Miniature telephoto lens module and a camera utilizing such a lens module

Information

  • Patent Grant
  • 12216246
  • Patent Number
    12,216,246
  • Date Filed
    Monday, April 22, 2024
    9 months ago
  • Date Issued
    Tuesday, February 4, 2025
    3 days ago
Abstract
The presently disclosed subject matter includes a mobile electronic comprising an integrated camera, comprising a Wide camera unit comprising a Wide lens unit, and a Telephoto camera unit comprising a telephoto lens unit, the telephoto lens unit and the wide lens unit having respectively TTL/EFL ratios smaller and larger than 1 and defining separate telephoto and wide optical paths.
Description
TECHNOLOGICAL FIELD

The present invention is generally in the field of imaging techniques, and relates to a camera and mobile electronic devices utilizing such a camera.


BACKGROUND

Digital camera modules are currently being incorporated into a variety of portable electronic devices. Such devices include for example mobile phones (e.g. smartphones), personal data assistants (PDAs), computers, and so forth. Digital camera modules for use in portable devices have to meet certain requirements such as good quality imaging, small footprint, as well as low weight.


Several techniques for small digital camera modules providing good quality imaging are described in WO14083489 and WO14199338, both assigned to the assignee of the present application.


According to the technique described in WO14083489, a multi-aperture imaging system comprises a first camera with a first sensor that captures a first image and a second camera with a second sensor that captures a second image. The two cameras have either identical or different FOVs. Either image may be chosen to be a primary or an auxiliary image, based on a zoom factor. An output image with a point of view determined by the primary image is obtained by registering the auxiliary image to the primary image.


The technique described in WO14199338 relates to a dual-aperture zoom digital camera operable in both still and video modes. The camera includes Wide and Tele imaging sections with respective lens/sensor combinations and image signal processors and a camera controller operatively coupled to the Wide and Tele imaging sections. The controller is configured to combine in still mode at least some of the Wide and Tele image data to provide a fused output image from a particular point of view, and to provide, without fusion, continuous zoom video mode output images, each output image having a given output resolution. The video mode output images are provided with a smooth transition when switching between a lower zoom factor (ZF) value and a higher ZF value or vice versa. At the lower ZF the output resolution is determined by the Wide sensor, while at the higher ZF value the output resolution is determined by the Tele sensor.


General Description

There is a need in the art for a novel camera module for use in modern portable electronic devices, such as smart phones, laptops, notepads, etc.


As noted above, the requirements for the camera modules for use in such devices are related to the size, weight and image quality of the camera. Moreover, these requirements become more essential when the camera module is to be installed within the portable device, unlike other external camera units attachable to the portable device. In the case of an internal (integral) camera unit, the dimensions of the camera optics should be as small as possible in order to be suitable to operate with commonly used detectors and to fit the thickness of the device in which the camera is installed (preferably without protruding from the device's casing), while the trend in such devices is to reduce the thickness as much as possible.


This problem is even more crucial when using, in a portable device, a lens with a long length with a fixed and relatively high zooming effect. Considering for example the dual-aperture zoom digital camera described in above-indicated publications WO14083489 and WO14199338 mentioned above, it utilizes Wide and Tele imaging channels which provide advanced imaging capabilities such as zoom and image quality by image fusion between the two channels.


One of the problems with dual-aperture zoom cameras relates to the dimensions (heights) of Wide and Tele cameras along the optical axis. Such dimensions depend on total track lengths (TTLs) of the Tele and Wide lenses used in the respective imaging channels.


As schematically illustrated in FIG. 1B, the TTL is typically defined as the maximal distance between the object-side surface of the lens module and an image plane IP defined by such a lens module (where the sensing surface of a camera detector is placed). In most miniature lenses, the TTL is larger than the effective focal length (EFL) of the lens module, which is equal to the distance between the effective principal plane of the lens and its focal plane (which substantially coincides with image plane IP).


With regard to the term effective principal plane, the following should be understood. Generally, the lens (or lens module) has front and rear principal planes, which have the property that a ray emerging from the lens appears to have crossed the rear principal plane at the same distance from the axis that that ray appeared to cross the front principal plane, as viewed from the front of the lens. This means that the lens can be treated as if all of the refraction occurred at the principal planes. The principal planes are crucial in defining the optical properties of the system, since it is the distance of the object and image from the front and rear principal planes that determine the magnification of the system. The principal points are the points where the principal planes cross the optical axis.


Considering dual-aperture optical zoom in a mobile phone (e.g. a smartphone) with the typically used lenses, i.e. typical TTL/EFL ratio of about 1.3, the Wide and Tele lenses would have TTLs of about 4.55 mm and 9.1 mm, respectively. This will result in undesirably long camera modules for use in such a smartphone device.


Further, the difference in the TTLs of the Wide and Tele lens modules can cause shadowing and light-blocking problems. Reference is made to FIG. 1A schematically illustrating that part of incoming light incident on the “higher” lens does not reach the “shorter” lens. In this connection, one should keep in mind that a distance between the Tele and Wide lens modules should be as small as possible to meet the overlapping/common FOVs as well as footprint requirements for the camera unit in a portable device.


Another part of the presently disclosed subject matter is associated with the implementation of standard optical image stabilization (OIS) in a dual-aperture zoom camera. Standard OIS compensates for camera tilt (“CT”) by a parallel-to-the image sensor (exemplarily in the X-Y plane) lens movement (“LMV”). Camera tilt causes image blur. The amount of LMV (in mm) needed to counter a given camera tilt depends on the cameras lens EFL, according to the relation LMV=CT*EFL where “CT” is in radians and EFL is in mm. Since, as shown above, a dual-aperture zoom camera may include two lenses with significantly different EFLs, it is impossible to move both lenses together and achieve optimal tilt compensation for both Tele and Wide cameras. That is, since the tilt is the same for both cameras, a movement that will cancel the tilt for the Wide camera will be insufficient to cancel the tilt for the Tele camera. Similarly, a movement that will cancel the tilt for the Tele camera will over-compensate the tilt cancellation for the Wide camera. Assigning a separate OIS actuator to each camera can achieve simultaneous tilt compensation, but at the expense of a complicated and costly camera system.


Thus, for both a single-aperture or multi-aperture (dual) camera unit, the use of a telephoto lens would be advantageous, as such a telephoto lens provides reduced TTL while enabling to maintain the relatively high EFL required for the Tele lens, i.e. for telephoto lens TTL<EFL. However, the dimensions of conventional lenses in which the telephoto condition is satisfied do not allow them to be used as integral lenses fully embedded in a thin portable device. The telephoto lens module, in order to be used as an integral lens in a modern portable device, has to satisfy the telephoto condition (i.e. TTL<EFL) while the lens module is to be as short as possible (along the optical path of light passing through it) allowing it to be fully fitted within the portable device casing.


Accordingly, a miniature telephoto lens module is disclosed which is designed with the desired dimensions to enable its integration within a portable device. According to some examples of the presently disclosed subject matter, the miniature telephoto lens module (or telephoto lens unit) is designed to be completely integrated within the casing of a conventional Smartphone, i.e. without protruding therefrom. The disclosed telephoto lens module has a total track lens (TTL) smaller than an effective focal lens (EFL) thereof, and is configured such that its dimension along the optical axis is desirably small, i.e. about 4-15 mm or less (e.g. suitable to be fitted in a portable device having a casing as small as 4 mm).


The telephoto lens unit comprises multiple lens elements made of at least two different polymer materials having different Abbe numbers. The multiple lens elements comprise a first group of at least three lens elements being a telephoto lens assembly, and a second group of at least two lens elements being a field lens assembly.


The first group of lens elements comprises, in order from the object plane to the image plane along an optical axis of the telephoto lens unit: a first lens having positive optical power and a pair of second and third lenses having together negative optical power such that said telephoto lens assembly provides a telephoto optical effect of said telephoto lens unit and wherein said second and third lenses are each made of one of said at least two different polymer materials having a different Abbe number, for reducing chromatic aberrations of said telephoto lens. The second group of lens elements is configured to correct field curvature of said telephoto lens assembly, and said field lens module comprises two or more of said lens elements made of the different polymer materials respectively having different Abbe numbers, and configured to compensate for residual chromatic aberrations of said telephoto lens assembly dispersed during light passage through an effective gap located between the telephoto and field lens assemblies. The effective gap is larger than ⅕ of the TTL of the telephoto lens unit, thereby allowing sufficient field separation for reducing chromatic aberration.


Various examples disclosed herein include an optical lens unit comprising, in order from an object side to an image side: a first lens element with positive refractive power having a convex object-side surface, a second lens element with negative refractive power having a thickness d2 on an optical axis and separated from the first lens element by a first air gap, a third lens element with negative refractive power and separated from the second lens element by a second air gap, a fourth lens element having a positive refractive power and separated from the third lens element by an effective third air gap, and a fifth lens element having negative refractive power, separated from the fourth lens element by an effective fourth air gap, the fifth lens element having a thickness d5 on the optical axis.


An optical lens unit may further include a stop, positioned before the first lens element, a glass window disposed between the image-side surface of the fifth lens element and an image sensor with an image plane on which an image of the object is formed.


Each lens element has two surfaces, each surface having a respective diameter. The largest diameter among all lens elements is defined as an “optical diameter” of the lens assembly.


As disclosed herein, TTL is defined as the distance on an optical axis between the object-side surface of the first lens element and an image plane where the image sensor is placed. “EFL” has its regular meaning, as mentioned above. In all embodiments, TTL is smaller than the EFL, i.e. the TTL/EFL ratio is smaller than 1.0. In some embodiments, the TTL/EFL ratio is smaller than 0.9. In an embodiment, the TTL/EFL ratio is about 0.85. According to some examples the lens assembly has an F number F #<3.2.


According to an example disclosed herein, the focal length of the first lens element f1 is smaller than TTL/2, the first, third and fifth lens elements have each an Abbe number (“Vd”) greater than 50, the second and fourth lens elements have each an Abbe number smaller than 30, the first air gap is smaller than d2/2, the effective third air gap is greater than TTL/5 and the effective fourth air gap is smaller than 1.5d5TTL/50. In some embodiments, the surfaces of the lens elements may be aspheric.


In the optical lens unit mentioned above, the first lens element with positive refractive power allows the TTL of the lens unit to be favorably reduced. The combined design of the first, second and third lens elements plus the relative short distances between them enable a long EFL and a short TTL. The same combination, together with the high dispersion (low Vd) for the second lens element and low dispersion (high Vd) for the first and third lens elements, also helps to reduce chromatic aberration. In particular, the ratio TTL/EFL<1.0 and minimal chromatic aberration are obtained by fulfilling the relationship 1.2×|f3|>|f2|>1.5×f1, where “f” indicates the lens element effective focal length and the numerals 1, 2, 3, 4, 5 indicate the lens element number.


The relatively large effective gap between the third and the fourth lens elements plus the combined design of the fourth and fifth lens elements assist in bringing all fields' focal points to the image plane. Also, because the fourth and fifth lens elements have different dispersions and have respectively positive and negative power, they help in minimizing chromatic aberration.


The telephoto lens module disclosed herein may be advantageously adapted to be incorporated in a mobile phone camera that uses a typical ¼′ or ⅓′ image sensor. For example, to be competitive with known mobile phone cameras with ¼′ image sensors, it would be advantageous for the TTL of the telephoto lens module to be smaller than 5.5 mm and the largest lens diameter to be smaller than 4 mm. To be competitive with known mobile phone cameras with ⅓′ image sensors, it would be advantageous for the TTL of the telephoto lens module to be smaller than 6.5 mm and the largest lens diameter to be smaller than 5 mm.


Accordingly to an example of the presently disclosed subject matter there is provided an optical lens unit configured to provide an image on an entire area of a ¼″ image sensor, the lens unit comprising five lens elements and having a TTL smaller than 5.5 mm, an EFL larger than 5.9 mm, and an optical diameter smaller than 4 mm.


Accordingly in another example of the presently disclosed subject matter there is provided an optical lens unit operative to provide an image on an entire area of a ⅓″ image sensor, the lens unit comprising five lens elements and having a TTL smaller than 6.2 mm, an EFL larger than 6.8 mm, and an optical diameter smaller than 5 mm.


Also, as mentioned above, according to the presently disclosed subject matter it is suggested to have all lens elements made of polymer material such as plastic. While lenses made of polymer material are advantageous for reducing the price tag of the telephoto lens module as well as its weight, there are very few polymer materials which are suitable for this purpose. This is different to glass lenses which can be made of a variety of different glass materials, each characterized by a different Abbe number. The scarcity in polymer materials presents a challenge when designing lenses for a telephoto lens module. This challenge is at least partly due to the limitation in possible combinations of different lenses with different Abbe numbers which can be used for the purpose of correcting field curvature and compensating for chromatic aberrations.


Thus, according to one aspect of the presently disclosed subject matter there is provided a mobile electronic device comprising an integrated camera, wherein the camera comprises a Wide camera unit comprising a Wide lens unit, and a Telephoto camera unit comprising a telephoto lens unit, the telephoto lens unit and the wide lens unit having respectively TTL/EFL ratios smaller and larger than 1 and defining separate telephoto and wide optical paths.


In addition to the above features, the mobile electronic device according to this aspect of the presently disclosed subject matter can optionally comprise one or more of features (i) to (xvi) below, in any desired combination or permutation:

    • (i). wherein light receiving outer surfaces of the Wide and Telephoto lens units are located substantially in the same plane, thereby reducing shadowing and light blocking effects therebetween.
    • (ii). wherein the Wide and Telephoto camera units are mounted on separate printed circuit boards.
    • (iii). wherein the printed circuit boards are located in different spaced-apart substantially parallel planes.
    • (iv). wherein the Wide and Telephoto camera units are mounted directly on a single printed circuit board.
    • (v). wherein the Wide and Telephoto camera units are spaced from one another a distance d of about 1 mm.
    • (vi). wherein the telephoto lens unit is made of at least two polymer materials.
    • (vii). wherein the telephoto lens has a total track lens (TTL) not exceeding 15 mm.
    • (viii). wherein the telephoto lens has TTL less than 10 mm.
    • (ix). wherein the telephoto lens unit comprises multiple lens elements made of at least two different polymer materials having different Abbe numbers, the multiple lens elements comprise a first group of at least three lens elements configured to form a telephoto lens assembly, and a second group of at least two lens elements configured to form a field lens assembly, wherein the field lens assembly is spaced from the telephoto lens assembly by a predetermined effective gap.
    • (x). wherein said at least two different polymer materials comprise at least one plastic material with the Abbe number larger than 50, and at least one plastic material with the Abbe number smaller than 30.
    • (xi). wherein the first group of lens elements comprises, in order from an object plane to an image plane along an optical axis of the telephoto lens unit: a first lens having positive optical power and a pair of second and third lenses having together negative optical power such that said telephoto lens assembly provides telephoto optical effect of said telephoto lens unit, and said second and third lenses are each made of one of said at least two different polymer materials having a different Abbe number, for reducing chromatic aberrations of said telephoto lens; and
      • the second group of lens elements is configured to correct field curvature of said telephoto lens assembly, and comprises two or more of said lens elements made of the different polymer materials respectively having different Abbe numbers, and configured to compensate for residual chromatic aberrations of said telephoto lens assembly dispersed during light passage through said effective gap between the telephoto and field lens assemblies.
    • (xii). wherein the first, third and fifth lens elements have each an Abbe number greater than 50, and the second and fourth lens elements have each an Abbe number smaller than 30.
    • (xiii). wherein the predetermined effective gap is equal to or larger than ⅕ of the TTL of the telephoto lens unit.
    • (xiv). wherein the lens elements of the field lens assembly are spaced from one another an effective air gap smaller than 1/50 of the TTL of the telephoto lens unit.
    • (xv). wherein the telephoto lens unit has a TTL smaller than 5.5 mm, an effective focal length (EFL) larger than 5.9 mm, and an optical diameter smaller than 4 mm, thereby enabling to provide an image on an entire area of a ¼″ image sensor.
    • (xvi). wherein the telephoto lens unit has a TTL smaller than 6.2 mm, an effective focal length (EFL) larger than 6.8 mm, and an optical diameter smaller than 5 mm, thereby enabling to provide an image on an entire area of a ⅓″ image sensor.


According to another aspect of the presently disclosed subject matter there is provided a camera for integrating in a mobile electronic device, the camera comprising a Wide camera unit and a Telephoto camera unit comprising respectively a wide lens unit and a telephoto lens unit having TTL/EFL ratios larger and smaller than 1, respectively, and defining wide and telephoto optical paths.


Wherein according to some examples the lens elements of at least the telephoto lens unit are made of one or more polymer materials.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:



FIG. 1A is a schematic illustration demonstrating shadowing and light-blocking problems caused by height differences between Wide and Tele cameras in a dual-aperture camera;



FIG. 1B is a schematic illustration of a mobile phone device (constituting a portable electronic device) utilizing a camera unit as disclosed herein which is fully integrated inside the smartphone device;



FIG. 1C is a schematic illustration of a telephoto lens unit according to the presently disclosed subject matter;



FIG. 2A is a schematic illustration of a specific configuration of the telephoto lens unit, according to a first example of the presently disclosed subject matter;



FIG. 2B shows a graph plotting the modulus of the optical transfer function (MTF) vs. focus shift of the entire optical lens unit of FIG. 2A for various fields;



FIG. 2C shows a graph plotting the distortion vs. field angle (+Y direction) for the lens unit of FIG. 2A;



FIG. 3A is a schematic illustration of another possible configuration of the telephoto lens unit, according to a first example of the presently disclosed subject matter;



FIG. 3B shows a graph plotting the MTF vs. focus shift of the entire optical lens assembly for various fields in the lens unit of FIG. 3B, according to the second example of the presently disclosed subject matter;



FIG. 3C shows a graph plotting the distortion +Y in percent for the lens unit of FIG. 3A:



FIG. 4A is a schematic illustration of a specific configuration of the telephoto lens unit, according to a first example of the presently disclosed subject matter;



FIG. 4B shows a graph plotting the MTF vs. focus shift of the entire optical lens system for various fields in the lens unit of FIG. 4A;



FIG. 4C shows a graph plotting the distortion +Y in percent for the lens unit of FIG. 4A;



FIG. 5 is a schematic illustration showing the concept of an effective air gap between adjacent lenses in an optical lens unit, according to the presently disclosed subject matter;



FIG. 6A is a schematic illustration, in perspective cross section, of an example of a dual-aperture zoom camera, with each camera on a separate printed circuit board (PCB), according to the presently disclosed subject matter;



FIG. 6B is a schematic illustration, in perspective cross section, of another example of a dual-aperture zoom camera, with each camera on a separate PCB, according to the presently disclosed subject matter;



FIG. 7 is a schematic illustration, in perspective cross section, of yet another example of a dual-aperture zoom camera, where both cameras are mounted on a single PCB, according to the presently disclosed subject matter;



FIG. 8 is a schematic illustration of an example of a dual-aperture zoom camera that includes an OIS mechanism, according to the presently disclosed subject matter; and



FIG. 9 shows schematically a functional block diagram of the camera example of FIG. 8, according to the presently disclosed subject matter.





DETAILED DESCRIPTION OF EMBODIMENTS

The present invention includes novel configuration of a lens unit in a portable camera, advantageously applicable in a portable electronic device. This is schematically illustrated in FIG. 1B. In this example, such a portable electronic device 10 is constituted by a mobile phone device (e.g. smartphone). The mobile device is typically a few millimeters thick, e.g. 4 mm-15 mm.


However, as explained above and exemplified further below, the problems solved by the technique disclosed herein are relevant for any modern electronic device equipped with a camera 15 and suitable to be implemented in any such device. This is so since any modern electronic device of the kind specified (i.e. a device including an integral camera unit) is to be as slim as possible, as light as possible, and is to acquire pictures with as good quality as possible.


Modern cameras typically require zooming functions. When such a camera is used in an electronic device, such as a mobile phone device, the zooming function is often implemented with static optics. The problems which may arise when trying to incorporate Wide and Tele lenses into a common housing due to the difference in their heights are described above with reference to FIG. 1A.


As mentioned above, the presently disclosed subject matter includes a novel mobile electronic device 10 which includes an integrated camera unit 15 which is mounted inside the device casing 14. The camera 15 includes at least one telephoto lens unit (not shown here) which is made of polymer materials. The telephoto lens unit is configured such that its total track lens (TTL) is less than 15 mm and even less than 10 mm, e.g. less than 6 mm or even less than 4 mm. Thus, enabling the camera to be fully integrated in the portable device (substantially not protruding from the device casing).


Reference is made to FIG. 1C showing schematically the configuration of a telephoto lens unit 20 of the present invention. The telephoto lens unit 20 is composed of multiple lens elements made of different polymer materials, i.e. materials having different Abbe numbers. The multiple lens elements are configured and arranged to define a telephoto lens assembly 22A and a field lens assembly 22B arranged along an optical axis OA with a predetermined effective gap G between them (as will be described more specifically further below). The telephoto lens assembly 22A is configured to provide the telephoto optical effect of the telephoto lens unit 20. The field lens assembly 22B spaced from the telephoto lens assembly 22A by the predetermined effective gap G is configured for correcting field curvature of the telephoto lens assembly 22A and to compensate for residual chromatic aberrations of the telephoto lens assembly dispersed during light passage through the effective gap G.


The telephoto lens unit 20 is characterized by a total track lens (TTL) and an effective focal lens (EFL) such that TTL<EFL. This will be exemplified further below. According to the invention, the effective gap G between assemblies 22A and 22B is selected to be larger than TTL/5 of the telephoto lens unit 22A, thereby enabling correction of field curvature of telephoto lens assembly 22A by the field lens assembly 22B.


The telephoto lens assembly 22A includes three lens elements (generally three or more) L1, L2, L3 (which are shown here schematically and not to scale), where lens L1 has positive optical power and lenses L2 and L3 have together negative optical power. Lenses L2 and L3 are made of the first polymer material having a first Abbe number selected for reducing chromatic aberrations of the telephoto lens assembly 22A. The field lens assembly 22B includes two (or more) lens elements L4 and L5 which are made of different polymer materials respectively having different Abbe numbers. These lenses are configured to compensate for residual chromatic aberrations of the telephoto lens assembly 22A dispersed during light passage through the effective gap G between the 22A and 22B.


Lenses L1-L5 can be made for example of two plastic materials, one having an Abbe number greater than 50 and the other—smaller than 30. For example, Lenses L1, L3 and L5 are made of plastic with an Abbe number greater than 50, and lenses L2 and L4 are made of plastic having an Abbe number smaller than 30.


The following are several specific, but non-limiting, examples of the implementation and operation of the telephoto lens unit of the invention described above with reference to FIG. 1C. In the following description, the shape (convex or concave) of a lens element surface is defined as viewed from the respective side (i.e. from an object side or from an image side).



FIG. 2A shows a schematic illustration of an optical lens unit 100, according to a first example of the presently disclosed subject matter. FIG. 2B shows the MTF vs. focus shift of the entire optical lens unit for various fields in the lens unit configuration 100. FIG. 2C shows the distortion +Y in percent vs. field.


According to the example illustrated in FIG. 2A, lens unit 100 includes, in order from an object side to an image side, a first plastic lens element 102 (also referred to as “L1”) with positive refractive power having a convex object-side surface 102a and a convex or concave image-side surface 102b; a second plastic lens element 104 (also referred to as “L2”) with negative refractive power and having a meniscus convex object-side surface 104a, with an image side surface marked 104b; a third plastic lens element 106 (also referred to as “L3”) with negative refractive power having a concave object-side surface 106a with an inflection point and a concave image-side surface 106b. These lens elements define together the telephoto lens assembly (22A in FIG. 1C). Further provided in lens unit 100 is a fourth plastic lens element 108 (also referred to as “L4”) with positive refractive power having a positive meniscus, with a concave object-side surface marked 108a and an image-side surface marked 108b; and a fifth plastic lens element 110 (also referred to as “L5”) with negative refractive power having a negative meniscus, with a concave object-side surface marked 110a and an image-side surface marked 110b. These two lenses define together the field lens assembly (22B in FIG. 1C). The optical lens unit 100 may further optionally include a stop element 101. The telephoto lens unit 100 defines an image plane 114 in which image sensor(s) is/are located, which is not shown here. Also, as exemplified in the figure, an optional glass window 112 is disposed between the image-side surface 110b of fifth lens element 110 and the image plane 114.


In the example of the telephoto lens unit 100, all lens element surfaces are aspheric. Detailed optical data is shown in Table 1, and aspheric surface data is shown in Table 2, wherein the units of the radius of curvature (R), lens element thickness and/or distances between elements along the optical axis and diameter are expressed in mm. “Nd” is the refraction index. The equation of the aspheric surface profiles is expressed by:








z
=



cr





2



1
÷


1
-


(

1
+
k

)



c





2




r





2







+



α
1



r





2



+


α
2



r





4



+


α
3



r





6



+


α
4



r





8



+


α
5



r





10



+


α
6



r





12



+


α
7



r





14









where r is the distance from (and is perpendicular to) the optical axis, k is the conic coefficient, c=1/R where R is the radius of curvature, and a are coefficients given in Table 2.


In the equation above as applied to the telephoto lens unit, coefficients α1 and α7 are zero. It should be noted that the maximum value of r “max r”=Diameter/2. It should also be noted that in Table 1 (and in Tables 3 and 5 below), the distances between various elements (and/or surfaces) are marked “Lmn” (where m refers to the lens element number, n=1 refers to the element thickness and n=2 refers to the air gap to the next element) and are measured on the optical axis z, wherein the stop is at z=0. Each number is measured from the previous surface. Thus, the first distance-0.466 mm is measured from the stop to surface 102a, the distance L11 from surface 102a to surface 102b (i.e. the thickness of first lens element 102) is 0.894 mm, the air gap L12 between surfaces 102b and 104a is 0.020 mm, the distance L21 between surfaces 104a and 104b (i.e. thickness d2 of second lens element 104) is 0.246 mm, etc. Also, L21=d2 and L51=d5. The lens elements in Tables 1 and 2 (as well as in Tables 3-6) are designed to provide an image on an entire ⅓″ sensor having dimensions of approximately 4.7×3.52 mm. The optical diameter in all of these lens assemblies is the diameter of the second surface of the fifth lens element.














TABLE 1







Radius R
Distances

Diameter


#
Comment
[mm]
[mm]
Nd/Vd
[mm]




















1
Stop
Infinite
−0.466

2.4


2
L11
1.5800
0.894
1.5345/57.095
2.5


3
L12
−11.2003
0.020

2.4


4
L21
33.8670
0.246
1.63549/23.91 
2.2


5
L22
3.2281
0.449

1.9


6
L31
−12.2843
0.290
1.5345/57.095
1.9


7
L32
7.7138
2.020

1.8


8
L41
−2.3755
0.597
1.63549/23.91 
3.3


9
L42
−1.8801
0.068

3.6


10
L51
−1.8100
0.293
1.5345/57.095
3.9


11
L52
−5.2768
0.617

4.3


12
Window
Infinite
0.210
1.5168/64.17 
3.0


13

Infinite
0.200

3.0






















TABLE 2






Conic







#
coefficient k
α2
α3
α4
α5
α6





















2
−0.4668
 7.9218E−03
2.3146E−02
−3.3436E−02
2.3650E−02
−9.2437E−03


3
−9.8525
 2.0102E−02
2.0647E−04
 7.4394E−03
−1.7529E−02 
 4.5206E−03


4
10.7569
−1.9248E−03
8.6003E−02
 1.1676E−02
−4.0607E−02 
 1.3545E−02


5
1.4395
 5.1029E−03
2.4578E−01
−1.7734E−01
2.9848E−01
−1.3320E−01


6
0.0000
 2.1629E−01
4.0134E−02
 1.3615E−02
2.5914E−03
−1.2292E−02


7
−9.8953
 2.3297E−01
8.2917E−02
−1.2725E−01
1.5691E−01
−5.9624E−02


8
0.9938
−1.3522E−02
−7.0395E−03 
 1.4569E−02
−1.5336E−02 
 4.3707E−03


9
−6.8097
−1.0654E−01
1.2933E−02
 2.9548E−04
−1.8317E−03 
 5.0111E−04


10
−7.3161
−1.8636E−01
8.3105E−02
−1.8632E−02
2.4012E−03
−1.2816E−04


11
0.0000
−1.1927E−01
7.0245E−02
−2.0735E−02
2.6418E−03
−1.1576E−04









Lens unit 100 provides a field of view (FOV) of 44 degrees, with EFL=6.90 mm, F #=2.80 and TTL of 5.904 mm. Thus and advantageously, the ratio TTL/EFL=0.855. Advantageously, the Abbe number of the first, third and fifth lens element is 57.095. Advantageously, the first air gap between lens elements 102 and 104 (the gap between surfaces 102b and 104a) has a thickness (0.020 mm) which is less than a tenth of thickness d2 (0.246 mm). Advantageously, the Abbe number of the second and fourth lens elements is 23.91. Advantageously, an effective third air gap G (see below with reference to Table 9) between lens elements 106 and 108 (i.e. the telephoto and field lens assemblies) is greater than TTL/5. Advantageously, an effective fourth air gap (see below with reference to Table 9) between lens elements 108 and 110 is smaller than TTL/50.


The focal length (in mm) of each lens element in lens unit 100 is as follows: f1=2.645, f2=−5.578, f3=−8.784, f4=9.550 and f5=−5.290. The condition 1.2×|f3|>|f2|>1.5×f1 is clearly satisfied, as 1.2×8.787>5.578>1.5×2.645. f1 also fulfills the condition f1<TTL/2, as 2.645<2.952.



FIG. 3A shows a schematic illustration of an optical lens unit 200, according to another example of the presently disclosed subject matter. FIG. 3B shows the MTF vs. focus shift of the entire optical lens system for various fields in embodiment 200. FIG. 3C shows the distortion +Y in percent vs. field.


According to the example illustrated in FIG. 3A, lens unit 200 comprises, in order from an object side to an image side: an optional stop 201; a telephoto lens assembly including a first plastic lens element 202 with positive refractive power having a convex object-side surface 202a and a convex or concave image-side surface 202b, a second plastic lens element 204 with negative refractive power, having a meniscus convex object-side surface 204a, with an image side surface marked 204b, and a third plastic lens element 206 with negative refractive power having a concave object-side surface 206a with an inflection point and a concave image-side surface 206b; and a field lens assembly including a fourth plastic lens element 208 with positive refractive power having a positive meniscus, with a concave object-side surface marked 208a and an image-side surface marked 208b, and a fifth plastic lens element 210 with negative refractive power having a negative meniscus, with a concave object-side surface marked 110a and an image-side surface marked 210b. The optical lens unit 200 further optionally includes a glass window 212 disposed between the image-side surface 210b of fifth lens element 210 and an image plane 214.


In the lens unit 200, all lens element surfaces are aspheric. Detailed optical data is given in Table 3, and the aspheric surface data is given in Table 4, wherein the markings and units are the same as in, respectively, Tables 1 and 2. The equation of the aspheric surface profiles is the same as for lens unit 100 described above.














TABLE 3







Radius R
Distances

Diameter


#
Comment
[mm]
[mm]
Nd/Vd
[mm]




















1
Stop
Infinite
−0.592

2.5


2
L11
1.5457
0.898
1.53463/56.18
2.6


3
L12
−127.7249
0.129

2.6


4
L21
6.6065
0.251
1.91266/20.65
2.1


5
L22
2.8090
0.443

1.8


6
L31
9.6183
0.293
1.53463/56.18
1.8


7
L32
3.4694
1.766

1.7


8
L41
−2.6432
0.696
1.632445/23.35 
3.2


9
L42
−1.8663
0.106

3.6


10
L51
−1.4933
0.330
1.53463/56.18
3.9


11
L52
−4.1588
0.649

4.3


12
Window
Infinite
0.210
 1.5168/64.17
5.4


13

Infinite
0.130

5.5






















TABLE 4






Conic







#
coefficient k
α2
α3
α4
α5
α6





















2
0.0000
−2.7367E−03 
2.8779E−04
−4.3661E−03
 3.0069E−03
−1.2282E−03 


3
−10.0119
4.0790E−02
−1.8379E−02 
 2.2562E−02
−1.7706E−02
4.9640E−03


4
10.0220
4.6151E−02
5.8320E−02
−2.0919E−02
−1.2846E−02
8.8283E−03


5
7.2902
3.6028E−02
1.1436E−01
−1.9022E−02
 4.7992E−03
−3.4079E−03 


6
0.0000
1.6639E−01
5.6754E−02
−1.2238E−02
−1.8648E−02
1.9292E−02


7
8.1261
1.5353E−01
8.1427E−02
−1.5773E−01
 1.5303E−01
−4.6064E−02 


8
0.0000
−3.2628E−02 
1.9535E−02
−1.6716E−02
−2.0132E−03
2.0112E−03


9
0.0000
1.5173E−02
−1.2252E−02 
 3.3611E−03
−2.5303E−03
8.4038E−04


10
−4.7688
−1.4736E−01 
7.6335E−02
−2.5539E−02
 5.5897E−03
−5.0290E−04 


11
0.00E+00
−8.3741E−02 
4.2660E−02
−8.4866E−03
 1.2183E−04
7.2785E−05









Lens unit 200 provides a FOV of 43.48 degrees, with EFL=7 mm, F #=2.86 and TTL=5.90 mm. Thus, advantageously, the ratio TTL/EFL=0.843. Advantageously, the Abbe number of the first, third and fifth lens elements is 56.18. The first air gap between lens elements 202 and 204 has a thickness (0.129 mm) which is about half the thickness d2 (0.251 mm). Advantageously, the Abbe number of the second lens element is 20.65 and of the fourth lens element is 23.35. Advantageously, the effective third air gap G between lens elements 206 and 208 is greater than TTL/5. Advantageously, the effective fourth air gap between lens elements 208 and 210 is smaller than TTL/50.


The focal length (in mm) of each lens element in lens unit 200 is as follows: f1=2.851, f2=−5.468, f3=−10.279, f4=7.368 and f5=−4.536. The condition 1.2×|f3|>|f2|>1.5×f1 is clearly satisfied, as 1.2×10.279>5.468>1.5×2.851. f1 also fulfills the condition f1<TTL/2, as 2.851<2.950.



FIG. 4A shows a schematic illustration of an optical lens unit 300, according to yet a further example of the presently disclosed subject matter. FIG. 4B shows the MTF vs. focus shift of the entire optical lens system for various fields in embodiment 300. FIG. 4C shows the distortion +Y in percent vs. field.


Lens unit 300 comprises, in order from an object side to an image side, an optional stop 301; a telephoto lens assembly including a first plastic lens element 302 with positive refractive power having a convex object-side surface 302a and a convex or concave image-side surface 302b, a second plastic lens element 204 with negative refractive power, having a meniscus convex object-side surface 304a, with an image side surface marked 304b, a third plastic lens element 306 with negative refractive power having a concave object-side surface 306a with an inflection point and a concave image-side surface 306b; and a field lens assembly including a fourth plastic lens element 308 with positive refractive power having a positive meniscus, with a concave object-side surface marked 308a and an image-side surface marked 308b, and a fifth plastic lens element 310 with negative refractive power having a negative meniscus, with a concave object-side surface marked 310a and an image-side surface marked 310b. Also, an optional glass window 312 may be disposed between the image-side surface 310b of fifth lens element 310 and an image plane 314.


According to the present example of lens unit 300, all lens element surfaces are aspheric. Detailed optical data is given in Table 5, and the aspheric surface data is given in Table 6, wherein the markings and units are the same as in, respectively, Tables 1 and 2. The equation of the aspheric surface profiles is the same as for lens units 100 and 200.














TABLE 5







Radius R
Distances

Diameter


#
Comment
[mm]
[mm]
Nd/Vd
[mm]




















1
Stop
Infinite
−0.38

2.4


2
L11
1.5127
0.919
1.5148/63.1
2.5


3
L12
−13.3831
0.029

2.3


4
L21
8.4411
0.254
1.63549/23.91
2.1


5
L22
2.6181
0.426

1.8


6
L31
−17.9618
0.265
 1.5345/57.09
1.8


7
L32
4.5841
1.998

1.7


8
L41
−2.8827
0.514
1.63549/23.91
3.4


9
L42
−1.9771
0.121

3.7


10
L51
−1.8665
0.431
 1.5345/57.09
4.0


11
L52
−6.3670
0.538

4.4


12
Window
Infinite
0.210
 1.5168/64.17
3.0


13

Infinite
0.200

3.0






















TABLE 6






Conic







#
coefficient k
α2
α3
α4
α5
α6





















2
−0.534
1.3253E−02
2.3699E−02
−2.8501E−02
1.7853E−02
−4.0314E−03


3
−13.473
3.0077E−02
4.7972E−03
 1.4475E−02
−1.8490E−02 
 4.3565E−03


4
−10.132
7.0372E−04
1.1328E−01
 1.2346E−03
−4.2655E−02 
 8.8625E−03


5
5.180
−1.9210E−03 
2.3799E−01
−8.8055E−02
2.1447E−01
−1.2702E−01


6
0.000
2.6780E−01
1.8129E−02
−1.7323E−02
3.7372E−02
−2.1356E−02


7
10.037
2.7660E−01
−1.0291E−02 
−6.0955E−02
7.5235E−02
−1.6521E−02


8
1.703
2.6462E−02
−1.2633E−02 
−4.7724E−04
−3.2762E−03 
 1.6551E−03


9
−1.456
5.7704E−03
−1.8826E−02 
 5.1593E−03
−2.9999E−03 
 8.0685E−04


10
−6.511
−2.1699E−01 
1.3692E−01
−4.2629E−02
6.8371E−03
−4.1415E−04


11
0.000
−1.5120E−01 
8.6614E−02
−2.3324E−02
2.7361E−03
−1.1236E−04









Lens unit 300 provides a FOV of 44 degrees, EFL=6.84 mm, F #=2.80 and TTL=5.904 mm. Thus, advantageously, the ratio TTL/EFL=0.863. Advantageously, the Abbe number of the first lens element is 63.1, and of the third and fifth lens elements is 57.09. The first air gap between lens elements 302 and 304 has a thickness (0.029 mm) which is about 1/10th the thickness d2 (0.254 mm). Advantageously, the Abbe number of the second and fourth lens elements is 23.91. Advantageously, the effective third air gap G between lens elements 306 and 308 is greater than TTL/5. Advantageously, the effective fourth air gap between lens elements 308 and 310 is smaller than TTL/50.


The focal length (in mm) of each lens element in embodiment 300 is as follows: f1=2.687, f2=−6.016, f3=−6.777, f4=8.026 and f5=−5.090. The condition 1.2×|f3|>|f2|>1.5×f1 is clearly satisfied, as 1.2×6.777>6.016>1.5×2.687. f1 also fulfills the condition f1<TTL/2, as 2.687<2.952.


Tables 7 and 8 provide respectively detailed optical data and aspheric surface data for a fourth embodiment of an optical lens system disclosed herein. The markings and units are the same as in, respectively, Tables 1 and 2. The equation of the aspheric surface profiles is the same as for lens systems 100, 200 and 300. The lens elements in Tables 7 and 8 are designed to provide an image on an entire ¼″ sensor having dimensions of approximately 3.66×2.75 mm.














TABLE 7







Radius R
Distances

Diameter


#
Comment
[mm]
[mm]
Nd/Vd
[mm]




















1
Stop
Infinite
−0.427

2.1


2
L11
1.3860
0.847
1.534809/55.66
2.2


3
L12
−8.5270
0.073

2.1


4
L21
11.1443
0.239
 1.639078/23.253
1.9


5
L22
1.8641
0.504

1.7


6
L31
19.7342
0.239
1.534809/55.66
1.7


7
L32
3.9787
1.298

1.7


8
L41
−3.3312
0.522
 1.639078/23.253
2.8


9
L42
−1.7156
0.079

3.1


10
L51
−1.7788
0.298
1.534809/55.66
3.5


11
L52
−12.6104
0.792

3.7


12
Window
Infinite
0.210
 1.5168/64.17
4.5


13

Infinite
0.177

4.6






















TABLE 8






Conic







#
coefficient k
α2
α3
α4
α5
α 6





















2
−0.326
 8.776E−03
2.987E−02
−6.001E−02
6.700E−02
−2.849E−02


3
−10.358
 4.266E−02
−2.240E−02 
 2.914E−02
−3.025E−02 
 3.108E−03


4
11.447
−3.257E−02
9.780E−02
−1.143E−02
−3.844E−02 
 1.005E−02


5
−0.026
−3.631E−02
2.928E−01
−2.338E−01
3.334E−01
−2.760E−02


6
0.000
 1.578E−01
−2.229E−02 
−4.991E−02
1.663E−01
−1.298E−01


7
3.860
 2.044E−01
5.451E−02
−3.199E−01
5.619E−01
−3.663E−01


8
4.094
 3.706E−02
−5.931E−02 
 4.662E−02
−4.654E−02 
 1.606E−02


9
−9.119
−7.980E−02
−1.376E−03 
 5.622E−03
−6.715E−03 
 2.127E−03


10
−12.777
−2.695E−01
1.894E−01
−5.690E−02
8.689E−03
−5.269E−04


11
0.000
−1.807E−01
1.278E−01
−4.504E−02
6.593E−03
−2.357E−04









The focal length (in mm) of each lens element according to this example is as follows: f1=2.298, f2=−3.503, f3=−9.368, f4=4.846 and f5=−3.910. The condition 1.2×|f3|>|f2|>1.5×f1 is clearly satisfied, as 1.2×9.368>3.503>1.5×2.298. f1 also fulfills the condition f1<TTL/2, as 2.298<2.64.


Generally, with regard to the effective air gap between the adjacent lens elements, the following should be noted.


In each one of the lens units exemplified above, the first three lens elements (L1, L2 and L3) achieve essentially a telephoto effect for all fields (angles of object orientation relative to the optical axis), i.e. achieve a strong concentration (by L1) followed by partial collimation (mainly by L2 but also by L3). The fact that all fields need to have essentially the same telephoto effect leads to relatively small distances (small air gaps) between the three lens elements, e.g. especially between L1 and L2 (air gap 1). L4 and L5 are mainly field lens elements for reducing field curvature, i.e. their main effect is to cause the focal point for all fields (where the object distance is approximately infinity) to reside on the sensor plane. To achieve this, it is advantageous that for every field, the corresponding rays hit L4 and L5 at different locations, thus enabling separate adjustment for every field (“field separation”).


The inventors have found that the desired fields' separation is obtainable in a lens unit design characterized by an “effective air gap” G between lenses L3 and L4 (between the telephoto and field lens assemblies, where a larger G leads to larger separation between the fields).



FIG. 5 illustrates the concept of the effective air gap between the two adjacent lens elements. First, an “air gap per field” Di-n is defined as the length of the nth field's chief ray along the respective chief ray between adjacent lens elements. Effective gap DLeff is then defined as the average of N air gaps per field for field angles α separated evenly between α=0 (for ray 1, air gap Df-1) to α=αmax (for ray N, air gap Df-n), where ray N hits the end pixel on the image sensor diagonal. In other words, between each pair of adjacent lens elements (e.g. between L3 and L4 and between L4 and L5):









D
Leff

=


(







n
=
1

N



D

f
-
n



)

/
N






In essence, the effective air gap between adjacent lens elements reflects an average effective distance between the two surfaces bounding the air gap between the two adjacent lens elements. Exemplarily, in FIG. 5 there are N=9 chief rays (and 9 related field air gaps) and the chief rays are distributed angularly evenly between α=0 for ray 1 and αmax for ray 9. At αmax, ray 9 hits the end pixel on the image sensor diagonal.


Table 9 shows data on TTL, DLeff-3, DLeff-4, and ratios between the TTL and the effective air gaps for each of lens units 100, 200 and 300 above DLeff-3 and DLeff-4 were calculated using 9 chief rays, as shown in FIG. 4.














TABLE 9





Embodiment
TTL
DLeff-3 = G
DLeff-4
DLeff-3/TTL
DLeff-4/TTL




















100
5.903
1.880
0.086
0.319
0.015


200
5.901
1.719
0.071
0.291
0.012


300
5.904
1.925
0.094
0.326
0.016


400
5.279
1.263
0.080
0.246
0.015










Using DLeff-3=G instead of the commonly used distance along the optical axis between L3 and L4 ensures better operation (for the purpose of reduction of field curvature) of lens elements L4 and L5 for all the fields. As seen in Table 9, good field separation may exemplarily be achieved if DLeff-3=G>TTL/5.


A compact optical design requires that the diameter of L5 be as small as possible while providing the required performance. Since the lens and camera footprint is determined by L5 diameter, a small effective air gap, DLeff-4, between lenses L4 and L5 is advantageous in that it allows a small diameter of lens L5 without degrading the optical performance. Effective air gap DLeff-4 is a better indicator of the L5 diameter than the commonly used air gap along the optical axis between L4 and L5. An adequately small L5 diameter may exemplarily be achieved if the effective air gap between the field lenses L4 and L5 is DLeff-4<TTL/50. It should be noted that an effective air gap DLeff can be calculated in principle using any combination of two or more chief rays (for example ray 1 and ray 9 in FIG. 4). However, the “quality” of DLeff calculation improves while considering an increased number of chief rays.


The miniature telephoto lens units described above with reference to FIGS. 1C and 2 to 5 are designed with a TTL shorter than EFL. Accordingly, due to shorter TTL, such lens units have a smaller field of view, as compared to standard mobile phone lens units. Therefore, it would be particularly useful to use such a telephoto lens unit as a Tele sub-camera lens unit in a dual aperture zoom camera. Such a dual aperture zoom camera is described in the above-mentioned WO14199338 of the same assignee as the present application.


As mentioned above, a problem associated with the use of conventional Wide and Tele lens modules in a camera is associated with the different lengths/heights of the lenses which can cause shadowing and light blocking effects. According to the presently disclosed subject matter it is suggested to eliminate or at least significantly reduce these shadowing and light blocking effects by replacing the conventional Tele lens module by the miniature telephoto lens unit described above in the dual aperture camera.


Thus, according to the presently disclosed subject matter, the problem discussed above posed by a difference in the TTL/EFL ratios of the conventional Tele and Wide lenses may be solved through use of a standard lens for the Wide camera (TTLW/EFLW>1.1, typically 1.3) and of a special Telephoto lens design for the Tele camera (TTLT/EFLT<1, e.g. 0.87), where the telephoto lens unit is configured as described above, providing the miniature telephoto lens unit.


Using the above described miniature telephoto lens unit enables to reduce the TTLT (according to one non-limiting example down to 7×0.87=6.09 mm) leading to a camera height of less than 7 mm (which is an acceptable height for a smartphone or any other mobile electronic device). The height difference between the telephoto lens unit and the Wide lens unit is also reduced to approximately 1.65 mm, thus reducing shadowing and light blocking problems.


According to some examples of a dual-aperture camera disclosed herein, the ratio “e”=EFLT/EFLW is in the range 1.3-2.0. In some embodiments, the ratio TTLT/TTLW<0.8e. In some embodiments, TTLT/TTLW is in the range 1.0-1.25. According to some examples disclosed herein, EFLW may be in the range 2.5-6 mm and EFLT may be in the range 5-12 mm.


Referring now to the figures, FIG. 6A shows schematically in perspective cross section an example of a dual-aperture zoom camera device 600. Camera device 600 includes two camera units 602 and 604. It should be understood that the two camera units may be associated with common or separate detectors (pixel matrix and their associated read out circuits). Thus, the two camera units are actually different in their optics, i.e. in the imaging channels defined by the wide and telephoto lens units. Each camera unit may be mounted on a separate PCB (respectively 605a and 605b) including the read out circuit, and includes a lens unit (respectively 606 and 608), and an image sensor including a pixel matrix (respectively 614 and 616), and an actuator (respectively 610 and 612) associated with a focusing mechanism. In this embodiment, the two PCBs lie in the same plane. It should be understood that in the embodiment where the readout circuits of the two imaging channels are in the same plane, a common PCB can be used, as will be described further below. The two camera units are connected by a case 618. For example, camera 602 includes a Wide lens unit and camera 604 includes a Telephoto lens unit, the TTLT of the lens unit defining the respective camera height H. For example, the Wide and Telephoto lens units provide respectively main and auxiliary optical/imaging paths, enabling to use the main image for interpreting the auxiliary image data.



FIG. 6B shows schematically, in perspective cross, another example of a dual-aperture zoom camera 600′ utilizing the principles of the invention. Camera 600′ is generally similar to the above-described camera 600, and the common components are shown in the figure in a self-explanatory manner and thus are not indicated by reference numbers. As in camera 600, in the camera 600′, the camera unit 602 (e.g. a Wide lens camera) and camera unit 604 (e.g. a Telephoto lens camera) are mounted on separate PCBs (respectively 605a and 605b). However, in contrast with camera 600, in camera 600′ the two PCBs lie in different planes. This enables the object side principal planes of the Wide and Telephoto lens units to be close one to the other, thus reducing the dependency of magnification factor in the two units on the object distance.


For example, camera dimensions for the cameras shown in FIGS. 6A and 6B may be as follows: a length L of the camera (in the Y direction) may vary between 13-25 mm, a width W of the camera (in the X direction) may vary between 6-12 mm, and a height H of the camera (in the Z direction, perpendicular to the X-Y plane) may vary between 4-12 mm. More specifically, considering a smartphone camera example disclosed herein, L=18 mm, W=8.5 mm and H=7 mm.



FIG. 7 shows schematically, in perspective cross section, yet another example of a dual-aperture zoom camera 700. Camera 700 is similar to cameras 600 and 600′ in that it includes two camera units 702 and 704 with respective lens units 706 and 708, respective actuators 710 and 712 and respective image sensors 714 and 716. However, in camera 700, the two camera units 702 and 704 are mounted on a single (common) PCB 705. The mounting on a single PCB and the minimizing of a distance “d” between the two camera units minimizes and may even completely avoid camera movement (e.g. associated with mishaps such as drop impact). In general, the dimensions of camera 700 may be in the same range as those of cameras 600 and 600′. However, for the same sensors and optics, the footprint W×L and the weight of camera 700 are smaller than that of cameras 600 and 600′. Mishaps such as drop impact may cause a relative movement between the two cameras after system calibration, changing the pixel matching between the Tele and Wide images and thus preventing fast reliable fusion of the Tele and Wide images. Therefore, such effects should preferably be eliminated.


As described above, the high-quality imaging is also associated with the implementation of standard optical image stabilization (OIS) in such a dual-aperture zoom camera. Standard OIS compensates for camera tilt (“CT”), i.e., image blur, by a parallel-to-the image sensor (exemplarily in the X-Y plane) lens movement (“LMV”). The amount of LMV (in millimeters) needed to counter a given camera tilt depends on the camera lens EFL, according to the relation:

LMV=CT*EFL,

where “CT” is in radians and EFL is in mm.


Since the Wide and telephoto lens units have significantly different EFLs, both lenses cannot move together and achieve optimal tilt compensation for both of the respective camera units. More specifically, since the tilt is the same for both camera units, a movement that will compensate for the tilt for the Wide camera unit will be insufficient to compensate for the tilt for the Telephoto camera unit, and vice versa. Using separate OIS actuators for the two camera units respectively can achieve simultaneous tilt compensation for both of them, but the entire system would be complex and costly, which is undesirable for portable electronic devices.


In this connection, reference is made to FIG. 8 which shows an example of a dual-aperture zoom camera 800 (similar to the above-described camera 700) that includes two camera units 802 and 804 mounted either on a single PCB 805 (as shown in this example) or on separate PCBs. Each camera unit includes a lens unit (respectively 806 and 808), an actuator (respectively 810 and 812) and an image sensor (respectively 814 and 816). The two actuators are rigidly mounted on a rigid base 818 that is flexibly connected to the PCB (or PCBs) through flexible elements 820. Base 818 is movable by an OIS mechanism (not shown) controlled by an OIS controller 902 (shown in FIG. 9). The OIS controller 902 is coupled to, and receives camera tilt information from a tilt sensor (e.g. a gyroscope) 904 (FIG. 9). More details of an example of an OIS procedure as disclosed herein are given below with reference to FIG. 9. The two camera units are separated by a small distance “d”, e.g. 1 mm. This small distance between camera units also reduces the perspective effect enabling smoother zoom transition between the camera units.


As indicated above, the two image sensors 814 and 816 may be mounted on separate PCBs that are rigidly connected, thereby enabling adaptation of an OIS mechanism to other system configurations, for example those described above with reference to FIGS. 6A and 6B.


In some embodiments, and optionally, a magnetic shield plate may be used, e.g. as described in co-owned U.S. patent application Ser. No. 14/365,718 titled “Magnetic shielding between voice coil motors in a dual-aperture camera”, which is incorporated herein by reference in its entirety. Such a magnetic shield plate may be inserted in the gap (with width d) between the Wide and Tele camera units.


In general, the dimensions of camera 800 may be in the same range as those of cameras 600, 600′ and 700.


Reference is made to FIG. 9, which exemplifies the camera operation, utilizing a tilt sensor 904 which dynamically measures the camera tilt (which is the same for both the Wide and Tele camera units). As shown, an OIS controller 902 (electronic circuit including hardware/software components) is provided, which is coupled to the actuators of both camera units (e.g. through base 818), and receives a CT input from the tilt sensor 904 and a user-defined zoom factor, and controls the lens movement of the two camera units to compensate for the tilt. The LMV is for example in the X-Y plane. The OIS controller 902 is configured to provide a LMV equal to CT*EFLZF, where “EFLZF” is chosen according to the user-defined zoom factor, ZF. According to one example of an OIS procedure, when ZF=1, LMV is determined by the Wide camera unit's EFLW (i.e. EFLZF=EFLW and LMV=CT*EFLW). Further, when ZF>e (i.e. ZF>EFLT/EFLW), LMV is determined by the telephoto camera unit's EFLT (i.e. EFLZF=EFLT and LMV=CT*EFLT). Further yet, for a ZF between 1 and e, the EFLZF may shift gradually from EFLW to EFLT according to EFLZF=ZF*EFLW.


Thus, the present invention provides a novel approach for configuring a camera device suitable for use in portable electronic devices, in particular smart phones. The present invention solves various problems associated with the requirements for physical parameters of such devices (weight, size), high image quality and zooming effects.

Claims
  • 1. A dual-aperture camera, comprising: an integrated camera that comprises a Wide camera unit having a Wide lens unit with a field of view FOVW and having a total track length TTLW and an effective focal length EFLW, and a Telephoto camera unit comprising a Telephoto lens unit with a Telephoto field of view FOVT, a total track length TTLT and an effective focal length EFLT,wherein the TTLT includes a glass window,wherein a ratio TTLW/EFLW is greater than 1,wherein a ratio TTLT/EFLT is smaller than 1,wherein the Telephoto lens unit has an optical axis, an optical diameter smaller than 5 mm and a F# smaller than 3.2 and includes, in order from an object plane to an image plane along the optical axis, a first lens element having positive optical power and two last lens elements, wherein one of the two last lens elements has an Abbe number greater than 50, and wherein the other of the two last lens elements has an Abbe number smaller than 30.
  • 2. The dual-aperture camera of claim 1, wherein EFLT is in the range EFLT=5-12 mm.
  • 3. The dual-aperture camera of claim 1, wherein F# is smaller than 2.9.
  • 4. The dual-aperture camera of claim 1, wherein TTLT/EFLT is smaller than 0.9.
  • 5. The dual-aperture camera of claim 1, wherein the Telephoto lens unit includes a pair of lens elements formed by a second lens element and a third lens element, and wherein the pair of lens elements has a combined negative optical power.
  • 6. The dual-aperture camera of claim 1, wherein the first lens element of the Telephoto lens unit has a focal length f1 smaller than TTLT/2.
  • 7. The dual-aperture camera of claim 1, wherein the two last lens elements are spaced apart from one another by an effective air gap smaller than TTLT/50.
  • 8. The dual-aperture camera of claim 1, wherein the first, second and third lens elements have respective focal lengths f1, f2 and f3, and wherein the respective focal lengths satisfy the condition 1.2|f3|>|f2|>1.5f1.
  • 9. The dual-aperture camera of claim 1, wherein the Telephoto camera unit includes an image sensor with an image sensor size ¼″ to ⅓″.
  • 10. The dual-aperture camera of claim 1, wherein the Wide and Telephoto camera units are spaced from one another a distance of about 1 mm.
  • 11. The dual-aperture camera of claim 1, wherein TTLT is smaller than 5.5 mm.
  • 12. The dual-aperture of claim 1, included in a mobile electronic device.
  • 13. The dual-aperture camera of claim 12, wherein the mobile device is a smartphone.
  • 14. The dual-aperture of claim 2, included in a mobile electronic device.
  • 15. The dual-aperture camera of claim 14, wherein the mobile device is a smartphone.
  • 16. The dual-aperture of claim 3, included in a mobile electronic device.
  • 17. The dual-aperture camera of claim 16, wherein the mobile device is a smartphone.
  • 18. The dual-aperture of claim 4, included in a mobile electronic device.
  • 19. The dual-aperture camera of claim 18, wherein the mobile device is a smartphone.
CROSS REFERENCE TO EXISTING APPLICATIONS

This application is a Continuation application from U.S. patent application Ser. No. 17/389,510 filed Jul. 30, 2021 (now allowed), which was a Continuation application from U.S. patent application Ser. No. 16/276,034 filed Feb. 14, 2019 (now U.S. Pat. No. 11,125,975), which was a Continuation application from U.S. patent application Ser. No. 15/540,676 filed Jun. 29, 2017 (now U.S. Pat. No. 10,288,840), which was a 371 from international patent application No. PCT/IB2015/050044 filed Jan. 3, 2015.

US Referenced Citations (630)
Number Name Date Kind
2106752 Land Feb 1938 A
2354503 Arthur Jul 1944 A
2378170 Aklin Jun 1945 A
2441093 Aklin May 1948 A
3085354 Rasmussen et al. Apr 1963 A
3388956 Eggert et al. Jun 1968 A
3524700 Eggert et al. Aug 1970 A
3558218 Grey Jan 1971 A
3584513 Gates Jun 1971 A
3864027 Harada Feb 1975 A
3941001 LaSarge Mar 1976 A
3942876 Betensky Mar 1976 A
4134645 Sugiyama et al. Jan 1979 A
4199785 McCullough et al. Apr 1980 A
4338001 Matsui Jul 1982 A
4465345 Yazawa Aug 1984 A
4792822 Akiyama et al. Dec 1988 A
5000551 Shibayama Mar 1991 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5327291 Baker et al. Jul 1994 A
5331465 Miyano Jul 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5502537 Utagawa Mar 1996 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5892855 Kakinami et al. Apr 1999 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5969869 Hirai et al. Oct 1999 A
5982951 Katayama et al. Nov 1999 A
6014266 Obama et al. Jan 2000 A
6035136 Hayashi et al. Mar 2000 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6147702 Smith Nov 2000 A
6148120 Sussman Nov 2000 A
6169636 Kreitzer Jan 2001 B1
6201533 Rosenberg et al. Mar 2001 B1
6208765 Bergen Mar 2001 B1
6211668 Duesler et al. Apr 2001 B1
6215299 Reynolds et al. Apr 2001 B1
6222359 Duesler et al. Apr 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6341901 Iwasa et al. Jan 2002 B1
6520643 Holman et al. Feb 2003 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6654180 Ori Nov 2003 B2
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7187504 Horiuchi Mar 2007 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7515351 Chen et al. Apr 2009 B2
7533819 Barkan et al. May 2009 B2
7564635 Tang Jul 2009 B1
7619683 Davis Nov 2009 B2
7643225 Tsai Jan 2010 B1
7660049 Tang Feb 2010 B2
7684128 Tang Mar 2010 B2
7688523 Sano Mar 2010 B2
7692877 Tang et al. Apr 2010 B2
7697220 Lyama Apr 2010 B2
7738016 Toyofuku Jun 2010 B2
7738186 Chen et al. Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7777972 Chen et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7813057 Lin Oct 2010 B2
7821724 Tang et al. Oct 2010 B2
7826149 Tang et al. Nov 2010 B2
7826151 Tsai Nov 2010 B2
7869142 Chen et al. Jan 2011 B2
7880776 LeGall et al. Feb 2011 B2
7898747 Tang Mar 2011 B2
7916401 Chen et al. Mar 2011 B2
7918398 Li et al. Apr 2011 B2
7957075 Tang Jun 2011 B2
7957076 Tang Jun 2011 B2
7957079 Tang Jun 2011 B2
7961406 Tang et al. Jun 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8000031 Tsai Aug 2011 B1
8004777 Sano et al. Aug 2011 B2
8077400 Tang Dec 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8149523 Ozaki Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8218253 Tang Jul 2012 B2
8228622 Tang Jul 2012 B2
8233224 Chen Jul 2012 B2
8238695 Davey et al. Aug 2012 B1
8253843 Lin Aug 2012 B2
8274552 Dahi et al. Sep 2012 B2
8279537 Sato Oct 2012 B2
8363337 Tang et al. Jan 2013 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8395851 Tang et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8400717 Chen et al. Mar 2013 B2
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8451549 Yamanaka et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8503107 Chen et al. Aug 2013 B2
8514491 Duparre Aug 2013 B2
8514502 Chen Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8570668 Takakubo et al. Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8718458 Okuda May 2014 B2
8752969 Kane et al. Jun 2014 B1
8780465 Chae Jul 2014 B2
8803990 Smith Aug 2014 B2
8810923 Shinohara Aug 2014 B2
8854745 Chen Oct 2014 B1
8896655 Mauchly et al. Nov 2014 B2
8958164 Kwon et al. Feb 2015 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9229194 Yoneyama et al. Jan 2016 B2
9235036 Kato et al. Jan 2016 B2
9270875 Brisedoux et al. Feb 2016 B2
9279957 Kanda et al. Mar 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9488802 Chen et al. Nov 2016 B2
9568712 Dror et al. Feb 2017 B2
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9678310 Iwasaki et al. Jun 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9817213 Mercado Nov 2017 B2
9851803 Fisher et al. Dec 2017 B2
9869846 Bone et al. Jan 2018 B1
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020054214 Yoshikawa May 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020118471 Imoto Aug 2002 A1
20020122113 Foote Sep 2002 A1
20020136554 Nomura et al. Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030048542 Enomoto Mar 2003 A1
20030093805 Gin May 2003 A1
20030156751 Lee et al. Aug 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030162564 Kimura et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040227838 Atarashi et al. Nov 2004 A1
20040239313 Godkin Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050041300 Oshima et al. Feb 2005 A1
20050046740 Davis Mar 2005 A1
20050062346 Sasaki Mar 2005 A1
20050128604 Kuba Jun 2005 A1
20050134697 Mikkonen et al. Jun 2005 A1
20050141103 Nishina Jun 2005 A1
20050141390 Lee et al. Jun 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050168840 Kobayashi et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20050248667 Schweng et al. Nov 2005 A1
20050270667 Gurevich et al. Dec 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060092524 Konno May 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060126737 Boice et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060181619 Liow et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20060238902 Nakashima et al. Oct 2006 A1
20060275025 Labaziewicz et al. Dec 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070035631 Ueda Feb 2007 A1
20070114990 Godkin May 2007 A1
20070126911 Nanjo Jun 2007 A1
20070127040 Davidovici Jun 2007 A1
20070159344 Kisacanin Jul 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070229983 Saori Oct 2007 A1
20070247726 Sudoh Oct 2007 A1
20070253689 Nagai et al. Nov 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080056698 Lee et al. Mar 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080088942 Seo Apr 2008 A1
20080094730 Toma et al. Apr 2008 A1
20080094738 Lee Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080273250 Nishio Nov 2008 A1
20080291531 Heimer Nov 2008 A1
20080304161 Souma Dec 2008 A1
20090002839 Sato Jan 2009 A1
20090067063 Asami et al. Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090102948 Scherling Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090122423 Park et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090135245 Luo et al. May 2009 A1
20090141365 Jannard et al. Jun 2009 A1
20090147368 Oh et al. Jun 2009 A1
20090168135 Yu et al. Jul 2009 A1
20090190909 Mise et al. Jul 2009 A1
20090200451 Conners Aug 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090225438 Kubota Sep 2009 A1
20090234542 Orlewski Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090279191 Yu Nov 2009 A1
20090295949 Ojala Dec 2009 A1
20090295986 Topliss et al. Dec 2009 A1
20090303620 Abe et al. Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100026878 Seo Feb 2010 A1
20100033844 Katano Feb 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100060995 Yumiki et al. Mar 2010 A1
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100134621 Namkoong et al. Jun 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100165476 Eguchi Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100202068 Ito Aug 2010 A1
20100214664 Chia Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100246024 Aoki et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100265331 Tanaka Oct 2010 A1
20100277813 Ito Nov 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110001838 Lee Jan 2011 A1
20110032409 Rossi et al. Feb 2011 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110080655 Mori Apr 2011 A1
20110102667 Chua et al. May 2011 A1
20110102911 Iwasaki May 2011 A1
20110115965 Engelhardt et al. May 2011 A1
20110121666 Park et al. May 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110149119 Matsui Jun 2011 A1
20110157430 Hosoya et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110188121 Goring et al. Aug 2011 A1
20110221599 Högasten Sep 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110249347 Kubota Oct 2011 A1
20110285714 Swic et al. Nov 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20120014682 David et al. Jan 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120062783 Tang et al. Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120069455 Lin et al. Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120092777 Tochigi et al. Apr 2012 A1
20120105579 Jeon et al. May 2012 A1
20120105708 Hagiwara May 2012 A1
20120124525 Kang May 2012 A1
20120147489 Matsuoka Jun 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120154929 Tsai et al. Jun 2012 A1
20120194923 Um Aug 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120229920 Otsu et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120262806 Lin et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130002933 Topliss et al. Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130057971 Zhao et al. Mar 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130088788 You Apr 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130148215 Mori et al. Jun 2013 A1
20130148854 Wang et al. Jun 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130163085 Lim et al. Jun 2013 A1
20130176479 Wada Jul 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130208178 Park Aug 2013 A1
20130229544 Bando Sep 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130258048 Wang et al. Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130271852 Schuster Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130279032 Suigetsu et al. Oct 2013 A1
20130286221 Shechtman et al. Oct 2013 A1
20130286488 Chae Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140022436 Kim et al. Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140063616 Okano et al. Mar 2014 A1
20140092487 Chen et al. Apr 2014 A1
20140118584 Lee et al. May 2014 A1
20140139719 Fukaya et al. May 2014 A1
20140146216 Okumura May 2014 A1
20140160311 Hwang et al. Jun 2014 A1
20140160581 Cho et al. Jun 2014 A1
20140192224 Laroia Jul 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140204480 Jo et al. Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140240853 Kubota et al. Aug 2014 A1
20140285907 Tang et al. Sep 2014 A1
20140293453 Ogino et al. Oct 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20140362274 Christie et al. Dec 2014 A1
20140376090 Terajima Dec 2014 A1
20140379103 Ishikawa et al. Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150002684 Kuchiki Jan 2015 A1
20150022896 Cho et al. Jan 2015 A1
20150029601 Dror et al. Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150086127 Camilus et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150110345 Weichselbaum Apr 2015 A1
20150116569 Mercado Apr 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150138381 Ahn May 2015 A1
20150138431 Shin et al. May 2015 A1
20150145965 Livyatan et al. May 2015 A1
20150153548 Kim et al. Jun 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150160438 Okuda Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150168667 Kudoh Jun 2015 A1
20150177496 Marks et al. Jun 2015 A1
20150181115 Mashiah Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150198464 El Alami Jul 2015 A1
20150205068 Sasaki Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150244942 Shabtay et al. Aug 2015 A1
20150253532 Lin Sep 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150288865 Osborne Oct 2015 A1
20150296112 Park et al. Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150323757 Bone Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20150373252 Georgiev Dec 2015 A1
20150373263 Georgiev et al. Dec 2015 A1
20160007008 Molgaard et al. Jan 2016 A1
20160028949 Lee et al. Jan 2016 A1
20160033742 Huang Feb 2016 A1
20160044250 Shabtay et al. Feb 2016 A1
20160062084 Chen et al. Mar 2016 A1
20160062136 Nomura et al. Mar 2016 A1
20160070088 Koguchi Mar 2016 A1
20160085089 Mercado Mar 2016 A1
20160105616 Shabtay et al. Apr 2016 A1
20160154066 Hioka et al. Jun 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160187631 Choi et al. Jun 2016 A1
20160202455 Aschwanden et al. Jul 2016 A1
20160212333 Liege et al. Jul 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160238834 Erlich et al. Aug 2016 A1
20160241751 Park Aug 2016 A1
20160241756 Chen Aug 2016 A1
20160245669 Nomura Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160301868 Acharya et al. Oct 2016 A1
20160306161 Harada et al. Oct 2016 A1
20160313537 Mercado Oct 2016 A1
20160341931 Liu et al. Nov 2016 A1
20160342095 Bieling et al. Nov 2016 A1
20160349504 Kim et al. Dec 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20160381289 Kim et al. Dec 2016 A1
20170001577 Seagraves et al. Jan 2017 A1
20170019616 Zhu et al. Jan 2017 A1
20170023778 Inoue Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170094187 Sharma et al. Mar 2017 A1
20170102522 Jo Apr 2017 A1
20170115466 Murakami et al. Apr 2017 A1
20170115471 Shinohara Apr 2017 A1
20170124987 Kim et al. May 2017 A1
20170150061 Shabtay et al. May 2017 A1
20170153422 Tang et al. Jun 2017 A1
20170160511 Kim et al. Jun 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170199360 Chang Jul 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170219749 Hou et al. Aug 2017 A1
20170242225 Fiske Aug 2017 A1
20170276911 Huang Sep 2017 A1
20170276913 Yao Sep 2017 A1
20170276954 Bajorins et al. Sep 2017 A1
20170289458 Song et al. Oct 2017 A1
20170294002 Jia et al. Oct 2017 A1
20170310952 Adomat et al. Oct 2017 A1
20170329108 Hashimoto Nov 2017 A1
20170329111 Hu et al. Nov 2017 A1
20170337703 Wu et al. Nov 2017 A1
20180003925 Shmunk Jan 2018 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024319 Lai et al. Jan 2018 A1
20180024329 Goldenberg et al. Jan 2018 A1
20180048825 Wang Feb 2018 A1
20180059365 Bone et al. Mar 2018 A1
20180059376 Lin et al. Mar 2018 A1
20180059379 Chou Mar 2018 A1
20180081149 Bae et al. Mar 2018 A1
20180109660 Yoon et al. Apr 2018 A1
20180109710 Lee et al. Apr 2018 A1
20180120674 Avivi et al. May 2018 A1
20180149835 Park May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180183982 Lee et al. Jun 2018 A1
20180184010 Cohen et al. Jun 2018 A1
20180196236 Ohashi et al. Jul 2018 A1
20180196238 Goldenberg et al. Jul 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180216925 Yasuda et al. Aug 2018 A1
20180217475 Goldenberg et al. Aug 2018 A1
20180218224 Olmstead et al. Aug 2018 A1
20180224630 Lee et al. Aug 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180249090 Nakagawa et al. Aug 2018 A1
20180268226 Shashua et al. Sep 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20180307005 Price et al. Oct 2018 A1
20180329281 Ye Nov 2018 A1
20180368656 Austin et al. Dec 2018 A1
20190025549 Hsueh et al. Jan 2019 A1
20190025554 Son Jan 2019 A1
20190049687 Bachar et al. Feb 2019 A1
20190075284 Ono Mar 2019 A1
20190086638 Lee Mar 2019 A1
20190089941 Bigioi et al. Mar 2019 A1
20190094500 Tseng et al. Mar 2019 A1
20190096047 Ogasawara Mar 2019 A1
20190100156 Chung et al. Apr 2019 A1
20190107651 Sade Apr 2019 A1
20190121103 Bachar et al. Apr 2019 A1
20190121216 Shabtay et al. Apr 2019 A1
20190130822 Jung et al. May 2019 A1
20190154466 Fletcher May 2019 A1
20190155002 Shabtay et al. May 2019 A1
20190170965 Shabtay Jun 2019 A1
20190187443 Jia et al. Jun 2019 A1
20190187486 Goldenberg et al. Jun 2019 A1
20190196148 Yao et al. Jun 2019 A1
20190213712 Lashdan et al. Jul 2019 A1
20190215440 Rivard et al. Jul 2019 A1
20190222758 Goldenberg et al. Jul 2019 A1
20190227338 Bachar et al. Jul 2019 A1
20190228562 Song Jul 2019 A1
20190235202 Smyth et al. Aug 2019 A1
20190297238 Klosterman Sep 2019 A1
20190320119 Miyoshi Oct 2019 A1
20190353874 Yeh et al. Nov 2019 A1
20200014912 Kytsun et al. Jan 2020 A1
20200084358 Nadamoto Mar 2020 A1
20200092486 Guo et al. Mar 2020 A1
20200103726 Shabtay et al. Apr 2020 A1
20200104034 Lee et al. Apr 2020 A1
20200118287 Hsieh et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200162682 Cheng et al. May 2020 A1
20200192069 Makeev et al. Jun 2020 A1
20200221026 Fridman et al. Jul 2020 A1
20200241233 Shabtay et al. Jul 2020 A1
20200264403 Bachar et al. Aug 2020 A1
20200333691 Shabtay et al. Oct 2020 A1
20200389580 Kodama et al. Dec 2020 A1
20200400926 Bachar Dec 2020 A1
20210048628 Shabtay et al. Feb 2021 A1
20210048649 Goldenberg et al. Feb 2021 A1
20210165192 Goldenberg et al. Jun 2021 A1
20210180989 Fukumura et al. Jun 2021 A1
20210208415 Goldenberg et al. Jul 2021 A1
20210263276 Huang et al. Aug 2021 A1
20210333521 Yedid et al. Oct 2021 A9
20210364746 Chen Nov 2021 A1
20210368104 Bian et al. Nov 2021 A1
20210396974 Kuo Dec 2021 A1
20220046151 Shabtay et al. Feb 2022 A1
20220066168 Shi Mar 2022 A1
20220113511 Chen Apr 2022 A1
20220206264 Rudnick et al. Jun 2022 A1
20220232167 Shabtay et al. Jul 2022 A1
20220252963 Shabtay et al. Aug 2022 A1
20220368814 Topliss et al. Nov 2022 A1
Foreign Referenced Citations (138)
Number Date Country
101276415 Oct 2008 CN
101634738 Jan 2010 CN
201514511 Jun 2010 CN
102130567 Jul 2011 CN
102147519 Aug 2011 CN
102193162 Sep 2011 CN
102215373 Oct 2011 CN
102466865 May 2012 CN
102466867 May 2012 CN
102739949 Oct 2012 CN
102147519 Jan 2013 CN
102982518 Mar 2013 CN
103024272 Apr 2013 CN
203406908 Jan 2014 CN
103576290 Feb 2014 CN
203482298 Mar 2014 CN
103698876 Apr 2014 CN
103841404 Jun 2014 CN
104297906 Jan 2015 CN
104407432 Mar 2015 CN
105467563 Apr 2016 CN
105657290 Jun 2016 CN
205301703 Jun 2016 CN
105827903 Aug 2016 CN
105847662 Aug 2016 CN
106680974 May 2017 CN
104570280 Jun 2017 CN
107608052 Jan 2018 CN
107682489 Feb 2018 CN
109729266 May 2019 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S54157620 Dec 1979 JP
S59121015 Jul 1984 JP
S59191146 Oct 1984 JP
6165212 Apr 1986 JP
S6370211 Mar 1988 JP
H0233117 Feb 1990 JP
04211230 Aug 1992 JP
406059195 Mar 1994 JP
H07318864 Dec 1995 JP
H07325246 Dec 1995 JP
H07333505 Dec 1995 JP
08271976 Oct 1996 JP
H09211326 Aug 1997 JP
H11223771 Aug 1999 JP
2000292848 Oct 2000 JP
3210242 Sep 2001 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2003304024 Oct 2003 JP
2004056779 Feb 2004 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2004334185 Nov 2004 JP
2005099265 Apr 2005 JP
2005122084 May 2005 JP
2005321592 Nov 2005 JP
2006038891 Feb 2006 JP
2006191411 Jul 2006 JP
2006195139 Jul 2006 JP
2006237914 Sep 2006 JP
2006238325 Sep 2006 JP
2008083377 Sep 2006 JP
2007086808 Apr 2007 JP
2007133096 May 2007 JP
2007164065 Jun 2007 JP
2007219199 Aug 2007 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2008111876 May 2008 JP
2008191423 Aug 2008 JP
2008245142 Oct 2008 JP
2008271026 Nov 2008 JP
2010032936 Feb 2010 JP
2010164841 Jul 2010 JP
2010204341 Sep 2010 JP
2011055246 Mar 2011 JP
2011085666 Apr 2011 JP
2011138407 Jul 2011 JP
2011145315 Jul 2011 JP
2011151448 Aug 2011 JP
2011203283 Oct 2011 JP
2012132739 Jul 2012 JP
2012203234 Oct 2012 JP
2013003317 Jan 2013 JP
2013003754 Jan 2013 JP
2013101213 May 2013 JP
2013105049 May 2013 JP
2013106289 May 2013 JP
2013148823 Aug 2013 JP
2014142542 Aug 2014 JP
2016105577 Jun 2016 JP
2017116679 Jun 2017 JP
2017146440 Aug 2017 JP
2018059969 Apr 2018 JP
2019113878 Jul 2019 JP
2019126179 Jul 2019 JP
20070005946 Jan 2007 KR
20080088477 Oct 2008 KR
20090019525 Feb 2009 KR
20090058229 Jun 2009 KR
20090131805 Dec 2009 KR
20100008936 Jan 2010 KR
20110058094 Jun 2011 KR
20110080590 Jul 2011 KR
20110082494 Jul 2011 KR
20110115391 Oct 2011 KR
20120068177 Jun 2012 KR
20140135909 May 2013 KR
20130104764 Sep 2013 KR
1020130135805 Nov 2013 KR
20140014787 Feb 2014 KR
20140023552 Feb 2014 KR
101428042 Aug 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
20160000759 Jan 2016 KR
101632168 Jun 2016 KR
20160115359 Oct 2016 KR
20170105236 Sep 2017 KR
20180120894 Nov 2018 KR
20130085116 Jun 2019 KR
1407177 Sep 2013 TW
M602642 Oct 2020 TW
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2010122841 Oct 2010 WO
2013058111 Apr 2013 WO
2013063097 May 2013 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (25)
Entry
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM Siggraph, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM Siggraph, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Zitova Bet al: “Image Registration Methods: A Survey”, Image and Vision Computing, Elsevier, Guildford, GB, vol. 21, No. 11, Oct. 1, 2003 (Oct. 1, 2003), pp. 977-1000, XP00i 189327, ISSN: 0262-8856, DOI: i0_i0i6/ S0262-8856(03)00137-9.
A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages.
Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages.
Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages).
The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages.
Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages.
Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages.
Boye et al., “Ultrathin Optics for Low-Profile Innocuous Imager”, Sandia Report, 2009, pp. 56-56.
“Cheat sheet: how to understand f-stops”, Internet article, Digital Camera World, 2017.
Related Publications (1)
Number Date Country
20240288664 A1 Aug 2024 US
Continuations (3)
Number Date Country
Parent 17389510 Jul 2021 US
Child 18641478 US
Parent 16276034 Feb 2019 US
Child 17389510 US
Parent 15540676 US
Child 16276034 US