This application claims priority to Chinese patent application number 200710111096.9, filed Jun. 15, 2007, entitled “Miniature Shielded Magnetic Component” by Yipeng Yan, Robert J. Bogert and Baoqi Wang, which is incorporated herein by reference in its entirety.
This invention relates generally to the manufacture of electronic components, and more specifically to the manufacture of miniature magnetic components such as inductors.
Exemplary embodiments of magnetic components are disclosed herein that overcome numerous challenges in the art for reliably manufacturing low profile components for electronic devices at a reasonable cost. More particularly, disclosed are exemplary miniature shielded power components such as inductors and transformers, and methodology for manufacturing the same. The components utilize unique core structures, preformed coils, and welding and plating techniques for forming termination structure for the preformed coil. Gap size in the cores may be tightly controlled over large production lot sizes, providing a more tightly controlled inductance value. Components may be provided at lower costs by virtue of easier assembly and better yield in comparison to known magnetic components for circuit board applications. The components also provide increased power density relative to known components, and thus the components are particularly well suited for power supply-circuitry of an electronic device.
In order to appreciate the invention to its fullest extent, the following disclosure will be segmented into different parts, wherein Part I discloses conventional shielded magnetic components and challenges associated therewith; and Part II discloses exemplary embodiments of magnetic components formed in accordance with exemplary embodiments of the present invention.
It has become desirable in many types of electronic devices to provide an ever increasing array of features and functionality in a smaller physical package size. Hand-held electronic devices such as cellular phones, personal digital assistant (PDA) devices, and personal music and entertainment devices, for example, now include an increased number of electronic components to accommodate the increased functionality desired in such devices. Accommodating an increased number of components in a reduced physical package size for such devices has led to prolific use of “low profile” components having a relatively small height projecting from a surface of a circuit board. The low profile of the components reduces a clearance needed above the board within the electronic device, and allows multiple circuit boards to be stacked within a reduced amount of space in the device.
The manufacture of such low profile components, however, presents a number of practical challenges, making it difficult and expensive to manufacture the smaller low profiles needed to produce smaller and smaller electronic devices. Producing uniform performance in very small magnetic components such as inductors and transformers is difficult, especially when the component involves gapped core structures that are difficult to control during manufacturing, resulting in performance and cost issues. In a high volume world of electronic components, any variability in performance among components is undesirable, and even relatively small cost savings can be significant.
A variety of magnetic components for circuit board applications, including but not limited to, inductors and transformers used in electronic devices, include at least one conductive winding disposed about a magnetic core. In some magnetic components, a core assembly is fabricated from ferrite cores that are gapped and bonded together. In use, the gap between the cores is required to store energy in the core, and the gap affects magnetic characteristics, including but not limited to open circuit inductance and DC bias characteristics. Especially in miniature components, production of a uniform gap between the cores is important to the consistent manufacture of reliable, high quality magnetic components.
It is therefore desirable to provide a magnetic component of increased efficiency and improved manufacturability for circuit board applications without increasing the size of the components and occupying an undue amount of space on a printed circuit board.
The winding 108 is wound on the drum core 104 directly, and the shield ring core 118 is assembled to the drum core 104. Careful centering of the drum core 104 with respect to the shield core 118 assembly is required to control the inductance value and ensure the DC bias performance of the conductor. A relatively high temperature soldering process is typically utilized to solder the wire leads 110, 112 to the termination clips 114, 116.
Centering of drum core 104 within shield core 118 presents a number of practical difficulties for miniaturized, low profile components. In some instances, epoxies have been used to bond the ferrite cores 104 and 118 to produce a bonded core assembly for magnetic components. In an effort to consistently gap the cores, non-magnetic beads, typically glass spheres, are sometimes mixed with adhesive insulator materials and dispensed between the cores 104 and 118 to form the gap. When heat cured, the epoxy bonds the cores 104 and 118 and the beads space the cores 104 and 118 apart to form the gap. The bond between the cores 104 and 118, however, is primarily dependant upon the viscosity of the epoxy and the epoxy to beads ratio of the adhesive mix dispensed between the cores. It has been noted that in some applications the bonded cores 104 and 118 are insufficiently bonded for their intended use, and controlling the epoxy to glass spheres ratio in the adhesive mix has proven very difficult.
Another known method of centering the drum core 104 within the shield core 118 involves a non-magnetic spacer material (not shown) that is placed between the cores 104 and 118. The spacer material is frequently made of a paper or mylar insulator material. Typically, the cores 104 and 118 and spacer material are secured to one another with tape wrapped around the outside of the core halves, with an adhesive to secure the core halves together, or with a clamp to secure the core halves and keep the gap located between the core halves. Multiple (i.e., more than two) pieces of spacer material are rarely used, since the problem of securing the structure together becomes very complicated, difficult and costly.
During the soldering process to electrically connect the coil leads 110, 112 to the termination clips 114 and 116, it has been found that cracks may develop in one or both of the drum core 104 and the shield core 118, particularly when very small cores are utilized. Additionally, electrical shorts may occur within the winding 108 during soldering processes. Either condition presents performance and reliability issues for the inductor component in use.
The component 150 includes a drum core 152 upon which a coil or winding 154 is extended for a number of turns, and a shield core 156 that receives the drum core. The shield core 156 includes electroplated terminations 160 formed on the surfaces thereof. Wire leads 162, 164 extend from the winding 154 and electrically connect with the terminations 158 and 160 on side edges thereof. The electroplated terminations 160 avoid separately fabricated termination clips, such as the clips 114 and 116 as shown in
The component 150, however, remains challenging to manufacture at increasingly lower profiles. Centering of drum core 152 with respect to shield core 156 remains difficult and expensive. The component 150 is also vulnerable to thermal shock, and potential damage from high temperature soldering operations to terminate the coil leads 162 and 164 to the terminations 158 and 160 on the shield core 156 during manufacture of the component 150, or thermal shock experienced when the component 150 is surface mounted to a circuit board. The thermal shock tends to reduce the structural strength of one or both cores 104, 118. With the trend toward lower profile components, the dimensions of the drum core 152 and shield core 156 are being reduced, rendering them more vulnerable to thermal shock issues. Cracking of the shield core 156 has been observed during electroplating processes to form the terminations, leading to performance and reliability issues, and undesirably low production yields of satisfactory components.
To avoid difficulties in winding the coil onto smaller and smaller drum cores 152 and with an eye toward further reduction of the low profile height of such components, it has been proposed to utilize preformed coil structures that, instead of being wound upon a core structure, may be separately fabricated and assembled into a core structure.
In an illustrative embodiment, coil 240 may be formed from a conductive wire according to known techniques. If desired, the wire used to form coil 240 may be coated with enamel coatings and the like to improve structural and functional aspects of coil 240. As those in the art will appreciate, an inductance value of coil 240, in part, depends upon wire type, a number of turns of wire in the coil, and wire diameter. As such, inductance ratings of coil 240 may be varied considerably for different applications.
Unlike coil 220, both the leads 242 and 244 extend from an outer periphery 246 of coil 240. Stated differently, neither of leads 242 and 244 extends from an inner periphery 248 or the center opening of coil 240. Since neither lead 242 or 244 extends from the coil inner periphery 248, a winding space in a core structure (not shown in
Additionally, more effective use of winding space provides for additional benefits, including the use of a larger wire gauge in the fabrication of the coil while occupying the same physical area as a conventional coil fabricated from a smaller wire; gauge. Alternatively, for a given wire gauge, a greater number of turns in the coil may be provided in the same physical space that a conventional coil with a lesser number of turns would occupy by eliminating unused airspace. Still further, more effective use of winding space may reduce the direct current resistance (DCR) of component 260 in use, and reduce power losses in an electronic device.
Preformed coil 240 may be fabricated independently from any core structure, and may later be assembled with a core structure at designated stage of manufacture. The construction of coil 240 is believed to be advantageous when utilized with substantially self centering magnetic core structures as described below.
As best seen in
A variety of magnetic materials are known that are suitable for manufacturing core 262. For example, iron-powder cores, molypermalloy powder (MPP) having powdered nickel, iron, and molybdenum; ferrite materials; and high-flux toroid materials are known and may be used, depending on whether the component is to be used in power supply or power-conversion circuitry, or in another application such as a filter inductor, for example. Exemplary ferrite materials include manganese zinc ferrite, and particularly power ferrites, nickel zinc ferrites, lithium zinc ferrites, magnesium manganese ferrites, and the like that have been commercially used and are rather widely available. It is further contemplated that low loss powdered iron, an iron based ceramic material, or other known materials may be used to fabricate the cores while achieving at least some of the advantages of the present invention.
As shown in
As also shown in
Welding, as opposed to soldering, of coil leads 242 and 244 to terminations 276 and 278 avoids undesirable effects of soldering on the total height of component 260, and also avoids undesirable thermal shock issues and high temperature effects on coil 240 and potential core damage that soldering entails. Notwithstanding the benefits of welding, however, it is appreciated that soldering may be used in some embodiments of the invention while still obtaining many of the benefits of the invention.
Terminations 276 and 278 wrap around to the bottom surface of first core base 266 and provide surface mount pads for electrical connection to conductive circuit traces on a circuit board.
Second core 264 may be fabricated independently and apart from first core 262, and later assembled to first core 262 as explained below. Second core 262 may be fabricated from a magnetic permeable material, such as those described above, into a generally flat, disk-shaped main body 290 having a first diameter and a centering projection 292 integrally formed with the main body 290 and extending outwardly from one side thereof. Centering projection 292 is centrally located on main body 290 and may be formed, for example, into a generally cylindrical plug or post having a smaller diameter than main body 290. Further, post 292 may be dimensioned to closely match but be received within inner periphery 248 of coil 240. Post 292 therefore may serve as an alignment or centering feature of second core 264 when component 260 is assembled. Post 292 may be extended into the opening of the coil at coil inner periphery 248, and outer periphery of the main body 290 may be seated against an upper surface of the side walls 268, 270 of first core 262. When cores 262 and 264 are bonded together using, for example, an epoxy based adhesive, coil 240 is sandwiched between cores 262 and 264 and maintained in its position by post 292 of second core 264.
Especially when the outer periphery of coil 240 (indicated by reference numeral 246 in
As best seen in
First core 262 of component 300, unlike component 260, is formed with a substantially solid and continuous side wall 302 that defines receptacle 272 for preformed coil 240. That is, component 300 does not include cutouts 273 shown in
As shown in
Unlike component 260, component 360 includes a centering projection or post 352 formed in first core 262 instead of second core 264, as described above. Post 352 may be centrally located in receptacle 272 of first core 262 and may extend upwardly from base 266 of first core 262. As such, post 352 may extend upwardly into inner periphery 248 of coil 240 to maintain coil 240 in a fixed, predetermined and centered position with respect to core 262. Core 264, however, includes only main body 290. That is, core 264 does not include post 292 shown in
Post 352 may extend only a portion of the distance between base 266 of first core 262 and main body 292 of core 264, and thus a gap may be provided between an end of post 352 and core 264 in a consistent and reliable manner. A non-magnetic spacer element (not shown) fabricated from, for example, a paper or mylar insulator material may be provided on the upper surface of core 262 and core 264 and extend between cores 262 and 264 to lift and separate core 262 from post 352 to define the gap in whole or in part if desired. Otherwise, post 264 may be formed to have a comparatively lower height than the side wall of core 262 that defines receptacle 272, thereby resulting in a physical gap between post 352 and core 264 when the component is assembled.
In a further and/or alternative embodiment, each of core 262 and core 264 may be formed with a centering projection or post, with the dimensions of the posts being selected to provide a gap between the ends of the posts. A spacer element may be provided to define the gap in whole or in part in such an embodiment.
Coil 240 in component 370 includes multiple windings each associated with a pair of leads. That is, first and second coil leads 242 and 244 are provided to terminate and electrically connect a first set of winding turns in coil 240, and third and fourth coil leads 372 and 374 are provided to terminate and electrically connect a second set of winding turns in coil 240. Accordingly, core 262 is provided with terminations 276 and 278 for first and second coil leads 242 and 244, respectively, and core 262 is provided with terminations 376 and 378 for third and fourth coil leads 372 and 374, respectively. Additional coil leads and terminations may be provided to accommodate additional winding sets in coil 240.
Multiple winding sets in coil 240 may be especially beneficial when coupled inductors are desirable, or for the manufacture of transformers such as gate drive transformers and the like.
The inductors provided herein may be used in a variety of devices, such as for example, step down or step up converters. For example,
In an exemplary embodiment, an inductor is provided having dimensions of 2.5 mm.times.2.5 mm.times.0.7 mm. Peak inductance for the exemplary device is 4.7.mu.H.+−0.20%, with a peak current of 0.7 A and an average current of 0.45 A. Resistance of the wire is measured at 0.83 ohms. The characteristics of the Exemplary device are compared against two competitor devices, as shown in Table 1. Comparative Example 1 is a Murata inductor, model number LQH32CN and Comparative Example 2 is a TDK inductor, model number VLF3010AT-4R7MR70. As shown in the table, the exemplary inductor (Example 1) provides the same performance in terms of inductance and peak current from a much smaller package. Performance of Example 1 is shown in
The benefits and advantages of the invention are now believed to be amply demonstrated in the above-described embodiments. The unique core structures, preformed coils, and welding and plating techniques for forming termination structure for the preformed coil avoid thermal shock issues to which conventional component constructions are susceptible, avoid external gapping elements and agents to form a gapped core structure, and permit gap size in the cores to be tightly controlled over large production lot sizes to provide a more tightly controlled inductance value for the components. The components may be provided at lower costs by virtue of easier assembly and better yield in comparison to known magnetic components for circuit board applications.
While various embodiments have been disclosed, it is contemplated that still other variations and adaptations of the exemplary embodiments disclosed herein are within the purview of those in the art without departing from the scope and spirit of the invention. For example, distributed air gap core materials having, for example, a powdered iron and resin binder mixed with one another on a particle level, thereby producing a gap effect without formation of a discrete gap in the structure are also available and may be utilized to produce largely self centering core and coil constructions without a discrete physical gap to simplify the manufacturing process further, and potentially to improve the DC bias characteristics and reduce the AC winding loss of the component.
A low profile magnetic component has been described that includes a first core fabricated from a magnetic permeable material and includes a receptacle therein, and a second core fabricated from a magnetic permeable material, wherein the second core is fabricated independently from the first core. The component further includes a coil formed independently from the first and second cores, wherein the coil includes at least a first lead, a second lead and plurality of turns therebetween. The first core includes a receptacle adapted to receives the coil, and at least one of the first and second cores includes a projection fitted into the coil.
In one embodiment, the projection extends from the second core into a center opening of the coil. In another embodiment, the projection extends into the receptacle a length less than the distance between the first and second cores when said cores are assembled, thereby forming a gap between the first and second cores. In another embodiment, the first core includes the projection extending through a center opening of the coil. In yet another embodiment, the projection extends from a base of the first core, such that the post is spaced from the second core when the first and second cores are assembled.
In another embodiment, the first core includes surface mount terminations for the coil leads. In another embodiment, the component also includes first and second conductive clips adapted to receive the first and second coil leads, respectively. In another embodiment, the coil further includes third and fourth leads. In another embodiment, the coil includes an inner periphery and an outer periphery, wherein each of the first and second leads connect to the coil at the outer periphery. Such low profile magnetic component can be used as a power inductor.
In another aspect, a low profile magnetic component has been described that includes a first core fabricated from a magnetic permeable material and having a receptacle formed therein. The component includes a preformed coil received in the receptacle of the first core, wherein the coil includes at least a first lead, a second lead and plurality of turns therebetween. The component also includes a second core fabricated from a magnetic permeable material, the second core fabricated independently from the first core, and including a post extending through a center opening of the coil and establishing a gap with the first core.
In one embodiment, the first core includes surface mount terminations for the coil leads. In another embodiment, the component further includes first and second conductive clips receiving the first and second coil leads, respectively. In another embodiment, the coil further comprises third and fourth leads. In yet another embodiment, the coil includes an inner periphery and an outer periphery, and the first and second leads connect to the coil at the outer periphery. In yet another embodiment, the first core includes a base and upstanding side walls extending from the base, and a gap extends between the base and a distal end of the post. In another embodiment, the post is substantially cylindrical. In another embodiment, the first core further includes a main body overlying the coil, the main body having an outer periphery larger than the post.
In another aspect, a low profile magnetic component has been described that includes a first core fabricated from a magnetic permeable material, wherein the first core includes a receptacle and a post projecting upwardly into the receptacle. The component includes a preformed coil received in the receptacle of the first core and on the post extending through an inner periphery of the coil. The coil includes at least a first lead, a second lead and plurality of turns therebetween.
In one embodiment, the component includes a second core fabricated form a magnetic permeable material, wherein the second core is fabricated independently from the first core and overlying the coil. In another embodiment, the second core includes a substantially flat body having an outer periphery larger than the post. In another embodiment, the first core includes surface mount terminations for the coil leads. In another embodiment, the component includes first and second conductive clips mounted to the first core and receiving the first and second coil leads, respectively. In another embodiment, the coil further comprises third and fourth leads. In another embodiment, the coil includes an inner periphery and an outer periphery, wherein each of the first and second leads connect to the coil at the outer periphery. In another embodiment, the component is a power inductor. In another embodiment, the first core includes a base and upstanding side walls extending from the base, and a gap extends between the second core and a distal end of the post.
In another aspect, a low profile magnetic component which includes a preformed coil, first means for providing a first magnetic core and for receiving the preformed coil and second means for providing a second magnetic core. The second means are provided separate from the means for providing a first magnetic core and enclosing the preformed coil within the first means. The component also includes means for centering the coil with respect to the core, the centering means being integrally provided in one of the first and second magnetic cores for providing a magnetic core.
In another aspect, a method of manufacturing a low profile magnetic component has been described which includes the steps of: (a) providing a first core fabricated from a magnetic permeable material, wherein the first core includes a receptacle; (b) providing a second core fabricated from a magnetic permeable material, wherein the second core is fabricated independently from the first core; and (c) providing a coil formed independently from the first and second cores, wherein the coil includes, first and second leads and a plurality of turns therebetween, and wherein the receptacle formed in the first core receives the coil and at least one of the first and second cores include a projection fitted into the core.
In another aspect, a low profile magnetic component has been described that includes a first core, wherein the first core is fabricated from a magnetic permeable material. The first core includes a receptacle formed therein. The magnetic component also includes a second core, wherein the second core is fabricated from a magnetic permeable material and is fabricated independent from said first core. The component includes a coil formed independent from the first and second cores, wherein the coil includes a first lead, a second lead, and a plurality of turns therebetween. The coil includes an inner periphery and an outer periphery, wherein the first and second leads connect to the coil at the outer periphery. The component also includes first and second conductive clips for receiving the first and second leads, respectively. The receptacle formed in the first core is adapted to receive the coil and wherein at least one of the first core and the second core include a projection, said projection adapted to be inserted into the coil.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2007 1 0111096 | Jun 2007 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
2350724 | Camilli | Jun 1944 | A |
2714709 | Diebold | Aug 1955 | A |
3284748 | Matsumoto | Nov 1966 | A |
4224500 | Cruickshank et al. | Sep 1980 | A |
4523170 | Huth, III | Jun 1985 | A |
5506560 | Takeuchi et al. | Apr 1996 | A |
5821844 | Tominaga et al. | Oct 1998 | A |
5912609 | Usui et al. | Jun 1999 | A |
6650218 | Fushimi | Nov 2003 | B1 |
6791446 | Sato et al. | Sep 2004 | B2 |
7567161 | Monma | Jul 2009 | B2 |
20030184423 | Holdahl et al. | Oct 2003 | A1 |
20040189430 | Matsutani et al. | Sep 2004 | A1 |
20040209120 | Inoue et al. | Oct 2004 | A1 |
20060186975 | Wang | Aug 2006 | A1 |
20060186978 | Kawarai | Aug 2006 | A1 |
20070057755 | Suzuki et al. | Mar 2007 | A1 |
20070273465 | Feng et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
1941227 | Apr 2007 | CN |
1288975 | Mar 2003 | EP |
1288975 | Apr 2003 | EP |
200293634 | Mar 2002 | JP |
2008152493 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080310051 A1 | Dec 2008 | US |