This invention relates generally to diagnostic systems, and in particular to the measurement of physiological function in living animals.
Pressure measurements are central to monitoring the status of many physiological functions and, thus, to the monitoring of the progress of many diseases. Such pressure measurements as arterial and venous blood pressures, intra-cranial fluid pressure, or transpulmonary airway pressure all use devices that measure pressures in a range greater than 4 cm H2O. Such devices typically use narrow bore tubing to transduce the pressure from the region of interest to the pressure sensor outside the body, or use fiber-optics to transmit and receive light reflected from a pressure-sensitive device such as a diaphragm located at the tip. The use of narrow bore tubing introduces multiple artifacts into the measurements, especially when the frequency of the measured signal is high and when the volume of the “cavity” where the pressure to be determined is low. Current fiber-optics based systems, utilizing either a single detecting fiber or a bundle of fibers whose detecting tips are set at a single fixed distance from the displacement diaphragm, are not sensitive enough to detect the small (less than 2 cm H2O) rapidly changing pressures that are the goal of this invention. No system or method is currently available that can reliably measure artifact-free dynamic pressures in the range less than 10 cm H2O with high resolution in small confined body spaces, as for example, those of the dimensions of the rat trachea. For detailed analysis of, e.g., pulmonary function in small animals, it is necessary to monitor pressures in the range 0-10 cm H2O, with a resolution of 0.1 mm H2O. For such small laboratory animals as the rat, the diameter of the probe must be less than 3 mm. The system must also be electrically isolated and immune from environmental electrical and magnetic interference, have a large signal-to-noise ratio, and a wide dynamic range suitable for both normal and pathological conditions.
Accordingly, there is a need for an improved system and method for dynamically monitoring ultra-low pressures in the range 0-10 cm H2O, with a resolution of 0.1 mm H20 in confined spaces less than 3 mm in diameter. The present invention meets all these criteria.
a is a drawing of the fiber-optic bundle, according to the present invention.
b is a drawing of the positions of the tips of the fibers relative to the corrugated membrane, according to the present invention.
a and 4b are graphs of the sensitivity of the device, in terms of percentage membrane deflection versus pressure, in mm H2O.
a and 5b are photographs of the method of the present invention, in use measuring the tracheal pressure in a laboratory rat.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with descriptions, serve to explain the principles of the invention. They are not intended to limit the scope of the invention to the embodiments described. It is appreciated that various changes and modifications can be made without departing from the spirit and scope of the invention as defined in the appended claims.
The present invention relates to a system and method for measuring dynamic pressure in the confined space of a small laboratory animal such as a rat, in the range 0-10 cm H2O, with a resolution of 0.1 mm H2O. The system advances the state of the art by providing higher sensitivity and greater range than present systems. A preferred embodiment of the system utilizes three optical fibers, one illuminating fiber and two detecting fibers set at different fixed distances from the corrugated polymer membrane, which are contained within a catheter upon which a corrugated polymer membrane is mounted. The membrane has a diameter of 1.0 mm, a thickness of 1 μm, and a reflective center with a diameter in the range 100-200 μm. The illuminating fiber is coupled to a light emitting diode (LED) light source with a fiber-optics coupling lens. The detecting fibers are coupled to PIN (Positive-Intrinsic-Negative) photodiodes connected to a differential amplifier to reliably determine the difference in the light signals from the two detecting fibers. The output from the differential amplifier is sent to a computer for processing and display.
Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. The invention is intended to cover alternatives, modification, and equivalents which may be included within the invention as defined by the appended claims.
a is a drawing of the three fibers in the fiber-optic bundle. In the preferred configuration, the fibers have a core diameter of 200 microns, and a low refractive-index cladding 225 microns thick.
b shows a preferred arrangement of the fibers that yields an optimal signal to noise ratio. They are arranged so that the end of the illuminating fiber is 800-900 microns from the corrugated membrane, while the two detecting fibers are, respectively, 400 microns and 1000 microns from the corrugated membrane. The displacement of the reflecting membrane is derived from the differences between the light signals received by the two detecting fibers.
a is a photograph of an experiment utilizing the present invention. A rat was anesthetized using IM ketamine (44 mg/kg) and intubated with an endotracheal tube. The fiber-optics probe was advanced through the endotracheal tube into the lumen of the trachea. The light source was a 590 mn LED with its luminosity adjusted to a level consistent with the dynamic range of the PIN detector. Baseline pressures were recorded first. Neostignine, an anti-cholinesterase agent was injected intra-peritoneally and pressures were monitored for several minutes. At the end of the experiment, a tracheotomy was performed to independently determine the tracheal pressure as shown in
The system and method of the present invention finds particular application for the physiological monitoring of pressure in small laboratory animals. In particular, it is useful for detailed monitoring of intrapulmonary pressure such as the respiratory rate, inspiratory time, expiratory time, tidal volume and peak inspiratory pressure and how they may change in response to environmental insults, drugs, or pathological conditions.
The system and method of the present invention provides a new tool for studying the physiological response of laboratory animals and could find application in clinical monitoring of patients as well.
It can therefore be appreciated that a new and novel system and method for dynamically monitoring ultra-low pressures with high resolution in confined spaces has been presented. It will be appreciated by those skilled in the art that, given the teaching herein, numerous alternatives and equivalents will be seen to exist which incorporate the disclosed invention. As a result, the invention is not to be limited to the foregoing embodiments, but only to the appended claims.
The present invention was made with U.S. Government support from the National Center for Research Resources, National Institutes of Health, under Grant No. RR 15150. The U.S. Government has certain rights in this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/04942 | 2/19/2004 | WO | 4/11/2006 |
Number | Date | Country | |
---|---|---|---|
60449721 | Feb 2003 | US |