may be coupled to the in-ear device 502. In other embodiments, the pin 506 may be coupled to the sleeve 504 of the in-ear device, or the pin 506 may be coupled to both the sleeve 504 and the in-ear device 502. In some embodiments, there may not be a pin 506, and the user may extract the in-ear device 502 by handling the sleeve 504.
The user device 510 includes an audio system 514. The user device 510 can be a music player, a cell phone, a laptop, a headset (e.g., head mounted display, near-eye display, eyeglasses), or any personal device of the user. In some embodiments, the user device 510 may additionally include a display assembly 512. When the user device 510 is an artificial reality headset, the system may operate in a VR, AR, or MR environment, or some combination thereof. The artificial headset may present content to a user comprising augmented views of a physical, real-world environment with computer-generated elements (e.g., two dimensional (2D) or three dimensional (3D) images, 2D or 3D video, sound, etc.).
The display assembly 512 is configured to display information to the user. In various embodiments, the display assembly 512 is an electronic display. The electronic display may be a single electronic display or multiple electronic displays (e.g., for a head-mounted display, a display for each eye of a user). Examples of the electronic display include: a liquid crystal display (LCD), an organic light emitting diode (OLED) display, an active-matrix organic light-emitting diode display (AMOLED), some other display, or some combination thereof. In some embodiments, the display assembly 512 is optional.
The audio system 514 is configured to provide audio content to the user. The user device 510 may provide the audio content to the user by sending the audio content to an in-ear device 500 via the network 505. The audio system 514 may provide instructions for the in-ear device to increase or decrease a volume for the audio content. The audio system 514 may provide instructions for the in-ear device to adjust for a gain in the microphones based on feedback data received from the in-ear device. The audio system 514 may adjust an audio signal based on information received from a microphone in the ear canal of the user to make it match a target waveform, and/or from information received from a microphone external to the ear canal of the user to provide for noise cancellation.
The in-ear device assembly 500 includes the in-ear device 502, a power supply 520, and a controller 530. The in-ear device 502 includes one or more transducer sections including piezoelectric actuators, a front volume section, and one or more rear volume sections that operate as a speaker, and optionally includes one or more microphone sections to detect sound internal/external to the ear canal of the user. The power supply 520 provides power to the in-ear device 502 which is used to activate the piezoelectric actuators of the transducer section. The controller 530 provides transducer instructions to the transducer section of the in-ear device 500 to produce sound. In some embodiments, the controller 530 receives audio content and/or instructions from the user device 510 via the network 505 and generates transducer instructions based on the audio content and/or instructions. In other embodiments, the controller 530 receives transducer instructions via the network 505 generated from an audio system 514 of the user device 510 and provides the received transducer instructions to the transducer section of the in-ear device 500 to produce sound. The transducer instructions may include a content signal (e.g., electrical signal applied to the transducer section to produce sound), a control signal to enable or disable the in-ear device, and a gain signal to scale the content signal (e.g., increase or decrease the sound produced by the transducer section). The controller 530 may also receive microphone instructions via the network 505, and the controller 530 may provide the microphone instructions to one or more microphone sections to adjust for a gain based on feedback data received from the in-ear device 502.
In-Ear Device with a Transducer Section with Slits
When depositing a piezoelectric material (e.g., aluminum nitride AN or scandium-doped aluminum nitride AlScN) for a piezoelectric layer of the transducer section, residual stress (ranging from 10 MPa to 1 GPa) can be introduced. Residual stress may lower the sensitivity and increase the resonance frequency of the piezoelectric actuators, and may make the piezoelectric actuators to be more fragile and cause it to break. The mitigation of the residual stress is desired to protect the piezoelectric actuators and to increase the sensitivity of the piezoelectric actuators. One way to mitigate the residual stress is to introduce slits in the piezoelectric layer (e.g., creating slits in each of the piezoelectric actuators 114a-d of
The example fabrication process described below regarding
Electrode pads are also patterned/deposited and may be made of a gold (Au) material. A seventh mask may be used to the pattern the electrode pads, and the electrode pads may be connected to corresponding metal layers through electrical traces and the vias.
The transducer section shown in
The example substrate with the etched cavity in
The in-ear device shown in
The foregoing description of the embodiments of the disclosure has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.
Some portions of this description describe the embodiments of the disclosure in terms of algorithms and symbolic representations of operations on information. These algorithmic descriptions and representations are commonly used by those skilled in the data processing arts to convey the substance of their work effectively to others skilled in the art. These operations, while described functionally, computationally, or logically, are understood to be implemented by computer programs or equivalent electrical circuits, microcode, or the like. Furthermore, it has also proven convenient at times, to refer to these arrangements of operations as modules, without loss of generality. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combinations thereof.
Any of the steps, operations, or processes described herein may be performed or implemented with one or more hardware or software modules, alone or in combination with other devices. In one embodiment, a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
Embodiments of the disclosure may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus. Furthermore, any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
Embodiments of the disclosure may also relate to a product that is produced by a computing process described herein. Such a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.
Finally, the language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the disclosure be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the disclosure, which is set forth in the following claims.
This application is a continuation of pending U.S. patent application Ser. No. 16/885,880, filed on May 28, 2020, which claims the benefit of U.S. Provisional Application No. 62/985,680 filed on Mar. 5, 2020, which are incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62985680 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16885880 | May 2020 | US |
Child | 17525182 | US |