This invention relates to an apparatus for sharpening the cutting edge of a knife blade and maintaining a sharp edge along the cutting edge, and more specifically to such an apparatus that is small, light-weight, hand-held, portable and sanitary for simultaneously sharpening and polishing the surfaces of the cutting blade of the knife without the need for a sharpening or honing wheel, or a skilled knife sharpener.
A knife represents a hand-held cutting tool with a cutting edge or blade. It may also have a handle. Originally made from rock, bone, flint, or obsidian, knife blades today are typically fashioned from iron, steel, ceramics, or titanium.
While knives may be used as a weapon, they are more commonly employed by people as useful tools in food preparation, dining, meat processing, hunting, construction, work projects, and hobbies for cutting or slicing an object. Many different types and designs of knives are known, but most of them share the trait of one or two sharpened blade edges.
But, over time, these sharpened edges of the knife blade will become dull or damaged. Blades are damaged usually by buckling due to compressive force arising from the user pressing the knife blade edge into a hard object like bone, ice, a hard cutting board, or other hard object, or simply by repetitive use. The cutting edge may also become bent from sideways pressure applied against the blade. Both of these forces tend to roll the knife blade's cutting edge due to the ductile characteristic of the metal material used in the blade. Moreover, tougher or abrasive materials will cause the blade to become dull more quickly.
Dull blades do not cut as easily or precisely, and can create a danger to the end user by requiring greater hand force to make a cut. Moreover, dulled blades can include burrs or ragged edges with regions along the cutting surface that are out of alignment with each other. Such misaligned blades can damage the material being cut, or produce an inferior cut by tearing or sawing the material being cut as opposed to a smooth, clean cut.
Therefore, such dulled knife blades must be periodically sharpened. This is a process in which the knife blade is ground against a hard, rough surface like a stone, or a soft surface containing hard particles. Metal can be removed from the knife blade in order to form a new edge along the blade. Typically, a grinding wheel or a whetstone is used. These sharpening stones come in varying grit degrees from very coarse to very fine, and can be described as hard or soft depending upon whether the grit comes free of the stone during the grinding operation. Ceramic hones are also commonly used, especially when fine grit size is desired. Coated hones with an abrasive diamond-based surface provide yet another option. Mineral oil often is used during the grinding application to separate the loosened grinding particles from the knife blade edge to prevent damage to the blade.
The cutting edges of the knife blade may also be straightened by a sharpening steel. The sharpening steel constitutes a hardened cylindrical, triangular or other shaped rod having a small diameter. This sharpening steel may have a smooth, polished exterior surface, or may be somewhat abrasive. It may also feature slight ridges or ribs running along the length of the rod. A butcher steel constitutes a round file with teeth running the long way, although it may also be smooth. As the knife blade with its cutting edge is swiped along the sharpening steel, the steel will exert high localized pressure against the cutting edge to straighten the turned edges of the cutting edge back into proper alignment. Unlike grinding, such steeling process does not usually remove metal from the blade edge.
Knives used by barbers are often stropped after steeling in order to polish the sharpened cutting edge. This is often done with a leather strap impregnated with an abrasive compound like chromium (III) oxide particles. This operation does not remove any metal material from the blade edge, but produces a very sharp edge.
However, grinding constitutes a precise operation in which the angle of the cutting edge of the blade must match the angle of the whetstone or grinding wheel surface. The smaller the angle between the blade and stone, the sharper the knife will be, but at the same time, the less side force is required to damage the knife blade by bending the cutting edge over or even chipping it off. The edge angle represents the angle between the blade and the stone. For symmetrical double-ground, wedge-shaped knife blades, the angle from one edge to the other edge of the blade will be twice the edge angle.
While steeling represents a less aggressive form of sharpening than grinding, it still is important to swipe the knife's blade at a proper angle with respect to the sharpening steel. Moreover, the two cutting edges of the knife must be swiped the same number of times against the steel or else the cutting edge will be pushed again out of alignment.
It is therefore easy to damage the cutting edge of the knife blade further if the sharpening exercise is performed poorly. Thus, most knife users need to send out their dulled knives to a professional sharpening service, or to replace the knife with a new knife. This can be time-consuming and expensive.
Some knife users employ the bottom of a ceramic coffee mug for sharpening the blade. The course ceramic particle surface can produce acceptable results, although a sharpening steel usually must then be used. But again, a proper angle must still be maintained during the sharpening swipes. Electric knife sharpeners are also available in the market.
U.S. Pat. No. 3,942,394 issued to Juranitch in 1976 is directed to a finishing sharpener device used in the field for sharpening a knife blade. It includes a handle having a pair of wings that fold out and extend at a 30 degree angle from the handle. Each of the wings constitutes a flat bar defining a sharpening edge that is arcuate in cross section and smooth. By drawing a dulled knife blade cutting edge across the sharpening edge of one of the wings at the proper angle, the cutting edge along one side of the knife blade may be restored to its sharpened configuration. The handle of the finishing sharpener serves as a rough visual guide for properly aligning the knife handle to draw the knife blade along the wing's sharpening edge. But, this process still requires some skill by the person sharpening the knife blade to ensure a proper match between the knife blade cutting edge angle and the angled surface of the sharpening edge of the wing. Moreover, the opposing cutting edges of the knife blade must be sharpened sequentially using first the one wing and then the other wing. Simultaneous sharpening of the opposed cutting edges of the knife blade is impossible. Furthermore, when the knife blade is swiped along one of the wings to sharpen it, the blade comes very close to the user's other hand on the handle, thereby producing a risk of injury. Finally, the arcuate cross-section surface of relatively small radial extent having a highly smooth configuration is insufficient for removing material from the cutting edge of the knife blade. This finishing sharpener may only therefore be used after the knife blade has been sharpened first on a hone or grinding wheel.
Razor Edge Systems of Ely, Minn. has commercialized a knife sharpening device referred to as MOUSETRAP STEEL that is further disclosed in U.S. Pat. No. 5,655,959 issued to Juranitch in 1997. It has been used to sharpen the cutting edges of a knife blade in the meat processing industry, but also for any other end-use application where there is a need to maintain a sharp knife edge. It constitutes a bench-top mounted vertical base member having a vertical slot partially bisecting the base member from its top edge. Pivotably mounted to the base member are two counterweights having equal masses. A pair of upwardly curved sharpening steels are connected to the upper and inner ends of the counterweights and extend toward each other in a crossed relationship, intersecting at and along the slot. A pair of guard rods are needed to protect the sharpening steels from outside damaging force, further aided by guard blocks mounted to the side edge of the base member. As a knife blade is pushed down through the slot, it engages the sharpening steels at this intersection point and pushes the steels inwardly, sharpening the opposing cutting edges of the knife blade simultaneously as the knife blade is swiped along the sharpening steels. A pivotably-mounted wiper wing under the influence of its own counterweight polishes the sharpened blade. A pair of cams that are eccentrically mounted to the base member act to arrest the lateral movement of the steels during the knife sharpening operation, as well as to define the downward resting point of the counterweights when the sharpening steels are in their standby position when the knife blade is disengaged. However, these cams must be carefully adjusted in their eccentric positions along the base member prior to the knife sharpening operation to define how high or low the crossed intersection point of the steels will be situated over the slot. A higher position requires greater force applied to the knife blade during the sharpening operation resulting in this higher intersection point of the steels producing a less sharp cutting angle along the knife blade. A lower intersection position on the other hand requires less force applied to the knife blade during the sharpening operation resulting in a sharper cutting angle produced by the steels along the knife blade. Thus, the MOUSETRAP STEEL sharpener requires the user to know in advance the angle of the cutting edges that must be produced along the sharpened knife blade, and to precisely adjust in advance the cams' positions to achieve this desired angle. This requires skill and patience by the user. Yet over time, the significant weight of the heavy, 20-ounce counterweights will cause the cams to move from their intended position, thereby making repeated sharpening of knives with the same cutting edge angle impossible without further precise adjustment of the position of the cams. Furthermore, these heavy counterweights make the MOUSETRAP STEEL device heavy and non-portable. The large number of parts mounted to the base member and the bolts and nuts used to mount them also produce environments for bacterial growth which makes it difficult to keep the device clean and sanitary.
U.S. Pat. No. 4,934,110 issued to Juranitch back in 1990 discloses an edge sharpening apparatus having a panel with a slot and two pivotably curved sharpening steels attached to counterweights similar to U.S. Pat. No. 5,655,959. It also discloses, however, another embodiment in which the counterweights are replaced by coil springs that are connected between the pivotable plates attached to the sharpening steels and the panel member of the sharpening device. These coil springs act to pull the pivotable plates to impede the sharpening steels from pivoting under the force of the knife blade that is being sharpened. However, it was found in actual practice that these coil springs failed to provide enough tension and counterforce on the sharpening steels to allow them to provide sufficient pressure against the knife blade to sharpen its cutting edges. Moreover, the coil springs had a tendency to become separated from the knife sharpener device during operation, and contaminate meat that was being processed on an industrial line, or damage surrounding equipment like grinders or conveyor belts. For these reasons, this product design with coil springs failed in the commercial field, and springs were abandoned in favor of counterweights.
Therefore, it would be very advantageous to provide a sharpening apparatus that may be used by a relatively unskilled person to simultaneously sharpen the two opposed cutting edges of a knife blade by hand and to maintain a sharpened cutting edge along the blade with minimal effort and training. Such an apparatus should be small and portable so that the person may easily take it out to sharpen the cutting edges of the knife blade when needed, and small enough to be mounted in a stationary location where working space is limited and tight. Moreover, the device should enable the sharpening of the blade's cutting edges without having to maintain a specific swiping angle, or precisely adjust the position of cams to enable the sharpening steels to produce the desired cutting edge angle along the knife blade. Furthermore, the sharpening device should feature a relatively small number of parts without bolts and nuts to reduce surfaces on which bacteria can grow. Such a sharpening apparatus can be used to maintain an extremely sharp cutting edge for precise cutting of a material without crushing or other damage with significantly reduced physical force and strain upon the user.
A small, light-weight, and portable apparatus for the sharpening of the blade of a knife and maintaining the sharpened blade edge is provided according to the invention. The knife sharpener comprises a panel member having an elongated slot extending therein. A pair of attachment tabs is used to secure a pair of sharpening steels to the panel member along pivot points on opposite points of the slot without counterweights. The sharpening steels having an upper attachment end, a curved upper segment extending downwardly from the upper attachment end, and a straight lower end segment extending downwardly from the curved upper segment. The sharpening steels being swing downwardly in crossed relation about their pivot points along the slot in a plane adjacent and parallel to the plane of the panel member, the crossed relation defining an intersection point.
A pair of cams mounted to the front face of the panel member having a vertical slot therein. A pair of leaf springs is attached to the vertical slots in the cams. They have a bearing surface for abutting one of the sharpening steels to bias it into its standby position. The cams are preferably mounted to the panel member in a stationary manner to prevent movement of the leaf springs out of proper alignment with the sharpening steels during the knife sharpening operation.
When the knife blade is pushed downwardly in the slot of the panel member of the knife sharpener, it comes into contact with the intersection point of the crossed sharpening steels, the intersection point being moved lower along the slot, bowing the sharpening steels under tension against the bearing surfaces of the leaf springs. As the knife blade is drawn downwardly, outwardly, and through the slot, its cutting edges are sharpened by their engagement with the sharpening steels. The angle of the intersection point of the crossed sharpening steels should ideally be about 70 degrees. It has been found that such an angle permits the knife sharpener to automatically sharpen the cutting edges of the knife blade without the user having to know in advance the desired angle of the cutting edges, or match the knife's cutting edges with the surface of the sharpening steels. Thus, the knife blade can be readily sharpened with minimal skill or training by the user.
The knife sharpener can also include a wiper rod pivotably mounted to the panel member that overlays the panel board slot. When the knife blade is moved down the slot to be sharpened by the sharpening steels, it also engages the wiper rod to further polish the sharpened cutting edges of the knife. A counterweight is used to place the wiper rod under tension and impede the force applied by the knife blade against the wiper rod. However, this counterweight is considerably lighter than the counterweights used in prior art knife sharpeners.
The knife sharpener device of the present invention is small and portable. It may be worn on the person of the user where it may be conveniently be accessed as needed to sharpen a knife blade. It can also be easily used in tight quarters in an industrial production line. The knife sharpener comprises a relatively small number of parts without the bolts and nuts fasteners of prior art devices which can produce breeding grounds for bacteria.
In the accompanying drawings:
A sharpening apparatus that may be used by a relatively unskilled person to simultaneously sharpen the two opposed cutting edges of a knife blade by hand and to maintain a sharpened cutting edge along the blade with minimal effort and training is provided by the invention. The apparatus comprises a panel member with a slot partially extending from its top edge. A pair of sharpening steels are pivotably mounted to the panel member, and they swing downwards in a crossed relation across the slot. A pair of leaf spring bias the sharpening steels in their standby position. When the knife blade is moved down through the slot, it comes into contact with crossed sharpening steels to bow them outwards under tension applied by the leaf springs. The cutting edges of the knife blade are drawn along and against the sharpening steels to automatically sharpen their cutting edges at the proper angle without any need to match angles between the cutting edges of the knife and the sharpening steels. A wiper rod biased by a counterweight can polish the sharpened cutting edges. With the absence of counterweights attached to the sharpening steels, as some prior art knife sharpeners require, the device is small and portable so that the person may easily take it out to sharpen the cutting edges of the knife blade when needed, and small enough to be mounted in a stationary location where working space is limited and tight. Moreover, the sharpening device features a relatively small number of parts without bolts and nuts to reduce surfaces on which bacteria can grow. Such a sharpening apparatus can be used to maintain an extremely sharp cutting edge for precise cutting of a material without crushing or other damage with significantly reduced physical force and strain upon the user.
For purposes of the present invention, “cut substrate” means a material such as paper, cardboard, metal foil, thin plastic, textiles, cloth, silk, rope, twine, wire, wood veneers, wood, construction materials, flowers, tree or plant part, or foods like meats that is capable of being cut or trimmed by a knife.
As used within this Application, “knife” means a hand-operated cutting tool with a cutting edge or blade and a handle for cutting or trimming a cut substrate. It can have a fixed blade or a blade that folds or slides into a slot in the handle. It includes, without limitation, except for serrated edges, knives used as dining utensils or in food preparation like a bread knife, boning knife, carving knife, chef's knife, cleaver, butcher's knife, electric knife, kitchen knife, oyster knife, paring or coring knife, rocker knife, steak knife, table knife, or ulu; knives used as tools like a Bowie knife, cobbler's or shoemaker's knife, crooked knife, wood carving knife, diver's knife, electrician's knife, hunting knife, linoleum knife, machete, palette knife, paper knife or letter opener, pocket knife, produce knife, rigging knife, scalpel, straight razor, survival knife, switchblade, utility knife, whittling knife, x-acto knife, balisong, or kiridashi; knives used as weapons like a ballistic knife, bayonet, combat knife, dagger, fighting knife, ramuri, shiv, trench knife, butterfly knife, or throwing knife; or knives used in religious ceremonies like an athame, kirpen, kilaya, his, kukri, puukko, seax, or sgiandubh.
The knife 10 is a hand-operated cutting tool that is shown more clearly in
For purposes of the knife sharpener of this invention, the blade 20 should feature a plain edge, or a plain edge portion on a combination knife additionally featuring a serrated blade portion. The knife sharpener of the present invention sharpens and maintains the plain cutting edge of the knife. As shown more clearly in
The knife blade 20 can be manufactured from a variety of different materials. Carbon steel constituting an alloy of iron and carbon can provide a very sharp cutting edge 28. It holds its edge well and is relatively easy to sharpen, but is also vulnerable to rust and stains. On the other hand, stainless steel constituting an alloy of iron, chromium, possibly nickel, and molybdenum with only a small amount of carbon will not accept quite as long lasting of a cutting edge 28 as carbon steel, but it remains highly resistant to corrosion. High-carbon stainless steel alloys contain a higher amount of carbon, and do not discolor or stain, while maintaining a sharper cutting edge. Titanium metal is characterized by a better strength-to-weight ratio. It is therefore more wear resistant and more flexible than steel. Titanium metal is often heat-treated to produce the necessary hardness required for a longer-lasting cutting edge 28 for the knife blade.
The total included angle α of the knife blade 20 extends from one side of the blade to the other side. Thus, it is double the edge angle 46 for a double-ground knife blade. Unfortunately, this included angle varies widely between different types of knives or cutting apparati. This included angle α is about 20 degrees for razors, pairing knives, and fillet knives that constitute some of the sharpest of cutting blades. Most kitchen knives like utility/slicing knives, chef's knives, boning knives, and carving knives should have an included angle of about 30-50 degrees. Japanese-style knives feature a sharper cutting edge 28 defined by an included angle of about 28-32 degrees. Sporting knives like pocket knives, survival knives, and hunting knives usually feature an included angle of about 50-60 degrees. This shallower angle produces a broader lower region 42 having more metal material on the knife blade which produces a more durable cutting edge 28 for use in the field. Machetes, chisels, draw knives, and axes are typically sharpened to an included angle of about 60-80 degrees for even greater durability. This varying included angle makes it difficult to sharpen the cutting edges of a particular knife by prior art sharpening devices where the desired angle must be known and the device adjusted to produce that angle.
But, cutting edge 28 along the bottom surface of the knife blade does need to be maintained in a sharpened state that accommodates its designated included angle. As shown more clearly in
While a piece of meat 12 has been shown as the piece of cut material cut by the knife 10 for the sake of illustration, a number of other types of cut materials that can be cut or sliced by a knife like skin, plastic, textiles, paper, film, and hobby or construction materials are possible, and should be understood as being fully covered by the scope of this invention.
The knife sharpener device 60 of the present invention is shown in
The knife sharpener 60 is shown more clearly in
As shown more clearly in
Located on the panel member 80 near the left edge 82 and right edge 84 are a pair of D-shaped niches 96 and 97. These niches extend only partially through the width of the panel member 80 and feature a flat surface. The niches 96 and 97 should be positioned the same distance D1, from the edge of the panel member 80, and the same distance D2 from the top edge 90 of the panel member.
Also located on the upper left region 92 and upper right region 94 of the panel member 80 are a pair of through holes 99 and 101, respectively. These through holes 99 and 101 should be positioned the same distance D3 from the edge of the panel member 80, and the same distance D4 from the top edge 90 of the panel member.
Extending partially into the panel member 80 from the bottom surface 86 is channel 103. This channel has a diameter that closely accommodates the diameter of pin 76. The pin is typically fit into the channel of the panel board to be securely engaged, while extending from the bottom surface of the panel board.
Handle 70 features a channel 77 extending partially into the handle from its upper end 98. This channel 77 should have a diameter slightly smaller than the diameter of pin 76. In this manner, pin 76 is inserted into channel 77 to securely attach panel member 80 to handle 70.
Handle 70 may additionally feature a slot 78 formed within the top edge 90 of the handle to accommodate the width of panel member 80. When the panel member is fitted into slot 78 of the handle with pin 76 securely engaging channel 103 of the panel member and channel 77 of the handle, then a strong connection between the panel member and handle is produced without the need for a screw or bolt whose head can provide a breeding ground for bacteria.
The handle may be made from a different material than the material of the panel. For example, panel 80 can be formed from high-density polyethylene polymer, a nylon material, or an acetyl polyoxymethylene polymer (sometimes called DELRON), while handle 70 is made from wood. Alternatively, the panel 80 and handle can be made from the same material. The panel and handle can also form an integrated whole, such as being extruded from the high-density polyethylene, nylon, or DELRON polymer.
Pivotably mounted upon the panel member 80 are a pair of attachment tabs 142 and 144. As shown more clearly in
A threaded insert (not shown) is fitted inside left through hole 99 and right through hole 101 in panel member 86. Bolts 152 having a threaded shank extend through holes 146 and 148 in the attachment tabs 142 and 144, respectively, and into threaded engagement with the threaded inserts of the through holes to pivotably mount the attachment tabs to the panel board. These bolts 152 define the rotational exes for the attachment tabs.
A pair of sharpening steels 100 and 102 are fixedly connected along their attachment ends 106 to the inside edges 143 of attachment tabs 142 and 144, respectively. As shown in
The sharpening steels 100 and 102 represent a honing steel, sometimes referred to as a “sharpening steel,” “sharpening rod,” “sharpening stick,” or (in the food or cooking industry) a “butcher's steel” or “chef's steel.” They comprise a rod made from hardened steel, stainless steel or stainless steel alloy, diamond-coated steel, or ceramic. When made from a carbon-containing stainless steel material like 440 C alloys (sourced, for example, from Discount Steel of Minneapolis, Minn.) or ceramic, they bear a smoothly, highly polished exterior surface. Optionally, they may include a plurality of longitudinal ridges. When made from diamond-coated steels, the steel material is embedded with abrasive diamond particles. Suitable diamond-coated steel or ceramic materials may be sourced from the Norton affiliate of Saint-Gobain Corporation of Courbevoie, France. But, the material from which the sharpening steels 100 and 102 are fabricated must have a higher tensile strength than the metal from which the knife blade 20 is made, or else it must be treated to a surface hardening process.
Extending upwards from the surface of panel member 80 near the left edge 82 and right edge 84 are stationary cams 114 and 116, respectively. These stationary cams may bear any suitable shape such as a cylinder or cube. As shown more clearly in
The stationary cams 114 and 116 are press-fitted into left niche 96 and right niche 97, respectively, in panel member 80. The perimeter and surface area of the bottom surface 120 of the cam is slightly larger than the perimeter and bottom surface area of the panel member niche, so that the cam is securely connected to the panel board 80 without the need for a bolt or screw that could otherwise provide a breeding ground for bacteria. The cooperating straight side and corners of the D-shaped profiles of the cams and niches act to inhibit the cam from rotating within respect to the panel member. This stationary feature for the cam ensures that slot 124 will be maintained at an approximately 35 degree angle with respect to slot 88 on the panel member 80.
As is shown in
Once attachment clips 142 and 144 are secured to panel member 80 as described above, the arced upper segment 104 of the sharpening steels 100, 102 curves along and above the top surface of panel member 80, passing over slot 88. Meanwhile, straight intermediate segment 108 of sharpening steel 100, 102 passes along and above the top surface of panel member 80 below cams 114, 116. Distal end 110 of the sharpening steel 100, 102 extends beyond the cams. As shown in
The knife sharpener 60 also comprises elliptical leaf springs 164 and 166. As shown more clearly in
As shown in
When the sharpening steels 100 and 102 are in their standby position, elliptical leaf springs 164 and 166 push the sharpening steels 100 and 102 upwardly towards the top edge 90 of panel with intermediate segments 108 abutting stationary cams 116 and 114, respectively, to hold the sharpening steels in a stationary position. As shown in
The slot 88 of the panel member 80 properly orients the knife blade 20 with respect to the sharpening steels 100 and 102. The leaf springs orient the sharpening steels with respect to the slot and knife blade, and keep proper tension on the sharpening steels during the sharpening operation. The stationary cams properly orient the springs at an angle of about 35 degrees with respect to the slot.
The angle ε at the intersection point 160 of the criss-crossed sharpening steels should be about 50-80 degrees, preferably about 65-75 degrees, most preferably about 70 degrees. Moreover, this intersection angle ε will be roughly maintained throughout the sharpening operation. It has been found that this angle allows the cutting edge of the knife blade to be sharpened at the correct angle for that knife without any need to match angles between the cutting edge and sharpening steels or make adjustments to the sharpening device, as is required by prior art devices. The distances D3 and D4 for the placement of the through holes 99 and 101 in the panel board 80, and the distances D5 and D6 for placement of the holes 146 and 148 in the attachment tabs 142 and 144 should be correctly defined at the point of manufacture to produce this desired intersection angle ε for the sharpening steels 100 and 102 pivotably mounted to the panel member via the attachment tabs.
Yet, the sharpening steel surface must also be super smooth in order to avoid further damage and deformation caused by the sharpening steel to the knife blade that could cause unwanted burrs along the blade edge. Thus, the sharpening steels do not function like grinding wheels, whetstones, or hones that are commonly used to remove metal burrs from a blade before it can be sharpened. At the same time, the two sharpening steels 100 and 102 simultaneously treat the opposite beveled edges 44 of the knife blade to realign the cutting edge 28. Because of the cylindrical surface of the sharpening steels 100 and 102, they sharpen the cutting edge without any need to maintain the knife blade at a specified angle with respect to the sharpening surface unlike with prior art processes. This enables unskilled persons to sharpen knife blades using the knife sharpener device 60 of the present invention.
Optionally attached to knife sharpener 60 is wiper rod 190. Constituting a sharpening steel in its own right, it has a gradually curved main body 192 with an attachment end 194 and a distal end 196. The attachment end 194 is secured to a counterweight 198 comprising a slab 200 of metal with a hole 202 in it. Counterweight 198 is secured to panel 80 by means of a bolt extending through the hole 202 and a corresponding hole (not shown) in the panel 80. As shown in
When assembled, the curved body 192 of wiper rod 190 extends from its attached end 194 and counterweight 198 over and above panel member 80 and sharpening steel 102 and slot 88 with its distal end 196 extending adjacent to or past right edge 84 of panel 80 (see
When the knife blade is withdrawn from the slot 88 in the knife sharpener 60, the tails 178 of the elliptical leaf springs 164 and 166 will act to bias sharpening steels 102 and 100, respectively, back to their stand-by position shown in
Sharpening steels normally cannot repair burrs or other severely deformed regions along a knife blade cutting edge. They just realign less severely deformed regions. However, in the case of the present invention, the sharpening steels 100 and 102 allow such a repair step to be carried out. A bend 111 exists within the sharpening steel 100, 102 where the straight intermediate segment 108 joins the terminal segment 109. This bend provides additional surface area on the sharpening steel. As seen in
The knife sharpener 60 is very small in size. It measures about four inches wide and about six inches long. It only weighs about ten ounces. Because of this very small size and weight, it can be conveniently suspended from the belt 74 or belt loop of the user 62 so that it is readily available to sharpen a knife no matter where the user stands in a work place environment.
The above specification and associated drawings provide a complete description of the structure and operation of the scissors sharpener of the present invention. Many alternative embodiments of the invention can be made without departing from the spirit and scope of the invention. Therefore, the invention resides in the claims herein appended.
Number | Name | Date | Kind |
---|---|---|---|
1894579 | Blankner | Jan 1933 | A |
3861246 | Waller | Jan 1975 | A |
3885352 | Juranitch | May 1975 | A |
3942394 | Juranitch | Mar 1976 | A |
4030254 | Marcantonio | Jun 1977 | A |
4041651 | Bayly | Aug 1977 | A |
4091691 | Bayly | May 1978 | A |
4852305 | Juranitch | Aug 1989 | A |
4934110 | Juranitch | Jun 1990 | A |
5040435 | Millman | Aug 1991 | A |
5290186 | Juranitch | Mar 1994 | A |
D358747 | Juranitch | May 1995 | S |
5440953 | Gangelhoff | Aug 1995 | A |
5478272 | Cozzini | Dec 1995 | A |
5655959 | Juranitch | Aug 1997 | A |
6679767 | Lohnert | Jan 2004 | B2 |
6905403 | Stallegger | Jun 2005 | B2 |
7503241 | Dassaud | Mar 2009 | B2 |
8282448 | Loehnert | Oct 2012 | B2 |
20030075022 | Henry | Apr 2003 | A1 |
20060000313 | Henry | Jan 2006 | A1 |
Entry |
---|
Razor Edge Systems brochure for “Mousetrap Steel” knife sharpening product (undated). |
Razor Edge Systems brochure for “Mousetrap Steel MT18C” knife sharpening product (2014). |