Miniature ingestible device

Information

  • Patent Grant
  • 10207093
  • Patent Number
    10,207,093
  • Date Filed
    Thursday, February 9, 2017
    7 years ago
  • Date Issued
    Tuesday, February 19, 2019
    5 years ago
Abstract
The present invention discloses multiple approaches to preventing the capsule walls and other material from interfering with the performance of an electronic device once the device is activated by surrounding fluid. In accordance with the teachings of the present invention, a miniature ingestible device (MID) may be created using excipients and films. The MID, in accordance with various aspects of the present invention, will have a coating or laminating surrounding an electronic device and separating and isolating the device from the pharmaceutical product or drug within the capsule once the capsule is ingested as well as from the capsule itself as the capsule walls begin to collapse during the disintegration process.
Description

This application is related to and incorporates the following applications, including content incorporated therein, by reference: (A) U.S. patent application Ser. No. 12/564,017 entitled COMMUNICATION SYSTEM WITH PARTIAL POWER SOURCE and filed on Sep. 21, 2009 and published as US-2010/0081894; (B) U.S. Application number PCT/US12/447,172 filed on Oct. 25, 2007 and titled “CONTROLLED ACTIVATION INGESTIBLE IDENTIFIER.” and published as US-2010-0239616.


FIELD OF INVENTION

The present invention relates to electronic devices and, more specifically, to electronic devices for use with a pharmaceutical product.


BACKGROUND

Capsules are made of a material that becomes gel-like once in contact with fluids. Such gel-like materials can interfere with the operation of an ingestible device that relies upon contact with the surrounding fluid when the device is carried inside the capsule. For example, gelatinous materials have low conductivity and, hence, if the device operates using conduction through fluids, then it will not operate properly. Thus, it is important to prevent the gel-like material of the capsule, as it is disintegrating, from coming into contact with the device's components.


Additionally, capsules contain pharmaceutical materials that can interact with or damage the device. For example, as the capsule disintegrated, the pharmaceutical material will dissolve into the surrounding fluid and change the chemical composition of the fluid immediately surrounding the pharmaceutical material and the change may prevent the device from operating optimally. The content of the capsule may include material, such as a drug or excipient or compound, that when dissolved at high concentrations, will interfere with the operation of the ingested device placed within the same capsule. As the material enters the solution at the site where the capsule is dissolving, there is a high concentration localized around the device. The stomach motion and diffusion disperses the capsule content throughout the stomach and reduces the concentration. During this time, the device will not operate properly optimally if activated in the localized high concentration areas.


Also, during long term storage the pharmaceutical material may begin to interact with the device and prevent optimal performance when the device is activated. For example, the product inside the capsule may be acidic and harmful to the electronic components. Alternatively, the content may be too basic, which can also harm the electronics. Furthermore, the material or product within the capsule will start to interact with the surrounding fluids, once the capsule is ingested and the capsule starts to disintegrate.


Therefore, what is needed is a device that is manufactured and assembled, such that the capsule walls or other materials present in the fluid environment immediately surrounding the device do not interfere with optimal performance of the device.


SUMMARY

The present invention discloses multiple approaches to preventing the capsule walls and other material from interfering with the performance of a device once the device is activated by surrounding fluid.





DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a capsule containing a miniature ingestible device and an active agent in accordance with the present invention.



FIG. 2A shows a miniature ingestible device with a powder excipient in miniature tablet form in accordance with one aspect of the present invention.



FIG. 2B shows a miniature ingestible device with a film and powder in the form of a miniature tablet in accordance with one aspect of the present invention



FIG. 2C shows a miniature ingestible device with a film in accordance with one aspect of the present invention.



FIG. 2D shows a miniature ingestible device with a powder glued to an ingestible device in accordance with one aspect of the present invention.



FIG. 2E shows a miniature ingestible device with a film in accordance with one aspect of the present invention.



FIG. 2F shows a miniature ingestible device with a film surrounded by a powder in accordance with one aspect of the present invention.



FIG. 3 shows a capsule containing a miniature ingestible device and an active agent prior to coming in contact with a fluid.



FIG. 4 shows the capsule of FIG. 3 at the initial stage on contacting the fluid with the walls of the capsule beginning to collapse and the miniature ingestible device in accordance with the present invention.



FIG. 5 shows the capsule of FIG. 4 at a more advanced stage of being in contact with the fluid in accordance with the present invention.



FIG. 6 shows an assembly unit for creating a miniature ingestible device in accordance with the present invention.



FIG. 7 shows an assembly unit for creating a miniature ingestible device in accordance with the present invention.



FIG. 8 shows an assembly unit for creating a miniature ingestible device in accordance with the present invention.



FIG. 9 shows an assembly unit for creating a miniature ingestible device in accordance with the present invention.



FIG. 10 shows one end of a capsule with a miniature ingestible device.



FIG. 11 is a flow process for manufacturing a miniature ingestible device.





DETAILED DESCRIPTION

In accordance with the teachings of the present invention, a miniature ingestible device (MID) may be created using excipients and films. In accordance with the various aspects of the present invention, an ingestible event marker (or an ionic emission module, herein “IEM”) such as the one disclosed in U.S. patent application Ser. No. 12/564,017, entitled COMMUNICATION SYSTEM WITH PARTIAL POWER SOURCE and filed on Sep. 21, 2009, may be covered with a disintegrating or a super-disintegrating material and/or a disintegrating film using various methods of manufacture to produce the MID. The MID, in accordance with various aspects of the present invention, may have a coating or lamination surrounding the IEM and separating and isolating the IEM from the pharmaceutical product or drug within the capsule once the capsule is ingested as well as from the capsule itself as the capsule walls begin to collapse during the disintegration process. In various aspects, the MID or device can be co-encapsulated with an active agent in a gel capsule, or other capsule or carrier. The subject compositions include an active agent/carrier component. The term “active agent” refers to a composition, which may be a solid or fluid, e.g., liquid, which has an amount of active agent, e.g., a dosage, present in a pharmaceutically acceptable carrier. The active agent may comprise, for example, a pharmaceutical product such as a tablet, capsule, softgel, powder, and other medicament forms.


Referring now to FIG. 1, a capsule 10 includes a product 12 with a cavity 14. As understood in accordance with the present invention, the product 12 may be any pharmaceutical product or active agent. Also within the cavity 14 of the capsule 10 is a miniature ingestible device (MID) 20. The cavity 14 may also be filled with any excipient or product, in accordance with the teaching of the present invention. The capsule 10 is made of a dissolvable/disintegrating material, such as gelatin or hydroxypropyl methylcellulose (HPMC) material. Upon ingestion and contact with fluid, the walls of the capsule 10 turn into a soft gel-like material, due to contact with fluids.


Referring now to FIG. 2A, in accordance with one aspect of the present invention, a MID 20a is shown with an excipient material 22a surrounding an IEM 24. The scope of the present invention is not limited by the type of electronic device positioned within the excipient material 22a. Any electronic device may be used. Furthermore, the scope of the present invention is not limited by the type of excipient material used. For example, in accordance with one aspect of the present invention, the excipient material 22a may be a disintegrating material or a super disintegrating material. Example of materials include, but are not limited to, crospovidone disintegrants (e.g., Kollidon® disintegrants from BASF), polyvinyl polymer distintegrants, (e.g., Polyplasdone® disintegrants), croscarmellose sodium disintegrants (e.g., Ac-Di-Sol® distintegrants), sodium starch glycolates (e.g., Primojel® disintegrants, Explotab® disintegrants, and Vivastar® disintegrants), povidone, starch, and microcrystalline cellulose cellulose.


The MID 20a, in accordance with another aspect of the present invention, may be coated with a soluble polymer or film, such as HPMC or hydro hydroxypropyl cellulose (HPC) or blends thereof, whose function is to further delay the dissolution or disintegration of the tablet to allow for a delayed or timed separation of the IEM 24 from the capsule, such as capsule 10 of FIG. 1. Examples of the film materials may include any one or combination of the following: HPC, polyethylene oxide (PEO), forms of sugar such as sucrose or dextrose, sugar-alcohol such as Mannitol or Zylitol. To the film material additional materials may be added, including any one or combination of the following: plasticizer and/or salt, which includes sodium, potassium chloride, or any edible salt compound. Thus, in accordance with various aspects of the present invention, examples of the film materials include, but is not limited to: a combination of HPC and plasticizer with any one of PEO, sugar, or sugar-alcohol; a combination of HPC and plasticizer, a combination of PEO and plasticizer, and any of the foregoing combinations with salt. The scope of the present invention is not limited by the exact chemical composition of the film material and any combination of the above may be used to produce the film material as discussed in the present invention.


Referring now to FIG. 2B, in accordance with another aspect of the present invention, an MID 20b is shown with the excipient material 22a surrounding the IEM 24. Furthermore, the MID 20b includes a film material 32 positioned on the top surface and bottom surface of MID 20b and physically in contact with or laminated to the excipient material 22a. In accordance with another aspect of the present invention, the film material 32 is soluble and disintegrates upon contact with fluid. In accordance with another aspect of the present invention, the film material 32 does not disintegrate upon contact with fluid. The MID 20b is manufactured such that the excipient material 22a is exposed on the ends as shown, in accordance with another aspect of the present invention.


Referring now to FIG. 2C, in accordance with another aspect of the present invention an MID 20c is shown with a film material 22c surrounding the IEM 24. In accordance with another aspect of the present invention, the film material 22c disintegrate upon contact with fluid. The film material 22c may be made of and includes the following examples: at least one of polyethylene oxide and hydroxypropyl cellulose with a plasticizer comprising at least one of triethylcitrate, glycerol, dibutyl sebacate, and polyethylene glycol.


Referring now to FIG. 2D, an MID 20d in shown with an excipient material 22a in a preformed shape. The excipient material 22a is glued or laminated onto the IEM 24 using a material 30. The material 30 may be a liquid adhesive or a dry adhesive that is pressure sensitive. The excipient material 22a is shown in a dome like shape with an air gap between the excipient material 22a and the IEM 24. However, the scope of the present invention is not limited by the shape of the excipient material 22a or the distance separating the excipient material 22a from the IEM 24. In accordance with other aspects of the present invention, the excipient material 22a may be shaped to fit the dimension of the IEM 24 exactly on the inner surface and maintain a dome or convex shape on the exterior. This is helpful in the handling and assembly process of the MID 20d into the capsule, such as shown in FIG. 1 given that many of the pharmaceutical manufacturing facilities are designed to handle convex shaped objects.


Referring now to FIG. 2E, an MID 20e includes a film 22e surrounding the IEM 24. The MID 20e is shown with a gap 26 separating the IEM 24 from film 22e. The scope of the present invention is not limited by the type of material used to make the film 22e. The film 22e is similar to the film 32 of FIG. 2B and may be made of any suitable material, including but not limited to: of polyethylene oxide and hydroxypropyl cellulose with a plasticizer comprising at least one of triethylcitrate, glycerol, dibutyl sebacate, and polyethylene glycol. The scope of the present invention is not limited by the size of the gap 26. In accordance with another aspect of the present invention, the gap 26 may be minimal so that portions of the film 22e are in contact with the IEM 24. In accordance with another aspect of the present invention, the gap 26 may be filled with a material or a drug as appropriate.


Referring now to FIG. 2F, an MID 20f is shown with an IEM 24 surrounded by a film 22f. The film 22f is surrounded by the excipient material 22a. As shown, the film 22f is in direct contact with the IEM 24 and surrounds the IEM 24. Furthermore, the MID 20f is shown with the excipient material 22a surrounding and in contact with the film 22f.


In accordance with the teaching of the present invention, the shape of the various MIDs 20 shown through FIGS. 2A, 2B, 2C, 2D, 2E, and 2F as illustrative and not intended as a limitation. For example, the shape of the MID 24, in accordance with various aspects of the present invention, may be oval or rectangular or something in between, for example, vertical sides and convex top and bottom.


Referring now to FIGS. 3, 4, and 5, a capsule 10 is shown with an MID 20. There may be other materials, including pharmaceutical material or drugs or active agents, inside the capsule 10. However, for the purpose of demonstrating the designation steps of the capsule and the MID 20, only these two elements are shown. In FIG. 3 the capsule 10 is shown when it is stored and not in contact with fluid. Once the capsule 10 comes into contact with fluid, the capsule 10 begins to disintegrate and the walls of the capsule 10 start to collapse to become capsule 10a. Fluid AA enters the cavity defined by the capsule 10a. As such, fluid BB comes into contact with MID 20. In accordance with one aspect of the present invention, the excipient material of the MID 20 begins to dissolve and expand and the MID 20 starts to lose its shape and becomes the MID 40. As shown in FIG. 5, at a more advanced stage with longer contact with the fluid AA that entered the capsule 10, the capsule 10 is shown with the walls falling apart and collapsing as capsule pieces 10b. The fluid advances to contact the MID 20 as fluid BB to resulting in further expansion and disintegration of MID 20, which is shown as MID 50.


Referring now to FIG. 6, a process for creating an MID, in accordance with one aspect of the present invention, includes loading an excipient material 60a into a press 62. The mass of the excipient material 60a used is in the order of 0.045 g of powder material. However, the scope of the present invention is not limited by amount of material used. The IEM 24 is placed in the press 62. Then additional excipient material 60b, similar in mass to the amount of excipient material 60a, is added into the press 62 and on top of the IEM 24. Then a plunger 64 is used to apply pressure and assemble the materials into the MID, such as the MID 20a of FIG. 1. The pressure used to assemble the MID varies and the scope of the present invention is not limited thereby. Industry standard combined with the tolerances for the amount of pressure that can be applied the IEM 24 are the deciding factors. In accordance with one aspect of the present invention, typical pressures are in the order of 1000 psi.


Referring now to FIG. 7, a process for creating an MID, in accordance with one aspect of the present invention, includes placing a film material 70 on a press table 72. The IEM 24 is placed on top of the film material 70 and another sheet of film material 70 is place on top of the IEM 24. The film material 70 is sized such that edges 70a, 70b, 70c, and 70d extend beyond the edges of the IEM 24. Then a thermal plunger 74 is used to apply pressure and heat to the film material 70 such that the edges 70a and 70b are laminated or secured together. Similarly, the edges 70c and 70d are laminated together.


Referring now to FIG. 8, a process for creating an MID, in accordance with one aspect of the present invention, includes placing a film material 80 on a press table 82. An internal MID 20, such as the one created by the process shown in FIG. 6, is placed on top of the film material 80 and another sheet of film material 80 is place on top of the internal MID 20. The film material 80 is sized such that edges 80a, 80b, 80c, and 80d extend beyond the edges of the internal MID 20. Then a thermal plunger 84 is used to apply pressure and heat to the film material 80 such that the edges 80a and 80b are laminated or secured together. Similarly, the edges 80c and 80d are laminated together.


Referring now to FIG. 9, the process for creating an MID 96, such as the MID 20b of FIG. 2B, includes the process of placing a film material 90, similar to the film material disclosed throughout the present invention, on a press table 92, similar to the press table 72 of FIG. 7. Then a second film 90 is placed on top of the MID 20. Then a thermal plunger 94 is used to apply pressure and heat to the film materials 90 to secure the film material to the top and bottom of the MID 20, which results in the MID 96 with the side edges exposed.


Referring now to FIG. 10, the MID 96 of FIG. 9 is placed within one end of the capsule 10, such as the capsule 10 of FIG. 1, in accordance with one aspect of the present invention. The MID 96, includes film materials 90 that do not dissolve or are not soluble. As such, when the fluid comes into contact with the MID 20, the MID 20 expands and breaks apart the walls of the capsule 10 to further ensure separation of the IEM 24, which is within the MID 20, from the capsule material.


Referring now to FIG. 11, the process for manufacturing or assembling the MID, such as the MID 20, in accordance with the present invention begin at step 1110. At step 1120 the first material is added to the assembly unit. As noted above the first material may be in powder form or a film material and loaded into a press on placed on a press table, respectively. At step 1130, the device, such as the IEM, is loaded into the assembly unit. At step 1140 a second material is added. At step 1150 the assembly in completed by securing the materials and the device to form the MID. As noted above, securing may be done with pressure, thermal, or glue materials. The scope of the present invention is not limited by the approach used to secure and produce the MID.


As noted above, the film material may be made of a variety of materials or films, such as polymer films that include polyethylene oxide, hydroxyprpyl cellulose, and triethyl citrate. Other films that can be used include any solulable polymer, plasticizer. The film material, in accordance with one aspect of the present invention, provides a moisture barrier and dissolves under the proper conditions to delay activation of the IEM or device. The film layer is designed to provide sufficient delay in exposure of the device to the surrounding fluids relative to the disintegration and dispersion of the capsule material and the content of the capsule. The film layer may includes the soluble materials, barrier materials (such as lipids, polyvinyl alcohol), processing aids (such as plasticizers, adhesion promoters), and stabilizers. Furthermore, the film may be manufactured via lamination, application of a coating solution or slurry followed by a cure. In accordance with other aspects of the present invention, the film or layer may be formed using dry compression, such as a tablet press.


There are a variety of active agents or pharmaceutical products that can be placed inside of a capsule. For example, there are FDA approved drugs, drugs that are disclosed chemically in a patent application or in an issued patent, there are drugs are disclosed in the Orange Book as part of the approved drug products, and generics. In accordance with the teachings of the present inventions, any one or combination of such drugs may be placed within the capsule along with the device. Each of those drugs may have a specific and unique impact on the operation of the device as well as the disintegration of the film used because of the unique chemical composition. As such, the type of material uses as the film material may vary to be compatible to the chemical composition of the products used. Thus, the scope of the present invention is not limited by the type of content of the capsule and the film or coating layer around the electronic components of the device.


In accordance with another aspect and benefit of the present invention, the film or coating will also prevent the interaction components of the device with the drug inside the capsule and as such the device will not alter or impact the effectiveness of the drug.


As noted above various disintegration materials may be used to surround the electronic components. For example, a disintegrant may be sodium starch glycolate or a water soluble excipient such as hydroxypropyl cellulose. It will also be apparent that the various layers disclosed can be eliminated or combined depending on the material employed and the properties thereof.


As described herein, the term “ingested” or “ingest” or “ingesting” is understood to mean any introduction of the system internal to the in-vivo. For example, ingesting includes simply placing the product in the mouth all the way to the descending colon. Thus, the term ingesting refers to any instant in time when the system is introduced to an environment that contains a conducting fluid. Another example would be a situation when a non-conducting fluid is mixed with a conducting fluid. In such a situation the MID would be present in the non-conduction fluid and when the two fluids are mixed, the system comes into contact with the conducting fluid and the IEM within the MID is activated. Yet another example would be the situation when the presence of certain conducting fluids needed to be detected. In such instances, the presence of the system, which would be activated, within the conducting fluid, could be detected and, hence, the presence of the respective fluid would be detected.


According to another aspect embodiments of the invention may defined in at least one of the following clauses.


Clause 1: A device for placement within a capsule, comprising:

    • an ingestible element; and
    • a material in physical communication with at least part of the ingestible element, wherein the material facilitates physical separation of the ingestible element from at least a portion of the capsule during a disintegration.


Clause 2: The device of clause 1, wherein the ingestible unit comprises an ingestible event marker.


Clause 3: The device of clause 1 or 2, wherein the material comprises a disintegrant and comprises at least one of povidone, crospovidone,

    • croscarmellose sodium, sodium starch glycolate, startch, and microcrystalline cellulose cellulose.


Clause 4: The device of clause 3, wherein the super-disintegrant is physically coupled to the ingestible unit using pressure.


Clause 5: The device of clause 3, wherein the super-disintegrant is physically coupled to the ingestible unit using an adhesive material.


Clause 6: The device of any of the preceding clauses, wherein the material includes a soluble film material that comprises at least one of polyethylene oxide and hydroxypropyl cellulose with a plasticizer comprising at least one of triethylcitrate, glycerol, dibutyl sebacate, and polyethylene glycol.


Clause 7: The device of any of the preceding clauses, wherein the film material is physically coupled to the ingestible unit using thermal application.


Clause 8: A unit including a pharmaceutical product, wherein the unit is ingestible and activated upon contact with a fluid, the unit comprising:

    • a capsule including a wall, wherein the capsule defines a cavity for holding the pharmaceutical product and wherein the wall loses its shape and disintegrates upon contact with the fluid; and
    • a device, preferably a device according to any of the preceding clauses, the device including a partial power source located within the cavity of the capsule, wherein the device is capable of encoding information in a current flow, which occurs when the device is activated as the partial power source contacts the fluid, the device further comprising:
      • a first surface with a first portion of the partial power source;
      • a second surface with a second portion of the partial power source; and
      • a control unit for encoding the information in the current flow, wherein the control unit is electrically coupled between the first and second portions of the partial power source; and
    • a material positioned over the first portion and the second portion of the partial power source, wherein the material disintegrates upon contact with the fluid to provide physical separation between the device and the disintegrating wall of the capsule.


Clause 9: The unit of clause 8, wherein the material surrounds the device and is secured to itself to define a cavity between the material and the device.


Clause 10: A system for tracking delivery of a pharmaceutical agent, the system comprising:

    • a capsule defining a cavity;
    • miniature ingestible tablet located in the cavity of the capsule, the miniature ingestible tablet comprising:
      • an ingestible device according to any of clauses 1-7, preferably a device in a unit according to any of clauses 8-9, the device being activated upon contact with a fluid and comprising an ingestible element and a tablet material in physical communication with at least part of the ingestible device; and
    • a material at least partially surrounding the miniature ingestible tablet, wherein the tablet material facilitates physical separation of the ingestible device from at least a portion of the capsule during a disintegration process.


Clause 11: The system of clause 10, wherein the material and/or the tablet material is a soluble film material that includes at least one of polyethylene oxide and hydroxypropyl cellulose with a plasticizer comprising at least one of triethylcitrate, glycerol, dibutyl sebacate, and polyethylene glycol.


Clause 12: The system of clause 11, wherein the material is a non-soluble film material that defines an opening at either end of the miniature ingestible tablet such that when the tablet material comes in contact with the fluid and expands the film material controls the direction of expansion.


Clause 13: The system of clause 11 or 12, wherein the film material delays contact between the fluid and the ingestible device to delay activation.


Clause 14: A method of manufacturing a device, preferably for assembly into a pharmaceutical product to prevent damage to the device and allow for handling and manipulation of the device during assembly and for reliable activation of the device upon ingestion of the pharmaceutical product, the method comprising the steps of:

    • providing a first layer of material;
    • positioning the device including a first portion and a second portion, wherein the first portion of the device is in contact with the first layer of material;
    • providing a second layer of material, wherein the second layer of material is in contact with the second portion of the device; and
    • securing the first and second material to the device to produce a miniature ingestible marker.


Clause 15: The method of clause 14, further comprising the step of physically associating the miniature ingestible marker with the pharmaceutical product, wherein physically associating the miniature ingestible marker with the pharmaceutical product comprises incorporating the miniature ingestible marker in a gelatin capsule.


Clause 16: The method according to clause 14 or 15, wherein the device is a device according to any of clauses 1-7.


It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.


Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims
  • 1. A manufacturing process comprising: loading a first portion of a tablet material into a press, the tablet material formulated to disintegrate upon contact with a fluid;loading an ingestible event marker into the press adjacent to the first portion of the tablet material, the ingestible event marker comprising: a partial power source having a first portion and a second portion and configured to generate power upon contact of the first portion and the second portion with the fluid; anda control unit electrically coupled between the first portion and the second portion of the partial power source, wherein the control unit is configured to be activated by receiving the power from the partial power source and to encode information in a current flow between the first portion and the second portion through the fluid;loading a second portion of the tablet material into the press on a side positioned opposite of the ingestible event marker from the first portion of the tablet material, such that the ingestible event marker resides in the press between the first portion and the second portion of the tablet material;applying pressure in the press to the first and the second portions of the tablet material, such that the first portion and the second portion of the tablet material completely encapsulates the ingestible event marker and the first portion and the second portion of the partial power source are exposed after the first portion and the second portion of the tablet material disintegrates upon contact with the fluid; andcovering at least partially the first portion and the second portion of the tablet material with a non-soluble film material to form an ingestible device, wherein the film material is formulated and configured to inhibit interaction between the tablet material and a pharmaceutical product during disintegration of the pharmaceutical product; andwherein the film material covers at least partially the first portion and the second portion of the tablet material such that when the first portion and the second portion of the tablet material come in contact with the fluid, the film material controls the direction of expansion of the tablet material as the tablet material expands.
  • 2. The process of claim 1, further comprising enveloping the ingestible device with a capsule, wherein the first portion and the second portion of the tablet material further isolate the first portion and the second portion of the partial power source and the control unit from the capsule.
  • 3. The process of claim 2, wherein the capsule comprises a wall defining a cavity for containing the ingestible device, the wall configured to lose its shape and disintegrate upon contact with the fluid.
  • 4. The process of claim 3, further comprising filling the cavity with the pharmaceutical product.
  • 5. The process of claim 1, wherein the tablet material comprises an excipient material that is a disintegrant and comprises at least one of; povidone, crospovidone, croscarmellose sodium, sodium starch glycolate, starch, or microcrystalline cellulose.
  • 6. The process of claim 1, wherein the tablet material is a soluble film material that comprises at least one of polyethylene oxide or hydroxypropyl cellulose.
RELATED APPLICATIONS

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/639,766, titled MINIATURE INGESTIBLE DEVICE, which is a U.S. National Stage Application, filed under 35 U.S.C. § 371, of International Patent Application No. PCT/US2011/031536, filed Apr. 7, 2011 and titled MINIATURE INGESTIABLE DEVICE, which application, pursuant to 35 U.S.C. § 119(e), claims priority to the filing dates of U.S. Provisional Patent Application Ser. No. 61/321,846 filed on Apr. 7, 2010 entitled MINIATURE INGESTIBLE EVENT MARKER IN TABLET, and U.S. Provisional Patent Application Ser. No. 61/416,150 filed on Nov. 22, 2010 entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, the disclosures of which applications are herein incorporated by reference.

US Referenced Citations (979)
Number Name Date Kind
1548459 Hammer Aug 1925 A
2587158 Hofberg Feb 1952 A
2973555 Schwepke Mar 1961 A
3048526 Boswell Aug 1962 A
3079824 Schott Mar 1963 A
3096248 Rudzki Jul 1963 A
3176399 Marino et al. Apr 1965 A
3589943 Grubb et al. Jun 1971 A
3607788 Adolph Sep 1971 A
3642008 Bolduc Feb 1972 A
3679480 Brown et al. Jul 1972 A
3682160 Murata Aug 1972 A
3719183 Schwartz Mar 1973 A
3799802 Schneble, Jr. et al. Mar 1974 A
3828766 Krasnow Aug 1974 A
3837339 Aisenberg et al. Sep 1974 A
3849041 Knapp Nov 1974 A
3893111 Cotter Jul 1975 A
3944064 Bashaw et al. Mar 1976 A
3967202 Batz Jun 1976 A
3989050 Buchalter Nov 1976 A
4017856 Wiegand Apr 1977 A
4055178 Harrigan Oct 1977 A
4062750 Butler Dec 1977 A
4077397 Ellis Mar 1978 A
4077398 Ellis Mar 1978 A
4082087 Howson Apr 1978 A
4090752 Long May 1978 A
4106348 Auphan Aug 1978 A
4129125 Lester Dec 1978 A
4139589 Beringer et al. Feb 1979 A
4143770 Grimmell et al. Mar 1979 A
4166453 McClelland Sep 1979 A
4239046 Ong Dec 1980 A
4251795 Shibasaki et al. Feb 1981 A
4269189 Abraham May 1981 A
4331654 Morris May 1982 A
4345588 Widder et al. Aug 1982 A
4418697 Tama Dec 1983 A
4425117 Hugemann Jan 1984 A
4439196 Higuchi Mar 1984 A
4494950 Fischell Jan 1985 A
4559950 Vaughan Dec 1985 A
4564363 Bagnall et al. Jan 1986 A
4635641 Hoffman Jan 1987 A
4654165 Eisenber Mar 1987 A
4663250 Ong et al. May 1987 A
4669479 Dunseath Jun 1987 A
4687660 Baker et al. Aug 1987 A
4725997 Urquhart et al. Feb 1988 A
4749575 Rotman et al. Jun 1988 A
4763659 Dunseath Aug 1988 A
4767627 Caldwell et al. Aug 1988 A
4775536 Patell Oct 1988 A
4784162 Ricks Nov 1988 A
4793825 Benjamin et al. Dec 1988 A
4814181 Jordan et al. Mar 1989 A
4844076 Lesho Jul 1989 A
4847090 Della Posta et al. Jul 1989 A
4876093 Theeuwes et al. Oct 1989 A
4891223 Ambegaonakar et al. Jan 1990 A
4896261 Nolan Jan 1990 A
4900552 Sanvordeker et al. Feb 1990 A
4975230 Pinkhasov Dec 1990 A
4987897 Funke Jan 1991 A
5000957 Eckenhoff et al. Mar 1991 A
5016634 Vock et al. May 1991 A
5018335 Yamamoto et al. May 1991 A
5079006 Urguhart Jan 1992 A
5110441 Kinlen et al. May 1992 A
5160885 Hannam et al. Nov 1992 A
5167626 Casper Dec 1992 A
5176626 Soehendra Jan 1993 A
5187723 Mueller Feb 1993 A
5213738 Hampton et al. May 1993 A
5218343 Stobbe et al. Jun 1993 A
5261402 DiSabito Nov 1993 A
5263481 Axelgaard et al. Nov 1993 A
5273066 Graham et al. Dec 1993 A
5279607 Schentag et al. Jan 1994 A
5281287 Lloyd Jan 1994 A
5283136 Peled et al. Feb 1994 A
5288564 Klein Feb 1994 A
5305745 Zacouto Apr 1994 A
5318557 Gross Jun 1994 A
5331953 Andersson et al. Jul 1994 A
5394882 Mawhinney Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5436091 Shackle et al. Jul 1995 A
5443461 Atkinson et al. Aug 1995 A
5443843 Curatolo et al. Aug 1995 A
5458141 Neil et al. Oct 1995 A
5458994 Nesselbeck et al. Oct 1995 A
5485841 Watkin et al. Jan 1996 A
5506248 Nikfar et al. Apr 1996 A
5551020 Flax et al. Aug 1996 A
5567210 Bates et al. Oct 1996 A
5596302 Mastrocola et al. Jan 1997 A
5600548 Nguyen et al. Feb 1997 A
5603363 Nelson Feb 1997 A
5634468 Platt Jun 1997 A
5645063 Straka et al. Jul 1997 A
5659247 Clements Aug 1997 A
5703463 Smith Dec 1997 A
5705189 Lehmann et al. Jan 1998 A
5724432 Bouvet et al. Mar 1998 A
5738708 Peachey et al. Apr 1998 A
5740811 Hedberg Apr 1998 A
5757326 Koyama et al. May 1998 A
5772575 Lesinski et al. Jun 1998 A
5792048 Schaefer Aug 1998 A
5802467 Salazar Sep 1998 A
5833716 Bar-Or Nov 1998 A
5842324 Grosskopf et al. Dec 1998 A
5845265 Woolston Dec 1998 A
5862803 Besson Jan 1999 A
5868136 Fox Feb 1999 A
5914132 Kelm et al. Jun 1999 A
5914701 Gersheneld et al. Jun 1999 A
5925030 Gross et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5963132 Yoakum et al. Oct 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5981166 Mandecki Nov 1999 A
5999846 Pardey et al. Dec 1999 A
6018229 Mitchell et al. Jan 2000 A
6038464 Axelgaard et al. Mar 2000 A
6042710 Dubrow Mar 2000 A
6047203 Sackner Apr 2000 A
6068465 Wilson May 2000 A
6068589 Neukermans May 2000 A
6076016 Feierbach et al. Jun 2000 A
6081734 Batz Jun 2000 A
6091975 Daddona et al. Jul 2000 A
6095985 Raymond et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6141592 Pauly Oct 2000 A
6149940 Maggi et al. Nov 2000 A
6200265 Walsh et al. Mar 2001 B1
6206702 Hayden et al. Mar 2001 B1
6217744 Crosby Apr 2001 B1
6231593 Meserol May 2001 B1
6245057 Sieben et al. Jun 2001 B1
6269058 Yamanoi et al. Jul 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6287252 Lugo Sep 2001 B1
6288629 Cofino et al. Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6315719 Rode et al. Nov 2001 B1
6317714 Del Castillo Nov 2001 B1
6342774 Kreisinger et al. Jan 2002 B1
6344824 Takasugi et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6364834 Reuss Apr 2002 B1
6366206 Ishikawa et al. Apr 2002 B1
6371927 Brune Apr 2002 B1
6374670 Spelman Apr 2002 B1
6380858 Yarin et al. Apr 2002 B1
6390088 Noehl et al. May 2002 B1
6394997 Lemelson May 2002 B1
6426863 Munshi Jul 2002 B1
6432292 Pinto et al. Aug 2002 B1
6440069 Raymond et al. Aug 2002 B1
6441747 Khair Aug 2002 B1
6453199 Kobozev Sep 2002 B1
6477424 Thompson et al. Nov 2002 B1
6496705 Ng et al. Dec 2002 B1
6526315 Inagawa Feb 2003 B1
6531026 Takeichi et al. Mar 2003 B1
6544174 West Apr 2003 B2
6547994 Monkhouse et al. Apr 2003 B1
6564079 Cory May 2003 B1
6567685 Takamori et al. May 2003 B2
6572636 Hagen et al. Jun 2003 B1
6577893 Besson et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6595929 Stivoric Jul 2003 B2
6599284 Faour et al. Jul 2003 B2
6602518 Seielstad et al. Aug 2003 B2
6605038 Teller Aug 2003 B1
6609018 Cory Aug 2003 B2
6612984 Kerr Sep 2003 B1
6632175 Marshall Oct 2003 B1
6632216 Houzego et al. Oct 2003 B2
6635279 Kolter et al. Oct 2003 B2
6643541 Mok et al. Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6663846 McCombs Dec 2003 B1
6673474 Yamamoto Jan 2004 B2
6680923 Leon Jan 2004 B1
6689117 Sweeney et al. Feb 2004 B2
6694161 Mehrotra Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6720923 Hayward et al. Apr 2004 B1
6738671 Christophersom et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6745082 Axelgaard et al. Jun 2004 B2
6755783 Cosentino Jun 2004 B2
6757523 Fry Jun 2004 B2
6759968 Zierolf Jul 2004 B2
6767200 Sowden et al. Jul 2004 B2
6773429 Sheppard et al. Aug 2004 B2
6800060 Marshall Oct 2004 B2
6801137 Eggers et al. Oct 2004 B2
6816794 Alvi Nov 2004 B2
6822554 Vrijens et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6836862 Erekson et al. Dec 2004 B1
6839659 Tarassenko et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6842636 Perrault Jan 2005 B2
6845272 Thomsen Jan 2005 B1
6864780 Doi Mar 2005 B2
6879810 Bouet Apr 2005 B2
6888337 Sawyers May 2005 B2
6889165 Lind et al. May 2005 B2
6909878 Haller Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6928370 Anuzis et al. Aug 2005 B2
6929636 Von Alten Aug 2005 B1
6937150 Medema Aug 2005 B2
6942616 Kerr Sep 2005 B2
6946156 Bunick Sep 2005 B2
6951536 Yokoi Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6958603 Kondo Oct 2005 B2
6960617 Omidian et al. Nov 2005 B2
6968153 Heinonen Nov 2005 B1
6977511 Patel et al. Dec 2005 B2
6982094 Sowden Jan 2006 B2
6987965 Ng et al. Jan 2006 B2
6990082 Zehavi et al. Jan 2006 B1
7002476 Rapchak Feb 2006 B2
7004395 Koenck Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009946 Kardach Mar 2006 B1
7013162 Gorsuch Mar 2006 B2
7016648 Haller Mar 2006 B2
7020508 Stivoric Mar 2006 B2
7024248 Penner et al. Apr 2006 B2
7031745 Shen Apr 2006 B2
7031857 Tarassenko et al. Apr 2006 B2
7039453 Mullick May 2006 B2
7044911 Drinan et al. May 2006 B2
7046649 Awater et al. May 2006 B2
7061236 Britton Jun 2006 B2
7083578 Lewkowicz Aug 2006 B2
7116252 Teraguchi Oct 2006 B2
7118531 Krill Oct 2006 B2
7122143 Sowden et al. Oct 2006 B2
7127300 Mazar et al. Oct 2006 B2
7146228 Nielsen Dec 2006 B2
7146449 Do et al. Dec 2006 B2
7149581 Goedeke et al. Dec 2006 B2
7154071 Sattler et al. Dec 2006 B2
7155232 Godfrey et al. Dec 2006 B2
7160258 Imran Jan 2007 B2
7164942 Avrahami Jan 2007 B2
7171166 Ng et al. Jan 2007 B2
7171177 Park et al. Jan 2007 B2
7171259 Rytky Jan 2007 B2
7176784 Gilbert et al. Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188199 Leung et al. Mar 2007 B2
7188767 Penuela Mar 2007 B2
7194038 Inkinen Mar 2007 B1
7196495 Burcham Mar 2007 B1
7206630 Tarler Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7215660 Perlman May 2007 B2
7215991 Besson May 2007 B2
7218967 Bergelson May 2007 B2
7231451 Law Jun 2007 B2
7243118 Lou Jul 2007 B2
7246521 Kim Jul 2007 B2
7249212 Do Jul 2007 B2
7252792 Perrault Aug 2007 B2
7253716 Lovoi et al. Aug 2007 B2
7261690 Teller Aug 2007 B2
7270633 Goscha Sep 2007 B1
7273454 Raymond et al. Sep 2007 B2
7289855 Nghiem Oct 2007 B2
7291497 Holmes Nov 2007 B2
7292139 Mazar et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7311665 Hawthorne Dec 2007 B2
7313163 Liu Dec 2007 B2
7317378 Jarvis et al. Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7336929 Yasuda Feb 2008 B2
7342895 Serpa Mar 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7349722 Witkowski et al. Mar 2008 B2
7352998 Palin Apr 2008 B2
7353258 Washburn Apr 2008 B2
7357891 Yang et al. Apr 2008 B2
7359674 Markki Apr 2008 B2
7366558 Virtanen et al. Apr 2008 B2
7368190 Heller et al. May 2008 B2
7368191 Andelman et al. May 2008 B2
7373196 Ryu et al. May 2008 B2
7375739 Robbins May 2008 B2
7376435 McGowan May 2008 B2
7382247 Welch et al. Jun 2008 B2
7382263 Danowski et al. Jun 2008 B2
7387607 Holt Jun 2008 B2
7388903 Godfrey et al. Jun 2008 B2
7389088 Kim Jun 2008 B2
7392015 Farlow Jun 2008 B1
7395106 Ryu et al. Jul 2008 B2
7396330 Banet Jul 2008 B2
7404968 Abrams et al. Jul 2008 B2
7413544 Kerr Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7414543 Rye et al. Aug 2008 B2
7415242 Ngan Aug 2008 B1
7424268 Diener Sep 2008 B2
7424319 Muehlsteff Sep 2008 B2
7427266 Ayer et al. Sep 2008 B2
7442164 Berrang et al. Oct 2008 B2
7443290 Takiguchi Oct 2008 B2
7458887 Kurosawa Dec 2008 B2
7469838 Brooks et al. Dec 2008 B2
7471665 Perlman Dec 2008 B2
7471992 Schmidt et al. Dec 2008 B2
7492128 Shen Feb 2009 B2
7499674 Salokannel Mar 2009 B2
7510121 Koenck Mar 2009 B2
7512448 Malick Mar 2009 B2
7515043 Welch Apr 2009 B2
7519416 Sula et al. Apr 2009 B2
7523756 Minai Apr 2009 B2
7525426 Edelstein Apr 2009 B2
7527807 Choi et al. May 2009 B2
7537590 Santini, Jr. et al. May 2009 B2
7539533 Tran May 2009 B2
7542878 Nanikashvili Jun 2009 B2
7547278 Miyazaki et al. Jun 2009 B2
7551590 Haller Jun 2009 B2
7554452 Cole Jun 2009 B2
7558620 Ishibashi Jul 2009 B2
7575005 Mumford Aug 2009 B2
7616111 Covannon Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7626387 Adachi Dec 2009 B2
7639473 Hsu et al. Dec 2009 B2
7640802 King et al. Jan 2010 B2
7645262 Greenberg et al. Jan 2010 B2
7647112 Tracey Jan 2010 B2
7647185 Tarassenko et al. Jan 2010 B2
7653031 Godfrey et al. Jan 2010 B2
7672714 Kuo Mar 2010 B2
7673679 Harrison et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7686839 Parker Mar 2010 B2
7697994 VanDanacker et al. Apr 2010 B2
7720036 Sadri May 2010 B2
7729776 Von Arx et al. Jun 2010 B2
7733224 Tran Jun 2010 B2
7736318 Costentino Jun 2010 B2
7756587 Penner et al. Jul 2010 B2
7760104 Asp Jul 2010 B2
7782991 Sobchak et al. Aug 2010 B2
7796043 Euliano et al. Sep 2010 B2
7797033 D'Andrea et al. Sep 2010 B2
7809399 Lu Oct 2010 B2
7844341 Von Arx et al. Nov 2010 B2
7881799 Greenberg et al. Feb 2011 B2
7975587 Schneider Jul 2011 B2
7978064 Zdeblick et al. Jul 2011 B2
7983189 Bugenhagen Jul 2011 B2
8036731 Kimchy et al. Oct 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8054047 Chen et al. Nov 2011 B2
8054140 Fleming et al. Nov 2011 B2
8055334 Savage et al. Nov 2011 B2
8082919 Brunnberg et al. Dec 2011 B2
8119045 Schmidt et al. Feb 2012 B2
8131376 Faraji et al. Mar 2012 B1
8177611 Kang May 2012 B2
8185191 Shapiro et al. May 2012 B1
8185646 Headley May 2012 B2
8200320 Kovacs Jun 2012 B2
8207731 Moskalenko Jun 2012 B2
8224596 Agrawal et al. Jul 2012 B2
8253586 Matak Aug 2012 B1
8254853 Rofougaran Aug 2012 B2
8271146 Heber et al. Sep 2012 B2
8298574 Tsabari et al. Oct 2012 B2
8343068 Najafi et al. Jan 2013 B2
8374698 Ok et al. Feb 2013 B2
8389003 Mintchev et al. Mar 2013 B2
8404275 Habboushe Mar 2013 B2
8425492 Herbert et al. Apr 2013 B2
8443214 Lee et al. May 2013 B2
8454528 Yuen et al. Jun 2013 B2
8532776 Greenberg et al. Sep 2013 B2
8540633 Hafezi et al. Sep 2013 B2
8540664 Robertson et al. Sep 2013 B2
8545402 Hafezi et al. Oct 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8558563 Zdeblick Oct 2013 B2
8564432 Covannon et al. Oct 2013 B2
8597186 Hafezi et al. Dec 2013 B2
8634838 Hellwig et al. Jan 2014 B2
8647358 Brister et al. Feb 2014 B2
8660645 Stevenson et al. Feb 2014 B2
8668643 Kinast Mar 2014 B2
8685451 Toneguzzo et al. Apr 2014 B2
8697057 Van Epps et al. Apr 2014 B2
8698006 Bealka et al. Apr 2014 B2
8721540 Hafezi et al. May 2014 B2
8758237 Sherman et al. Jun 2014 B2
8784308 Duck et al. Jul 2014 B2
8802183 Frank et al. Aug 2014 B2
8816847 Zdeblick et al. Aug 2014 B2
8836513 Hafezi et al. Sep 2014 B2
8838217 Myr Sep 2014 B2
8908943 Berry et al. Dec 2014 B2
8912908 Berkman et al. Dec 2014 B2
8926509 Magar et al. Jan 2015 B2
8932221 Colliou et al. Jan 2015 B2
8951234 Hafezi et al. Feb 2015 B2
8989837 Weinstein et al. Mar 2015 B2
9031658 Chiao et al. May 2015 B2
9088168 Mach et al. Jul 2015 B2
9107806 Hafezi et al. Aug 2015 B2
9119554 Robertson et al. Sep 2015 B2
9119918 Robertson et al. Sep 2015 B2
9149423 Duck et al. Oct 2015 B2
9158890 Meredith et al. Oct 2015 B2
9161707 Hafezi et al. Oct 2015 B2
9189941 Eschelman et al. Nov 2015 B2
9226663 Fei Jan 2016 B2
9226679 Balda Jan 2016 B2
9268909 Jani et al. Feb 2016 B2
9270025 Robertson et al. Feb 2016 B2
9271897 Costello et al. Mar 2016 B2
9277864 Yang et al. Mar 2016 B2
9320455 Hafezi et al. Apr 2016 B2
9415010 Hafezi et al. Aug 2016 B2
9433371 Hafezi et al. Sep 2016 B2
9439582 Berkman et al. Sep 2016 B2
9439599 Thompson et al. Sep 2016 B2
9517012 Lane et al. Dec 2016 B2
9597010 Thompson et al. Mar 2017 B2
9597487 Robertson et al. Mar 2017 B2
9599679 Taylor et al. Mar 2017 B2
9649066 Zdeblick et al. May 2017 B2
9681842 Zdeblick et al. Jun 2017 B2
9741975 Laulicht et al. Aug 2017 B2
9756874 Arne et al. Sep 2017 B2
9962107 Frank et al. May 2018 B2
20010027331 Thompson Oct 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdinski Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020026111 Ackerman Feb 2002 A1
20020032384 Raymond et al. Mar 2002 A1
20020032385 Raymond et al. Mar 2002 A1
20020040278 Anuzis et al. Apr 2002 A1
20020077620 Sweeney et al. Jun 2002 A1
20020128934 Shaer Sep 2002 A1
20020132226 Nair Sep 2002 A1
20020136744 McGlynn et al. Sep 2002 A1
20020179921 Cohn Dec 2002 A1
20020192159 Reitberg Dec 2002 A1
20020193669 Glukhovsky Dec 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030017826 Fishman et al. Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030062551 Chen et al. Apr 2003 A1
20030065536 Hansen Apr 2003 A1
20030076179 Branch et al. Apr 2003 A1
20030083559 Thompson May 2003 A1
20030091625 Hariharan May 2003 A1
20030126593 Mault Jul 2003 A1
20030130714 Nielsen et al. Jul 2003 A1
20030135128 Suffin et al. Jul 2003 A1
20030135392 Vrijens et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030158756 Abramson Aug 2003 A1
20030162556 Libes Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171791 KenKnight Sep 2003 A1
20030171898 Tarassenko et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030185286 Yuen Oct 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030213495 Fujita et al. Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20030216625 Phipps Nov 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030216729 Marchitto Nov 2003 A1
20030219484 Sowden et al. Nov 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040018476 LaDue Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040049245 Gass Mar 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040073454 Urquhart et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040082982 Gord et al. Apr 2004 A1
20040087839 Raymond et al. May 2004 A1
20040092801 Drakulic May 2004 A1
20040106859 Say et al. Jun 2004 A1
20040115507 Potter et al. Jun 2004 A1
20040115517 Fukada et al. Jun 2004 A1
20040121015 Chidlaw et al. Jun 2004 A1
20040148140 Tarassenko et al. Jul 2004 A1
20040153007 Harris Aug 2004 A1
20040167226 Serafini Aug 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040193020 Chiba Sep 2004 A1
20040193029 Gluhovsky Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040199222 Sun et al. Oct 2004 A1
20040215084 Shimizu et al. Oct 2004 A1
20040218683 Batra Nov 2004 A1
20040220643 Schmidt Nov 2004 A1
20040224644 Wu Nov 2004 A1
20040225199 Evanyk Nov 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040258571 Lee et al. Dec 2004 A1
20040259899 Sanghvi et al. Dec 2004 A1
20040260154 Sidelnik Dec 2004 A1
20050003074 Brown et al. Jan 2005 A1
20050017841 Doi Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021370 Riff Jan 2005 A1
20050024198 Ward Feb 2005 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050038321 Fujita et al. Feb 2005 A1
20050043634 Yokoi et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050054897 Hashimoto et al. Mar 2005 A1
20050055014 Coppeta et al. Mar 2005 A1
20050062644 Leci Mar 2005 A1
20050065407 Nakamura et al. Mar 2005 A1
20050070778 Lackey Mar 2005 A1
20050075145 Dvorak et al. Apr 2005 A1
20050090753 Goor et al. Apr 2005 A1
20050092108 Andermo May 2005 A1
20050096514 Starkebaum May 2005 A1
20050096562 Delalic et al. May 2005 A1
20050101843 Quinn May 2005 A1
20050101872 Sattler May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050116820 Goldreich Jun 2005 A1
20050117389 Worledge Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131281 Ayer et al. Jun 2005 A1
20050143623 Kojima Jun 2005 A1
20050146594 Nakatani et al. Jul 2005 A1
20050148883 Boesen Jul 2005 A1
20050154428 Bruinsma Jul 2005 A1
20050156709 Gilbert et al. Jul 2005 A1
20050165323 Montgomery Jul 2005 A1
20050177069 Takizawa Aug 2005 A1
20050182389 LaPorte Aug 2005 A1
20050187789 Hatlestad et al. Aug 2005 A1
20050192489 Marshall Sep 2005 A1
20050197680 DelMain et al. Sep 2005 A1
20050208251 Aisenbrey Sep 2005 A1
20050228268 Cole Oct 2005 A1
20050234307 Heinonen Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050245794 Dinsmoor Nov 2005 A1
20050259768 Yang et al. Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050267756 Schultz et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050277999 Strother et al. Dec 2005 A1
20050279054 Mauze et al. Dec 2005 A1
20050280539 Pettus Dec 2005 A1
20050285746 Sengupta Dec 2005 A1
20050288594 Lewkowicz et al. Dec 2005 A1
20060001496 Abrosimov et al. Jan 2006 A1
20060028727 Moon et al. Feb 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060061472 Lovoi et al. Mar 2006 A1
20060065713 Kingery Mar 2006 A1
20060068006 Begleiter Mar 2006 A1
20060074283 Henderson Apr 2006 A1
20060074319 Barnes et al. Apr 2006 A1
20060078765 Yang et al. Apr 2006 A1
20060095091 Drew May 2006 A1
20060095093 Bettesh et al. May 2006 A1
20060100533 Han May 2006 A1
20060109058 Keating May 2006 A1
20060110962 Powell May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060122494 Bouchoucha Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060129060 Lee et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060142648 Banet Jun 2006 A1
20060145876 Kimura Jul 2006 A1
20060148254 McLean Jul 2006 A1
20060149339 Burnes Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker Jul 2006 A1
20060161225 Sormann et al. Jul 2006 A1
20060179949 Kim Aug 2006 A1
20060183993 Horn Aug 2006 A1
20060184092 Atanasoska et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210626 Spaeder Sep 2006 A1
20060216603 Choi Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060235489 Drew Oct 2006 A1
20060243288 Kim et al. Nov 2006 A1
20060247505 Siddiqui Nov 2006 A1
20060253005 Drinan Nov 2006 A1
20060270346 Ibrahim Nov 2006 A1
20060273882 Posamentier Dec 2006 A1
20060276702 McGinnis Dec 2006 A1
20060280227 Pinkney Dec 2006 A1
20060282001 Noel Dec 2006 A1
20060289640 Mercure Dec 2006 A1
20060293607 Alt Dec 2006 A1
20070000776 Karube et al. Jan 2007 A1
20070002038 Suzuki Jan 2007 A1
20070006636 King et al. Jan 2007 A1
20070008113 Spoonhower et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070027386 Such Feb 2007 A1
20070027388 Chou Feb 2007 A1
20070038054 Zhou Feb 2007 A1
20070049339 Barak et al. Mar 2007 A1
20070055098 Shimizu et al. Mar 2007 A1
20070060797 Ball Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070066929 Ferren et al. Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070096765 Kagan May 2007 A1
20070106346 Bergelson May 2007 A1
20070123772 Euliano May 2007 A1
20070129622 Bourget Jun 2007 A1
20070130287 Kumar Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142721 Berner et al. Jun 2007 A1
20070156016 Betesh Jul 2007 A1
20070160789 Merical Jul 2007 A1
20070162089 Mosesov Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070167495 Brown et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070173701 Al-Ali Jul 2007 A1
20070179347 Tarassenko et al. Aug 2007 A1
20070179371 Peyser et al. Aug 2007 A1
20070185393 Zhou Aug 2007 A1
20070191002 Ge Aug 2007 A1
20070196456 Stevens Aug 2007 A1
20070207793 Myer Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070237719 Jones Oct 2007 A1
20070244370 Kuo et al. Oct 2007 A1
20070255198 Leong et al. Nov 2007 A1
20070255330 Lee Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070279217 Venkatraman Dec 2007 A1
20070282174 Sabatino Dec 2007 A1
20070282177 Pilz Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080000804 Carey et al. Jan 2008 A1
20080014866 Lipowshi Jan 2008 A1
20080020037 Robertson et al. Jan 2008 A1
20080021519 DeGeest Jan 2008 A1
20080021521 Shah Jan 2008 A1
20080027679 Shklarski Jan 2008 A1
20080033273 Zhou Feb 2008 A1
20080038588 Lee Feb 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080045843 Tsuji et al. Feb 2008 A1
20080046038 Hill Feb 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080058614 Banet Mar 2008 A1
20080062856 Feher Mar 2008 A1
20080065168 Bitton et al. Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080077015 Botic-Lubecke Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080077188 Denker et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091114 Min Apr 2008 A1
20080097549 Colbaugh Apr 2008 A1
20080097917 Dicks Apr 2008 A1
20080103440 Ferren et al. May 2008 A1
20080112885 Okunev et al. May 2008 A1
20080114224 Bandy et al. May 2008 A1
20080119705 Patel May 2008 A1
20080119716 Boric-Lubecke May 2008 A1
20080121825 Trovato et al. May 2008 A1
20080137566 Marholev Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080140403 Hughes et al. Jun 2008 A1
20080146871 Arneson et al. Jun 2008 A1
20080146889 Young Jun 2008 A1
20080146892 LeBeouf Jun 2008 A1
20080154104 Lamego Jun 2008 A1
20080166992 Ricordi Jul 2008 A1
20080175898 Jones et al. Jul 2008 A1
20080183245 Van Oort Jul 2008 A1
20080188837 Belsky et al. Aug 2008 A1
20080194912 Trovato et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214985 Yanaki Sep 2008 A1
20080243020 Chou Oct 2008 A1
20080249360 Li Oct 2008 A1
20080262320 Schaefer et al. Oct 2008 A1
20080262336 Ryu Oct 2008 A1
20080269664 Trovato et al. Oct 2008 A1
20080275312 Mosesov Nov 2008 A1
20080284599 Zdeblick Nov 2008 A1
20080288027 Kroll Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080299197 Toneguzzo et al. Dec 2008 A1
20080300572 Rankers Dec 2008 A1
20080303638 Nguyen Dec 2008 A1
20080306357 Korman Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306360 Robertson et al. Dec 2008 A1
20080311852 Hansen Dec 2008 A1
20080312522 Rowlandson Dec 2008 A1
20080316020 Robertson Dec 2008 A1
20090009330 Sakama et al. Jan 2009 A1
20090009332 Nunez et al. Jan 2009 A1
20090024045 Prakash Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030297 Miller Jan 2009 A1
20090034209 Joo Feb 2009 A1
20090043171 Rule Feb 2009 A1
20090047357 Tomohira et al. Feb 2009 A1
20090048498 Riskey Feb 2009 A1
20090062634 Say et al. Mar 2009 A1
20090062670 Sterling Mar 2009 A1
20090062730 Woo Mar 2009 A1
20090069642 Gao Mar 2009 A1
20090069655 Say et al. Mar 2009 A1
20090069656 Say et al. Mar 2009 A1
20090069657 Say et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069724 Otto et al. Mar 2009 A1
20090076343 James Mar 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090082645 Hafezi Mar 2009 A1
20090087483 Sison Apr 2009 A1
20090088618 Ameson Apr 2009 A1
20090099435 Say et al. Apr 2009 A1
20090105561 Boydon et al. Apr 2009 A1
20090110148 Zhang Apr 2009 A1
20090112626 Talbot Apr 2009 A1
20090124871 Arshak May 2009 A1
20090124965 Greenberg et al. May 2009 A1
20090131774 Sweitzer May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090142853 Warrington et al. Jun 2009 A1
20090149839 Hyde et al. Jun 2009 A1
20090157113 Marcotte Jun 2009 A1
20090157358 Kim Jun 2009 A1
20090161602 Matsumoto Jun 2009 A1
20090163789 Say et al. Jun 2009 A1
20090171180 Pering Jul 2009 A1
20090171420 Brown et al. Jul 2009 A1
20090173628 Say et al. Jul 2009 A1
20090177055 Say et al. Jul 2009 A1
20090177056 Say et al. Jul 2009 A1
20090177057 Say et al. Jul 2009 A1
20090177058 Say et al. Jul 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177061 Say et al. Jul 2009 A1
20090177062 Say et al. Jul 2009 A1
20090177063 Say et al. Jul 2009 A1
20090177064 Say et al. Jul 2009 A1
20090177065 Say et al. Jul 2009 A1
20090177066 Say et al. Jul 2009 A1
20090182206 Najafi Jul 2009 A1
20090182207 Riskey et al. Jul 2009 A1
20090182212 Say et al. Jul 2009 A1
20090182213 Say et al. Jul 2009 A1
20090182214 Say et al. Jul 2009 A1
20090182215 Say et al. Jul 2009 A1
20090182388 Von Arx Jul 2009 A1
20090187088 Say et al. Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090187092 Say et al. Jul 2009 A1
20090187093 Say et al. Jul 2009 A1
20090187094 Say et al. Jul 2009 A1
20090187095 Say et al. Jul 2009 A1
20090187381 King et al. Jul 2009 A1
20090192351 Nishino Jul 2009 A1
20090192368 Say et al. Jul 2009 A1
20090192369 Say et al. Jul 2009 A1
20090192370 Say et al. Jul 2009 A1
20090192371 Say et al. Jul 2009 A1
20090192372 Say et al. Jul 2009 A1
20090192373 Say et al. Jul 2009 A1
20090192374 Say et al. Jul 2009 A1
20090192375 Say et al. Jul 2009 A1
20090192376 Say et al. Jul 2009 A1
20090192377 Say et al. Jul 2009 A1
20090192378 Say et al. Jul 2009 A1
20090192379 Say et al. Jul 2009 A1
20090194747 Zou et al. Aug 2009 A1
20090197068 Yamaguchi et al. Aug 2009 A1
20090198115 Say et al. Aug 2009 A1
20090198116 Say et al. Aug 2009 A1
20090198175 Say et al. Aug 2009 A1
20090203964 Shimizu et al. Aug 2009 A1
20090203971 Sciarappa Aug 2009 A1
20090203972 Heneghan Aug 2009 A1
20090203978 Say et al. Aug 2009 A1
20090204265 Hackett Aug 2009 A1
20090210164 Say et al. Aug 2009 A1
20090216101 Say et al. Aug 2009 A1
20090216102 Say et al. Aug 2009 A1
20090227204 Robertson et al. Sep 2009 A1
20090227876 Tran Sep 2009 A1
20090227940 Say et al. Sep 2009 A1
20090227941 Say et al. Sep 2009 A1
20090227988 Wood et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090231125 Baldus Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090243833 Huang Oct 2009 A1
20090253960 Takenaka et al. Oct 2009 A1
20090256702 Robertson Oct 2009 A1
20090260212 Schmett et al. Oct 2009 A1
20090264714 Chou Oct 2009 A1
20090264964 Abrahamson Oct 2009 A1
20090265186 Tarassenko et al. Oct 2009 A1
20090273467 Elixmann Nov 2009 A1
20090281539 Selig Nov 2009 A1
20090287109 Ferren et al. Nov 2009 A1
20090295548 Ronkka Dec 2009 A1
20090296677 Mahany Dec 2009 A1
20090303920 Mahany Dec 2009 A1
20090306633 Trovato et al. Dec 2009 A1
20090312619 Say et al. Dec 2009 A1
20090318303 Delamarche et al. Dec 2009 A1
20090318761 Rabinovitz Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090318783 Rohde Dec 2009 A1
20090318793 Datta Dec 2009 A1
20100001841 Cardullo Jan 2010 A1
20100010330 Rankers Jan 2010 A1
20100033324 Shimizu et al. Feb 2010 A1
20100036269 Ferren et al. Feb 2010 A1
20100049004 Edman et al. Feb 2010 A1
20100049006 Magar Feb 2010 A1
20100049012 Dijksman et al. Feb 2010 A1
20100049069 Tarassenko et al. Feb 2010 A1
20100056878 Partin Mar 2010 A1
20100056891 Say et al. Mar 2010 A1
20100056939 Tarassenko et al. Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100062709 Kato Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100063841 D'Ambrosia et al. Mar 2010 A1
20100069002 Rong Mar 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100099967 Say et al. Apr 2010 A1
20100099968 Say et al. Apr 2010 A1
20100099969 Say et al. Apr 2010 A1
20100100077 Rush Apr 2010 A1
20100100078 Say et al. Apr 2010 A1
20100106001 Say et al. Apr 2010 A1
20100118853 Godfrey May 2010 A1
20100139672 Kroll et al. Jun 2010 A1
20100168659 Say et al. Jul 2010 A1
20100179398 Say et al. Jul 2010 A1
20100185055 Robertson Jul 2010 A1
20100191073 Tarassenko et al. Jul 2010 A1
20100210299 Gorbachov Aug 2010 A1
20100222652 Cho Sep 2010 A1
20100228113 Solosko Sep 2010 A1
20100233026 Ismagliov et al. Sep 2010 A1
20100234706 Gilland Sep 2010 A1
20100234715 Shin Sep 2010 A1
20100234914 Shen Sep 2010 A1
20100239616 Hafezi Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100249541 Geva et al. Sep 2010 A1
20100249881 Corndorf Sep 2010 A1
20100256461 Mohamedali Oct 2010 A1
20100259543 Tarassenko et al. Oct 2010 A1
20100268048 Say et al. Oct 2010 A1
20100268049 Say et al. Oct 2010 A1
20100268050 Say et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280345 Say et al. Nov 2010 A1
20100280346 Say et al. Nov 2010 A1
20100295694 Kauffman et al. Nov 2010 A1
20100297640 Kumar et al. Nov 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298730 Tarassenko et al. Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100312580 Tarassenko et al. Dec 2010 A1
20110009715 O'Reilly et al. Jan 2011 A1
20110077660 Janik et al. Mar 2011 A1
20110124983 Kroll et al. May 2011 A1
20110134906 Garudadri et al. Jun 2011 A1
20110160549 Saroka et al. Jun 2011 A1
20110224912 Bhavaraju et al. Sep 2011 A1
20110230732 Edman et al. Sep 2011 A1
20110270135 Dooley et al. Nov 2011 A1
20120004520 Whitworth et al. Jan 2012 A1
20120011699 Hafezi et al. Jan 2012 A1
20120016231 Westmoreland Jan 2012 A1
20120032816 Cho et al. Feb 2012 A1
20120062371 Radivojevic et al. Mar 2012 A1
20120071743 Todorov et al. Mar 2012 A1
20120109112 Strand et al. May 2012 A1
20120179004 Roesicke et al. Jul 2012 A1
20120245043 England Sep 2012 A1
20120299723 Hafezi et al. Nov 2012 A1
20130129869 Hafezi et al. May 2013 A1
20130129872 Kruger May 2013 A1
20130171596 French Jul 2013 A1
20130172690 Arne et al. Jul 2013 A1
20130185228 Dresner Jul 2013 A1
20130196012 Dill Aug 2013 A1
20130199662 Gebbink Aug 2013 A1
20130209877 Kren et al. Aug 2013 A1
20130223028 Arne et al. Aug 2013 A1
20130275296 Tietzen et al. Oct 2013 A1
20140066734 Zdeblick Mar 2014 A1
20140179221 Whitworth et al. Jun 2014 A1
20140180202 Zdeblick et al. Jun 2014 A1
20140280125 Bhardwaj et al. Sep 2014 A1
20140308930 Tran Oct 2014 A1
20140349256 Connor Nov 2014 A1
20140374276 Guthrie et al. Dec 2014 A1
20150017486 Lai Jan 2015 A1
20150059922 Thompson et al. Mar 2015 A1
20150080678 Frank et al. Mar 2015 A1
20150080680 Zdeblick et al. Mar 2015 A1
20150112243 Hafezi et al. Apr 2015 A1
20150127737 Thompson et al. May 2015 A1
20150127738 Thompson et al. May 2015 A1
20150149375 Thompson et al. May 2015 A1
20150150480 Zdeblick et al. Jun 2015 A1
20150164746 Costello et al. Jun 2015 A1
20150230729 Zdeblick et al. Aug 2015 A1
20150248833 Arne et al. Sep 2015 A1
20150352343 Hafezi et al. Dec 2015 A1
20150361234 Hafezi et al. Dec 2015 A1
20160033667 Schmidt et al. Feb 2016 A1
20160345906 Johnson et al. Dec 2016 A1
20160380708 Dua et al. Dec 2016 A1
20170000179 Cheng et al. Jan 2017 A1
20170014046 Hafezi et al. Jan 2017 A1
20170020182 Schmidt et al. Jan 2017 A1
20170216569 Hafezi et al. Aug 2017 A1
20170265813 Zdeblick et al. Sep 2017 A1
20170274194 Robertson et al. Sep 2017 A1
20170296799 Hafezi et al. Oct 2017 A1
20180026680 Shirvani et al. Jan 2018 A1
20180110441 Frank et al. Apr 2018 A1
20180184698 Arne et al. Jul 2018 A1
Foreign Referenced Citations (167)
Number Date Country
1588649 Mar 2005 CN
1650844 Aug 2005 CN
101795202 Aug 2010 CN
10313005 Oct 2004 DE
0344939 Dec 1989 EP
0526166 Feb 1993 EP
0981152 Feb 2000 EP
1246356 Oct 2002 EP
1534054 May 2005 EP
1702553 Sep 2006 EP
1244308 Dec 2007 EP
2143369 Jan 2010 EP
827762 Feb 1960 GB
61072712 Apr 1986 JP
H01285247 Nov 1989 JP
05228128 Sep 1993 JP
H11195415 Jul 1999 JP
2000506410 May 2000 JP
2002263185 Sep 2002 JP
2002282219 Oct 2002 JP
2003050867 Feb 2003 JP
2004313242 Nov 2004 JP
2005073886 Mar 2005 JP
2005087552 Apr 2005 JP
2005102959 Apr 2005 JP
2005124708 May 2005 JP
2005514966 May 2005 JP
2005304880 Nov 2005 JP
2005343515 Dec 2005 JP
20055332328 Dec 2005 JP
2006006377 Jan 2006 JP
2006509574 Mar 2006 JP
2007200739 Aug 2007 JP
2007313340 Dec 2007 JP
2009514870 Apr 2009 JP
2009528909 Aug 2009 JP
200600977523 Jul 2006 KR
200406192 May 2004 TW
200916136 Apr 2009 TW
WO1988002237 Apr 1988 WO
WO1992021307 Dec 1992 WO
WO1993008734 May 1993 WO
WO1993019667 Oct 1993 WO
WO1994001165 Jan 1994 WO
WO1997039963 Oct 1997 WO
WO1998043537 Oct 1998 WO
WO1999037290 Jul 1999 WO
WO1999059465 Nov 1999 WO
WO2000032474 Jun 2000 WO
WO2000033246 Jun 2000 WO
WO2001000085 Jan 2001 WO
WO2001047466 Jul 2001 WO
WO2001058236 Aug 2001 WO
WO2001074011 Oct 2001 WO
WO2001080731 Nov 2001 WO
WO2002000920 Jan 2002 WO
WO2002045489 Jun 2002 WO
WO2002058330 Jul 2002 WO
WO2002062276 Aug 2002 WO
WO2002087681 Nov 2002 WO
WO2002095351 Nov 2002 WO
WO2003005877 Jan 2003 WO
WO2003050643 Jun 2003 WO
WO2003068061 Aug 2003 WO
WO2004014225 Feb 2004 WO
WO2004019172 Mar 2004 WO
WO2004039256 May 2004 WO
WO2004066833 Aug 2004 WO
WO2004066834 Aug 2004 WO
WO2004066903 Aug 2004 WO
WO2004068881 Aug 2004 WO
WO2004075032 Sep 2004 WO
WO2004109316 Dec 2004 WO
WO2005011237 Feb 2005 WO
WO2005020023 Mar 2005 WO
WO2005024687 Mar 2005 WO
WO2005041438 May 2005 WO
WO2005047837 May 2005 WO
WO2005051166 Jun 2005 WO
WO2005053517 Jun 2005 WO
WO2005083621 Sep 2005 WO
WO2005110238 Nov 2005 WO
WO2005123569 Dec 2005 WO
WO2006021932 Mar 2006 WO
WO2006027586 Mar 2006 WO
WO2006028347 Mar 2006 WO
WO2006055892 May 2006 WO
WO2006055956 May 2006 WO
WO2006075016 Jul 2006 WO
WO2006100620 Sep 2006 WO
WO2006104843 Oct 2006 WO
WO2006116718 Nov 2006 WO
WO2006127355 Nov 2006 WO
WO2007001724 Jan 2007 WO
WO2007001742 Jan 2007 WO
WO2007013952 Feb 2007 WO
WO2007014084 Feb 2007 WO
WO2007014527 Feb 2007 WO
WO2007021496 Feb 2007 WO
WO2007027660 Mar 2007 WO
WO2007028035 Mar 2007 WO
WO2007036687 Apr 2007 WO
WO2007036741 Apr 2007 WO
WO2007036746 Apr 2007 WO
WO2007040878 Apr 2007 WO
WO2007067054 Jun 2007 WO
WO2007071180 Jun 2007 WO
WO2007096810 Aug 2007 WO
WO2007101141 Sep 2007 WO
WO2007115087 Oct 2007 WO
WO2007120946 Oct 2007 WO
WO2007127316 Nov 2007 WO
WO2007127879 Nov 2007 WO
WO2007128165 Nov 2007 WO
WO2007130491 Nov 2007 WO
WO2007143535 Dec 2007 WO
WO2007149546 Dec 2007 WO
WO2008008281 Jan 2008 WO
WO2008012700 Jan 2008 WO
WO2008030482 Mar 2008 WO
WO2008052136 May 2008 WO
WO2008063626 May 2008 WO
WO2008066617 Jun 2008 WO
WO2008076464 Jun 2008 WO
WO2008089232 Jul 2008 WO
WO2008091683 Jul 2008 WO
WO2008095183 Aug 2008 WO
WO2008097652 Aug 2008 WO
WO2008101107 Aug 2008 WO
WO2008112577 Sep 2008 WO
WO2008112578 Sep 2008 WO
WO2008120156 Oct 2008 WO
WO2008133394 Nov 2008 WO
WO2008134185 Nov 2008 WO
WO2008150633 Dec 2008 WO
WO2009000447 Dec 2008 WO
WO2009001108 Dec 2008 WO
WO2009006615 Jan 2009 WO
WO2009029453 Mar 2009 WO
WO2009031149 Mar 2009 WO
WO2009036334 Mar 2009 WO
WO2009051829 Apr 2009 WO
WO2009051830 Apr 2009 WO
WO2009063377 May 2009 WO
WO2009081348 Jul 2009 WO
WO2009111664 Sep 2009 WO
WO2009146082 Dec 2009 WO
WO2010009100 Jan 2010 WO
WO2010011833 Jan 2010 WO
WO2010019778 Feb 2010 WO
WO2010057049 May 2010 WO
WO2010080765 Jul 2010 WO
WO2010080843 Jul 2010 WO
WO2010107563 Sep 2010 WO
WO2010129288 Nov 2010 WO
WO2010132331 Nov 2010 WO
WO2010135516 Nov 2010 WO
WO2011068963 Jun 2011 WO
WO2011133799 Oct 2011 WO
WO2011159336 Dec 2011 WO
WO2011159337 Dec 2011 WO
WO2011159338 Dec 2011 WO
WO2011159339 Dec 2011 WO
WO2012112561 Aug 2012 WO
WO2015112603 Jul 2015 WO
WO2015112604 Jul 2015 WO
WO2015119911 Aug 2015 WO
Non-Patent Literature Citations (85)
Entry
AADE, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators (2010); http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pp.
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, 12pp.
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. for Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp.
Au-Yeung, K., et al., “A Networked System for Self-Management of Drug Therapy and Wellness”, Wireless Health '10, Oct. 5-7, 2010, San Diego, 9 pages.
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract (1 page).
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzorno, Murray & Barrie (4 pages).
Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86.
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf (14 pages).
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53.
Coury, L. “Conductance Measurement Part 1: Theory”; Current Separations, 18:3 (1999) p. 91-96.
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastroenterology (2008) vol. 22, Issue 5, pp. 813-837.
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA_Web/documents/ME/ePatch_ECG_EMG.pdf, Dated Sep. 2, 2010; 1 page.
Dhar et al., “Electroless nickel plated contacts on porous silicon” Appl. Phys. Lett. 68 (10) pp. 1392-1393 (1996).
Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006).
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band-Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIP_IEEE_Dubai_Conference.pdf (5 pages).
Ferguson et al., “Dielectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94 (1934) p. 94-98.
Furse C. M., “Dipole Antennas” J. Webster (ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) p. 575-581.
Gaglani S. “Put Your Phone, or Skin, on Vibrate” MedGadget (2012) http://medgadget.com/2012/03/put-your-phone-or-skin-on-vibrate.html 8pp.
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. (2002), p. 1-43.
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure_Global_GMB-0118-01.pdf; 4pp.
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12): 2231-6; abstract.
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html (1 page).
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
Hoeksma, J. “New ‘smart pill’ to track adherence” E-Health-Insider (2010) http://www.e-health-insider.com/news/5910/new_‘smart_pill’_monitors_medicines (1 page).
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp) (8 pages).
ISFET—Ion Sensitive Field-Effect Transistor; Microsens S.A. pdf document. First cited in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” (2010); http://www.artificialpancreasproject.com/; 3 pp.
Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351.
Kendle, Earl R. and Morris, Larry A., “Preliminary Studies in the Development of a Gastric Battery for Fish” (1964). Nebraska Game and Parks Commission White Papers, Conference Presentations, & Manuscripts. Paper 22. p. 1-6.
Kim et al., “A Semi-Interpenetrating Network System for a Polymer Membrane”; Eur. Polym. J. vol. 33 No. 7; pp. 1009-1014 (1997).
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143 (2008) p. 41-48.
Lifescan, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink (2010) 2 pp.
Mackay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C.
Mackay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group.
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11.
Medtronic, “CareLink Therapy Management Software for Diabetes” (2010); https://carelink.minimed.com/patient/entry.jsp?bhcp=1; 1 pp.
Medtronic, “Carelink™ USB” (2008) http://www.medtronicdiabetes.com/pdf/carelink_usb_factsheet.pdf 2pp.
Medtronic “The New MiniMed Paradigm® REAL-Time Revel™ System” (2010) http://www.medtronicdiabetes.com/products/index.html; 2 pp.
Medtronic, “MINI MED Paradigm® Revel ™ Insulin Pump” (2010) http://www.medtronicdiabetes.com/products/insulinpumps/index.html; 2 pp.
Medtronic, Mini Med Paradigm™ Veo™ System: Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf ; 4 pp.
Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/ (1 page).
Minimitter Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27, 2005 (8 pages).
Minimitter Co. Inc. Noninvasive technology to help your studies succeed. Mini Mitter.com Mar. 31, 2009 (4 pages).
Mini Mitter Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. 9-21 (1999) (9 pages).
Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004 (11 pages).
Minimitter Co. Inc. VitalSense Integrated Physiological Monitoring System. Product Description. (2005) (4 pages).
Minimitter Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009 (3 pages).
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7.
O'Brien et al., “The Production and Characterization of Chemically Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206.
Park, “Medtronic to Buy MiniMed for $3.7 Billion” (2001) HomeCare; http://homecaremag.com/mag/medical_medtronic_buy_minimed/; 2 pp.
Philips Respironics Products, Noninvasive Technology to Help Your Studies Succeed. 510 (k) Permanent Notification for Vital Sense. Apr. 22, 2004; http/minimitter.com/products.cfm.
Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 5 pages.
“RFID “pill” monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/ (4 pages).
Rolison et al., “Electrically conductive oxide aerogels: new materials in electrochemistry” J. Mater. Chem. (2001) 1, 963-980.
Roulstone, et al., “Studies on Polymer Latex Films: I. A study of latex film morphology” Polymer International 24 (1991) pp. 87-94.
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8.
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407.
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf; pp. 1-28.
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), p. 329-334.
Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936.
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronics_and_telecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010 (2010); pp. 11-12.
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. (2009).
“The SmartPill Wireless Motility Capsule” Smartpill, The Measure of GI Health; (2010) http://www.smartpillcorp.com/index.cfm?pagepath=Products/The_SmartPill_Capsule&id=17814 (1 page).
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007).
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal (2010) Apr. 27th; http://www.rfidjournal.com/article/view/7560/1 3pp.
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, Springer Berlin Heidelberg (2008) 21-30.
Target Innovations, Tablet Metal Detector, https ://web. arch ive.org/web/20 130215063351 /http://www.metaldetectorindia.com/tablet -metal-detector. html, Feb. 15, 2013.
TargetPharmaceutical Metal Detector, Feb. 15, 2013 downloaded from Target Innovations, Tablet Metal Detector, Feb. 15, 2013.
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72; 3 pages.
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. (1990), p. 2005-2006.
Trutag Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp.
Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20; 24 pages, First cited in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345.
Wang, X. et al “Resistance to Tracking and Erosion of Silicone Rubber Material under Various Types of Precipitation”, Jpn. J. Appl. Phys. vol. 38 (1999) pp. 5170-5175.
Watson, et al., “Determination of the relationship between the pH and conductivity of gastric juice” Physiol Meas. 17 (1996) pp. 21-27.
Winter, J. et al. “The material properties of gelatin gels”; USA Ballistic Research Laboratories, Mar. 1975, p. 1-157.
Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125.
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6.
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3, 2006; pp. 6249-6252.
Youtube video Pharmaceutical Metal Detector/Tablet Metal Detector/ Capsule Metal Detector/ Dry Fruits; https://www.youtube.com/watch?v=10126txam_s, May 12, 2012.
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17.
Zworykin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group.
Related Publications (1)
Number Date Country
20170274194 A1 Sep 2017 US
Provisional Applications (2)
Number Date Country
61416150 Nov 2010 US
61321846 Apr 2010 US
Continuations (1)
Number Date Country
Parent 13639766 US
Child 15429128 US