Miniature X-ray unit

Information

  • Patent Grant
  • 7901345
  • Patent Number
    7,901,345
  • Date Filed
    Thursday, July 1, 2010
    14 years ago
  • Date Issued
    Tuesday, March 8, 2011
    13 years ago
Abstract
A miniaturized x-ray apparatus for delivering x-rays to a selected site within a body cavity includes a catheter having at least one lumen and an x-ray transparent window at a distal end thereof; an x-ray source in the lumen adjacent said x-ray transparent window; a movable x-ray shield positioned to direct x-rays from the source through the x-ray transparent window to the selected site.
Description
FIELD OF THE INVENTION

The invention relates to a miniaturized x-ray source situated in a catheter that generates x-rays while minimizing risk from exposure to the x-rays.


BACKGROUND OF THE INVENTION

Traditionally, x-rays have been used in the medical industry to view bone, tissue and teeth. X-rays have also been used to treat cancerous and precancerous conditions by exposing a patient to x-rays using an external x-ray source. Treatment of cancer with x-rays may cause well documented side effects, many of which are due to the broad exposure of the patient to the therapeutic x-rays.


To improve medical treatment and diagnosis of patients, minimally invasive endoscopic techniques have been developed and are used to treat a variety of conditions. Endoluminal procedures are procedures performed with an endoscope, a tubular device into the lumen of which may be inserted a variety of rigid or flexible tools to treat or diagnose a patient's condition.


The desire for improved minimally invasive medical devices and techniques have led to the development of miniaturized x-ray devices that may be used in the treatment or prevention of a variety of medical conditions. International Publication No. WO 98/48899 discloses a miniature x-ray unit having an anode and cathode separated by a vacuum gap positioned inside a metal housing. The anode includes a base portion and a projecting portion. The x-ray unit is insulated and connected to a coaxial cable which, in turn, is connected to the power source. An x-ray window surrounds the projecting portion of the anode and the cathode so that the x-rays can exit the unit. The x-ray unit is sized for intra-vascular insertion, and may be used, inter alia, in vascular brachytherapy of coronary arteries, particularly after balloon angioplasty.


International Publication No. WO 97/07740 discloses an x-ray catheter having a catheter shaft with an x-ray unit attached to the distal end of the catheter shaft. The x-ray unit comprises an anode and a cathode coupled to an insulator to define a vacuum chamber. The x-ray unit is coupled to a voltage source via a coaxial cable. The x-ray unit can have a diameter of less than 4 mm and a length of less than about 15 mm, and can be used in conjunction with coronary angioplasty to prevent restenosis.


Miniaturized x-rays are not foolproof, however, and still present difficulties upon use. The x-ray unit generates heat, which can damage adjacent healthy tissue. Additionally, the x-rays are not localized and irradiate local tissue rather than only irradiating the desired tissue. It is difficult to maintain the positioning of these instruments at the desired location. Improved miniaturized x-ray units that overcome these difficulties are desirable.


Other techniques are used to treat tumors with radiation, including planting a seed of radioactive material at the tumor site, a procedure that is typically accomplished with endoluminal procedures. However, the patient becomes “hot”, i.e., radioactive, and the procedure risks exposure of the medical personnel to radiation.


As noted above, many types of cancerous and precancerous conditions are treated by externally irradiating the tumor or site with x-rays. However, the x-rays are broadcast over a large area of healthy tissue in addition to the tumor because the radiation is administered from outside the body so that it penetrates the skin and any internal organs or tissue to reach the desired site. To avoid this, miniaturized x-ray systems which generate x-rays at the desired site are a desirable alternative to conventional apparatus.


Since many types of cancer occur in a body cavity or lumen, such as in the rectum, vagina, esophagus or pulmonary passages, it would be desirable to treat these cancers using miniaturized x-ray sources in combination with endoscopic techniques, which are minimally invasive to the patient, so that the cancer or other intraluminal tissue is directly treated with x-rays. This technique would minimize exposure of healthy tissues to the x-rays.


The present invention overcomes the difficulties associated with x-ray therapy and apparatus of the prior art by providing an endoscopic x-ray device that generates x-rays at the site of treatment and minimizes exposure of other tissues to irradiation.


SUMMARY OF THE INVENTION

A miniaturized x-ray apparatus for delivering x-rays to a selected site within a body cavity includes a catheter having at least one lumen and an x-ray transparent window at a distal end thereof; an x-ray source in the lumen adjacent said x-ray transparent window; a movable x-ray shield positioned to direct x-rays from the source through the x-ray transparent window to the selected site. The x-ray device ranges from 2 mm to about 15 mm.


The x-ray source is positioned inside an x-ray shielded catheter lumen, i.e., the catheter lumen is impenetrable by x-rays except in the area of the x-ray transparent window which is described in more detail below.


The x-ray source includes a cathode and an anode and an insulating material. The anode and cathode are separated by a vacuum gap. Insulating material may surround the base anode and cathode.


Preferably, a separate lumen of the catheter includes a camera through which medical personnel may observe the body lumen and procedure.


In a preferred embodiment, inflatable (anchoring or positioning) balloons are provided on the exterior of the endoscope to maintain the desired position of the instrument once inserted into the lumen. These balloons may be filled with a gas via catheter lumens connected to a gas or fluid source. Preferably, the balloons are filled with a fluid that absorbs x-rays so that the fluid will help prevent irradiation of undesired tissue. The gas and or fluid will also preferably help to absorb heat generated during the procedure to prevent burning of local tissue. A thermocouple may be positioned on the exterior of the endoscope to monitor the temperature at the treatment site.


In an alternative embodiment, the catheter includes an x-ray source and the anchoring balloons which are inflatable with gas or fluid as described above. This embodiment does not include a shield.


Another alternative embodiment provides a catheter having a miniaturized x-ray device and a stationary x-ray shield having an x-ray transparent window.


The invention is described in further detail hereinbelow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a is a miniaturized x-ray device according to the prior art.



FIG. 2 is the x-ray emission pattern from the device in FIG. 1.



FIG. 3 is a longitudinal cross section of a miniaturized x-ray device of the present invention.



FIGS. 4
a and 4b are axial cross-sections of the device of FIG. 3 showing the rotational motion of the x-ray shield about a central axis.



FIG. 5 is a cross-section of a catheter having circulation lumens to inflate positioning and/or anchoring balloons.



FIG. 6 is the catheter of FIG. 5 showing inflated positioning and/or anchoring balloons.



FIG. 7 is a miniature x-ray device having both positioning and anchoring balloons.



FIG. 8 is an embodiment of a miniature x-ray device having a multi-chambered balloon filled with coolant and having a thermocouple.



FIG. 9 is a preferred embodiment of a miniature x-ray device having a laser positioning system according to the invention.



FIG. 10 is a cross section of a miniature x-ray device having a laser positioning system showing operation of the laser and x-ray shutters.



FIG. 11 is a preferred embodiment of a miniature x-ray catheter x-ray having an x-ray source located inside a catheter having an x-ray transparent window and a balloon positioning system.





DETAILED DESCRIPTION


FIG. 3 is a longitudinal cross section of a preferred x-ray apparatus according to the invention, inserted through the working channel of a endoscope (not shown) in a bodily lumen at a tumor site. The device 1 includes an x-ray source 10 which is connected to power supply 12 by electrically conductive cable 13, e.g. a coaxial cable. X-ray source 10 includes a vacuum tube which maintains vacuum conditions therein and houses the electrodes of the x-ray source. Power supply 12 delivers sufficient energy to x-ray source 10 to generate therapeutically effective x-rays. Typically, voltages of from 10 to 60 kilovolts (kV) are needed to generate x-rays from x-ray source 10. X-ray source 10 is located inside the lumen of x-ray tube 16 which is made of a material substantially or completely impenetrable to x-rays like lead or steel, except where x-ray transparent window 18 is positioned so that x-rays may exit the device and reach the desired site. Window 18 may circumferentially extend about the entire circumference of the x-ray tube 16, or may only be extend partially about the circumference of the x-ray tube.


Suitable materials for the window include beryllium, glass, ceramic, plastic, mica. Additional coatings of metal or insulating material may be layered or coated on the window material as needed.


X-ray shield 15 is made of a material that is impenetrable to x-rays located in the catheter lumen and is rotatably connected to an external controller such that it may be rotated about a central axis to block x-rays from reaching non-selected tissue as shown in FIGS. 4a and 4b. X-ray shield 15 may be connected to a rotatable knob located at the proximal end of apparatus 1 so that x-ray shield 15 may be manually or otherwise adjusted to the desired location, which is typically opposite the site of treatment.


Device 1 preferably includes separate lumen for receiving a miniaturized camera, that may be retractably inserted into the body lumen. The camera is connected to a viewing screen so that the physician can view the position of the device in the body lumen.


An important advantage of a device embodied above compared to apparatus of the prior art is easily discerned by comparing the device of FIG. 3 with the prior art apparatus of FIG. 1. As shown in FIG. 2, the x-ray pattern of the prior art device extends circumferentially from the location of the x-ray source in an unidirectional manner so that selected and non-selected tissue is irradiated. The x-ray shield of the subject apparatus limits allows medical personnel to limit radiation exposure to substantially only selected tissue, reducing exposure of healthy tissue to x-rays.


A preferred embodiment, shown in FIGS. 5, 6 and 7 includes at least one inflatable positioning balloon 20 adhered to the outer wall of the x-ray tube. Positioning balloon 20 communicates with a gas or liquid reservoir via a duct and is inflated after proper positioning of the apparatus in the body lumen so that the position of the x-ray source is maintained throughout treatment. Positioning balloon 20 may be adhered to the exterior wall of the x-ray tube by a suitable adhesive. Alternatively, the balloons are positioned in compartments located inside a lumen of the device or in recesses provided in x-ray tube 16 so that they are not exposed until needed. It is preferred that a plurality of balloons are provided. Alternatively, a multi-chambered balloon 21 is provided to aid proper positioning of the apparatus in the body lumen as shown in FIG. 8.


In a particularly preferred embodiment, a gas or liquid coolant is passed through balloon 20 via circulation lumens which communicate with the interior of positioning balloon 20 and are connected to a gas or liquid reservoir. A respective circulation duct is provided for each balloon or balloon chamber so that they may be independently inflated. The positioning balloons 20 may be inflated with a gas or a liquid, but an x-ray absorbent liquid is preferred. Normal saline is a particularly preferred liquid because it has a high heat capacity, is x-ray absorbent, and, in the unlikely event of leakage, is biocompatible with the patient.


Optionally, anchoring balloons 22 may be positioned proximal and distal to positioning balloon 20 to steadfastly anchor the apparatus in the desired site by fully inflating the anchor balloons, and finer positioning adjustments may be made with positioning balloons 20 which are placed nearly adjacent the x-ray source. In a particularly preferred embodiment, anchoring balloons 20 are positioned proximal and distal to the x-ray window to anchor the endoscopic device at the desired site.


Thermocouple 26 may be optionally affixed or placed in the vicinity of the x-ray source to measure temperature during the procedure. Thermocouple 26 may be in the form of a bimetallic strip and is operatively connected to a temperature display device so that the temperature is monitored during the procedure.


Apparatus preferably includes a camera catheter 24 to view inside the body cavity so that the endoscope can be properly positioned at the desired site. The guide may be positioned in the same tube as the x-ray source or may be positioned in a tube parallel to the x-ray source 7.


In a particularly preferred embodiment shown in FIGS. 9 and 10 a light source 30 is provided in the x-ray catheter and is used to position the device such that substantially only the desired site is irradiated. Light source 30 is preferably a laser, but other types of illuminating devices may also be used. Light source 30 is positioned inside the catheter lumen in the vicinity of x-ray source 10, but is a sufficient distance from the source so that the light source is not damaged during operation. Alternatively, light source 30 may be separated from x-ray source 10 by a suitable insulating material. Light source 30 is operatively connected to a power source.


Laser shutter 32 and x-ray shutter 33 are positioned one above the other and are independently opened and closed via an operable connection with respective manual opening devices. In a preferred embodiment, x-ray shutter 33 is automatically opened by an opening means when the x-ray is activated so that it is only open during periods of operation of the x-ray source, and closes when the x-ray source is not activated. The shutters operate in a known manner and are formed by a plurality of retractable portions (32a and 32b; and 33a and 33b) which operate in conjunction with their respective counterpart to form an aperture through which light and x-ray may pass.


In operation, the selected site is illuminated as shown in FIG. 9 with light source 33, and the field of illumination substantially corresponds with the field of irradiation. Thus, by simply illuminating the site of operation and viewing with the camera, it is possible to determine the site of radiation prior to irradiation with the x-ray. Then the anchor and positioning balloons can be properly adjusted, and the site can be irradiated with the dose of x-ray.



FIG. 11 is an embodiment of a miniaturized x-ray device 100 having an x-ray source 101 attached to electrically conductive cable 102 which has an inflatable balloons 20 adhered to an outer surface thereof. The balloons communicate with a fluid or gas source as described above to aid positioning of the x-ray source at the desired site.


The present invention also relates to methods of treatment, prophylaxis and adjunctive therapy using the miniaturized x-ray apparatus of the present invention. Suitable for use with other endoscopic equipment, the x-ray device is of an appropriate size such that it may be used to treat cancers of bodily lumens such as colorectal cancer, vaginal cancer, esophageal cancer, pulmonary cancers such as lung cancers, stomach cancer, oral cancers, or any cancer accessible by a bodily lumen by positioning the device adjacent the target tissue and irradiating the tissue with a therapeutically effective amount of x-rays. In similar fashion, one can treat pre-cancerous conditions or conditions related with cancer such as gastroesophageal reflux disease (GERD). Preferably, the selected site is illuminated prior to irradiation such that field of irradiated tissue is determined prior to irradiation of the site.


The apparatus of the invention may be used in conjunction with imaging devices such as visual, x-ray, magnetic or ultrasound to aid in positioning of the device inside a body lumen.


Although the present invention has been shown and described with respect to several preferred embodiments thereof, additional embodiments will be apparent to the skilled artisan without departing from the spirit and scope of the invention.


All cited references are incorporated herein by reference.

Claims
  • 1. An apparatus for delivering x-rays to a selected site within a body cavity, comprising: a catheter having at least one lumen and an x-ray source disposed within the at least one lumen; andan inflatable balloon disposed on the catheter proximate the x-ray source, wherein the inflatable balloon is filled with a fluid that absorbs x-rays such that the balloon acts as an x-ray shield.
  • 2. The apparatus of claim 1, wherein the catheter further comprises an x-ray transparent window adjacent the x-ray source.
  • 3. The apparatus of claim 1, further comprising an inflatable anchoring or positioning balloon affixed to an outer wall of the catheter, wherein the balloon is operatively coupled to fluid reservoir.
  • 4. The apparatus of claim 1, further comprising a thermocouple for measuring temperature.
  • 5. The apparatus of claim 2, wherein the x-ray transparent window is also light transparent, the apparatus further comprising a light source and an x-ray shutter for controlling respective x-rays and light transmitted through the x-ray transparent window.
  • 6. The apparatus of claim 2, further comprising a movable x-ray shield positioned to direct x-rays from the x-ray source through the x-ray transparent window.
  • 7. The apparatus of claim 6, wherein the movable x-ray shield is connected to an external controller.
  • 8. The apparatus of claim 7, wherein the external controller is a rotatable knob located at a proximal end of the apparatus.
  • 9. The apparatus of claim 2, the x-ray transparent window comprising at least one material selected from the group consisting of glass beryllium, ceramic, plastic and mica.
  • 10. A method, comprising: positioning an x-ray source of an apparatus adjacent a selected treatment site in a body lumen, the apparatus comprising a catheter having a lumen with the x-ray source disposed within the catheter lumen, and an inflatable balloon disposed on the catheter proximate the x-ray source;inflating the balloon with a fluid that absorbs x-rays such that the balloon acts as an x-ray shield; andirradiating the treatment site with a therapeutic dose of x-ray radiation.
  • 11. The method of claim 10, wherein the catheter further comprises an x-ray transparent window adjacent the x-ray source.
  • 12. The method of claim 10, the apparatus further comprising an inflatable anchoring or positioning balloon affixed to an outer wall of the catheter, wherein the balloon is operatively coupled to fluid reservoir, the method further comprising: inflating the inflatable anchoring or positioning balloon to anchor or position the catheter.
  • 13. The method of claim 10, the apparatus further comprising a thermocouple for measuring temperature.
  • 14. The method of claim 11, wherein the x-ray transparent window is also transparent to light, the apparatus further comprising a light source and an x-ray shutter for controlling x-rays and light through the x-ray transparent window, the method further comprising: illuminating the treatment site with the light source to determine the field of tissue irradiation.
  • 15. The method of claim 11, the apparatus further comprising a movable x-ray shield positioned to direct x-rays from the x-ray source through the x-ray transparent window, the method further comprising: moving the x-ray shield.
  • 16. The method of claim 10, wherein the treatment site has a cancerous condition selected from the group consisting of colorectal cancer, vaginal cancer, pulmonary cancer, esophageal cancer, oral cancer and stomach cancer.
RELATED APPLICATION DATA

This application is a continuation of co-pending U.S. patent application Ser. No. 11/059,924, filed Feb. 17, 2005, which is a continuation of U.S. Ser. No. 10/360,502, filed Feb. 6, 2003, now U.S. Pat. No. 6,910,999, which is a continuation of U.S. Ser. No. 09/710,304 filed Nov. 10, 2000, now U.S. Pat. No. 6,540,655, the priority of which is claimed under 35 U.S.C. §120, and the contents of which are incorporated herein by reference in their entirety, as though set forth in full.

US Referenced Citations (91)
Number Name Date Kind
2740095 Somes Mar 1956 A
3248473 Buhmann Apr 1966 A
3541221 Aupoix et al. Nov 1970 A
3811426 Culver et al. May 1974 A
3906333 Kalmanash Sep 1975 A
3992633 Braun et al. Nov 1976 A
4143275 Mallozzi et al. Mar 1979 A
4323736 Strickland Apr 1982 A
4459990 Barnea Jul 1984 A
4500832 Mickiewicz Feb 1985 A
4595843 DelVecchio et al. Jun 1986 A
4599483 Kuhn et al. Jul 1986 A
4634126 Kimura Jan 1987 A
4641649 Walinsky et al. Feb 1987 A
4652846 Sobottka Mar 1987 A
4810834 Grogl et al. Mar 1989 A
4858095 Narita et al. Aug 1989 A
4860744 Johnson et al. Aug 1989 A
4993404 Lane Feb 1991 A
5006119 Acker et al. Apr 1991 A
5026367 Leckorne et al. Jun 1991 A
5041107 Heil, Jr. Aug 1991 A
5043530 Davies Aug 1991 A
5084061 Gau et al. Jan 1992 A
5090043 Parker et al. Feb 1992 A
5127394 Lane Jul 1992 A
5151100 Abele et al. Sep 1992 A
5153900 Nomikos et al. Oct 1992 A
5165093 Miller et al. Nov 1992 A
5199939 Dake et al. Apr 1993 A
5230349 Langberg Jul 1993 A
5246437 Abela Sep 1993 A
5253653 Daigle et al. Oct 1993 A
5298682 Salz Mar 1994 A
5341281 Skibinski Aug 1994 A
5347255 Saitoh et al. Sep 1994 A
5354220 Ganguly et al. Oct 1994 A
5369679 Sliski et al. Nov 1994 A
5372603 Acker et al. Dec 1994 A
5379779 Rowland et al. Jan 1995 A
5392020 Chang Feb 1995 A
5395362 Sacharoff et al. Mar 1995 A
5422926 Smith et al. Jun 1995 A
5427115 Rowland et al. Jun 1995 A
5442678 Dinsmore et al. Aug 1995 A
5503613 Weinberger Apr 1996 A
5528652 Smith et al. Jun 1996 A
5542928 Evans et al. Aug 1996 A
5562633 Wozencroft Oct 1996 A
5566221 Smith et al. Oct 1996 A
5578008 Hara Nov 1996 A
5578018 Rowland et al. Nov 1996 A
5591162 Fletcher et al. Jan 1997 A
5593524 Philips Jan 1997 A
5599346 Edwards et al. Feb 1997 A
5621780 Smith et al. Apr 1997 A
5651047 Moorman et al. Jul 1997 A
5704914 Stocking et al. Jan 1998 A
5718688 Wozencroft Feb 1998 A
5720720 Laske et al. Feb 1998 A
5782740 Schneiderman Jul 1998 A
5793272 Burghartz et al. Aug 1998 A
5795339 Erskine Aug 1998 A
5816999 Bischoff et al. Oct 1998 A
5865806 Howell Feb 1999 A
5919172 Golba, Jr. Jul 1999 A
5997462 Loffler Dec 1999 A
6061587 Kucharczyk et al. May 2000 A
6066130 Gregory et al. May 2000 A
6095966 Chornenky et al. Aug 2000 A
6108402 Chornenky Aug 2000 A
6111933 Schaaf et al. Aug 2000 A
6135997 Laufer et al. Oct 2000 A
6143018 Beuthan et al. Nov 2000 A
6148061 Shefer et al. Nov 2000 A
6171249 Chin et al. Jan 2001 B1
6183410 Jacobsen et al. Feb 2001 B1
6190359 Heruth Feb 2001 B1
6217503 Weinberger et al. Apr 2001 B1
6251060 Hoof et al. Jun 2001 B1
6296603 Turnlund et al. Oct 2001 B1
6301328 Sliski et al. Oct 2001 B1
6319188 Lovoi Nov 2001 B1
6330481 Van Wijk et al. Dec 2001 B1
6364840 Crowley Apr 2002 B1
6375651 Grasso et al. Apr 2002 B2
6540655 Chin et al. Apr 2003 B1
6580940 Gutman Jun 2003 B2
6659288 Amano et al. Dec 2003 B2
6910999 Chin et al. Jun 2005 B2
20010009970 Chomenky et al. Jul 2001 A1
Foreign Referenced Citations (5)
Number Date Country
1904161 Oct 1969 DE
363291309 Nov 1988 JP
WO 9707740 Mar 1997 WO
WO 9848899 Nov 1998 WO
WO 0009212 Feb 2000 WO
Related Publications (1)
Number Date Country
20100266101 A1 Oct 2010 US
Continuations (3)
Number Date Country
Parent 11059924 Feb 2005 US
Child 12828501 US
Parent 10360502 Feb 2003 US
Child 11059924 US
Parent 09710304 Nov 2000 US
Child 10360502 US